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Abstract. There are eight orientations of the complete graph on three
vertices with a pendant edge, K3U {e}. Two of these are 3-circuits with
a pendant arc and the other six are transitive triples with a pendant
arc. Necessary and sufficient conditions are given for decompositions,
packings, and coverings of the complete digraph with each of these eight
orientations of K3 U {e}.

1 Introduction

A G-decomposition of a graph H is a set {g1,92,-..,9n} of subgraphs of H
(called blocks) such that g; ¢ G for i € {1,2,...,n}, E(g:)(1E(g;)} = @ for
i # 7, and U,_lE(gi) = E(H). A G-decomposition of H where G and H
are digraphs is similarly defined (with arc sets replacing edge sets). Several
decompositions of the complete graph K, and the complete digraph D,
have been explored. In particular, a Steiner triple system of order v is
equivalent to a K3-decomposition of K, and such systems exist if and only
if v =1 or 3 (mod 6) [12]. A Mendelsohn triple system is equivalent to
a 3-circuit (Ca) decomposition of D, and exists if and only if v =0 or 1
(mod 3), v # 6 [9]. A directed triple system is equivalent to a transitive
triple (T, see Figure 1) decomposition of D, and exists if and only if v =
or 1 (mod 3) [8]. Also of relevance to our results are decompositions of Kv
into copies of K3 with a pendant edge (the graph L of Figure 1). Bermond
and Schonheim showed that such decomposmons exist if and only xf v=0
or 1 (mod 8) [2].

A mazimum G-packing of graph H is a set {gl, 92y .-y g,,} of subgraphs
of H (called blocks) such that g; = G fori € {1, 2,. ,n} E(gi))nE(g;) =
for i # j, Ur_,g; C H, and |E(H) \ UL, E(g:)| is minimum. The leave of
the packing is the set E(H) \ UL 1E(g.) A maximum G paclung of H
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where G and H are digraphs is similarly defined (with arc sets replacing
edge sets). Maximum K3-packings of K, were explored by Schénheim [10].
Maximum 3-circuit and transitive triple packings of D, were addressed in

[5]-

Figure 1. The 3-circuit Cs, transitive triple T, and K3 with
a pendant edge L.

A minimum G-covering of graph H is a set {g1,92,- - .,9n} of subgraphs
of H (called blocks) such that g; 2 G fori € {1,2,...,n}, H C U, g;, and
|UT_, E(g:) \ E(H)| is minimum (the graph UZ_,g; may not be simple and
U™, E(g;) may be a multiset). A minimum G-covering of H where G and
H are digraphs is similarly defined (with arc sets replacing edge sets). The
padding of the covering is the multiset U, E(g;) \ E(H). Minimum Kj-
coverings of K,, were explored by Fort and Hedlund [3]. Minimum 3-circuit
and transitive triple coverings of D, were addressed in [5].

We note that K3-decompositions of K,, were followed by decompositions
of D, with orientations of K3. Thus, a natural follow-up to the the work
of [2] would be to consider orientations of graphs of order four or less.
Because of this, we are motivated to consider decompositions, packings,

and raveringe ~f I with ranine nf digranh 77 whara 7 an ariantation nf
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L = K3l J{e} (see Figure 2).

We denote the orientations of L = K3U{e} given in Figure 2 as [a, b, ¢; d)m1,
[a,b, ¢; d]m2, {a,b, ¢ d]a, --., [a,b,c;d]qs, respectively. The purpose of this
paper is to give necessary and sufficient conditions for decompositions, pack-
ings, and coverings of D, with each of the eight orientations of L = K3U{e}.

2 Decompositions

We note that since each of these orientations has four arcs, it is necessary
that |A(D,)| = 0 (mod 4) for the existence of a decomposition of D, into
one of the digraphs of Figure 2. Hence v = 0 or 1 (mod 4) is necessary in
all cases. _ :
The wheel, denoted W, is the graph containing a cycle on n vertices
such that every vertex in the cycle is adjacent to a center vertex, co. We
will denote the wheel W, with center co and cycle (0,q,2a,...,(n — 1)a)
by Wn(co : a). Note that |V(W,)| = n + 1 and |E(W,)| = 2n. This can
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be extended to a digraph by replacing each edge with a forward arc and a
backward arc.

b c b c b c b c
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d _ d d d

ma me dl dz |
b c b c b c b e
Y V . Y V
d d d | di
d3 ds ds dg

Figure 2. The eight orientations of L = K3 U {e}.

The circulant, denoted C,(S), has vertex set V(Cp(S)) = {0,1,...,n—
1}. Two vertices u and v are adjacent if and only if |u — v|, € S, where
|z}n = min{x(mod n),n ~ z(mod n)}. The directed circulant will have a

farurnrd ara an A a hoalrarnsd nva far annh AFf thaca adoan
10ITWald 4IC alla a 0DaCAwara arc 1or eacit of these eages.

A graceful labeling on a graph G with ¢ edges is an injective map-
ping f from V(G) to {0,1,...,q} such that the edge labels defined by
f(u,v) = |f(u) — f(v)| satisfy f'(E) = {1,2,...,q9} [6, 11]. We note that
wheels have graceful labelings [4, 7]. This being the case, there exists a
Wp-decomposition of C,(1,2,...,2p) where n > 4p+ 1 [1].

Theorem 2.1 An m-decomposition of D, and an ms -decomposztmn of D,
each erist zf and only ifv =0 or 1 (mod 4).

Proof. We note that v = 0 or 1 (mod 4) is necessary by the above com-
ments. Further note that there exists an mj-decomposition of the directed
wheel W, where p > 3. This decomposition is given by the set of blocks
{7, 00,5+ 1;5—1}m1 | 5 =0,1,. p—-l}.where the numerical vertex labels-
are reduced modulo p. . _

Case 1. Suppose v = 0 (mod 4), say v = 4k + 4 where k > 3. We note
that Dykyq = Wakss(oo : 2k + 1)U Cax43(1, 2,. .., 2k) where V(Dyr44) =
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{0,1,2,...,4k + 2,00}. There exists an mj-decomposition of Wyi+3 and
Cir+3(1,2,...,2k) for k > 3 by the above comments.

For v = 4, D4 = W3 and a decomposition of W3 is given above.

For v = 8, the decomposition is given by the set of blocks {[4, 00,7 +
2;7+ Um1, 5,7+ 1,5 +3;54+4]m, | 7=0,1,...,6} where vertex labels are
reduced modulo 7.

For v = 12, the decomposition is given by the set of blocks {[j+5, o0, 7+

10;j]"*1* [JaJ +1,7+3;5+ 7]mls [.7!.7 +3,7+ 17 +4]m1 l i=01,..., 10}
where numerical vertex labels are reduced modulo 11.
Case 2. Suppose v =1 {mod 4), say v = 4k + 1, where k > 3. Since W}
is graceful, there exists a decomposition of K4x4+1 by the above comments.
It follows that the directed wheel W) decomposes the directed complete
graph Dyggry.

For v = 5, the decomposition is given by the set of blocks {[4, 0, 1; 3)m1,
[45 31 O, 2]1711, [31 21 O; I]mh [19 07 2; 4]77117 [27 31 11 4]1?1-1}-

For v = 9, the decomposition is given by the set of blocks {{j,7+ 1,5+
3,7+ 5lm1, 1,7+ 3,7+ 17+ 4m1 | 7=0,1,...,8} where vertex labels are
reduced modulo 9.

Since mg is the converse of m,, the construction of an ms-decomposition
of [, will similarly follow. ]

Theorem 2.2 A d;-decomposition of D, and a dz-decomposition of D,
each exist if and only if v=0 or 1 (mod 4).

Proof. The necessary condition follows as in Theorem 2.1. We now con-

struct a r’ -decomposition of D, for each v = 0 or 1 {mod A'\_and since

Dvazivu O ALALASLAL P GAVARSIL L Ay AvA Wil LA

dz is the converse of dj, the construction of a dz-decomposition of D,, will
similarly follow.

Case 1. Suppose v = 1 (mod 12), say v = 12k + 1. Consider the
set of blocks: {[7,6k — i+ 7,12k - 2i + §;3k + 1 + i+ jla1, 17,5k — ¢ +
7,10k — 2t + §;8k + 1+ 2i+ jla1 | i = 0,1,...,k— 1,7 = 0,1,...,12k}
U{[jk—1—i+7,12k—3—2i+j;2k+2+i+jla |i=0,1,...,k—2,j =
0,1,...,12k}U{{5,k+ 7,12k -1+ j5;k+1+jlai | 7=0,1,...,12k}. Here
and throughout we note that if any index ranges over an empty set of values
then the corresponding blocks are omitted from the construction.

Case 2. Suppose v = 5 (mod 12), say v = 12k + 5. Consider the set of
blocks: {{j,6k+2—1+j,12k+4—-2i +7;3k+1+1+jlar, [/, 5k +1 i+
3,10k +2-2i+5;8k+5+2+jla | i =0,1,...,k—1,7=0,1,...,;12k+4}
U{[7,k—1—1+412k4+1-2i+52k+2+i+ a1 |i=0,1,...,k~2,j=
0,1,...,12k+4} U{lj, 5k+2+7, 10k+4+7; 4dk+1+4]a1 | 7 = 0,1,...,12k+4}
W5, k+5126+3+5;k+14+3la17=0,1,...,12k + 4, omit if £ = 0}.

- Case 3. Suppose v = 9 (mod 12), say v = 12k + 9. Consider the set of
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blocks: {[j,6k+4—4i+4,12k+8—2i+4;3k+4+i+ jla1, [/, 5k +3—i +
7, 10k+6—2i45; 8k +T7+2i+jla1, [j, k—t+7, 12k +5—2i+J; 2k +4+i+j]ay |
i=0,1,...,k~1,j=0,1,...,12k + 8} U{[j, 5k + 4 + 4, 10k + 8 + j; 8k +
6+ flar [ k+1+5,12k+ 7+ ik +2+4lar | 5 =0,1,...,12k + 8}.

In each of Cases 1-3, the given set of blocks forms a decomposition of
D, where V(D,) = {0,1,...,v — 1} and vertex labels in the blocks are
reduced modulo v.

Case 4. Suppose v = 0 (mod 4), say v = 4k. Consider the set of blocks:
{l,2+7,00;14jla1 | 5 =0,1,...,4k—2YU{[j, b+ 1 —i+7, k+2+i+j; 2k +
14+2i+4]ay 1i=0,1,...,k—2,7=0,1,...,4k—2}. In Case 4, the given set
of blocks forms a decomposition of D, where V(D,) = {c0,0,1,...,v -2}
and numerical vertex labels in the blocks are reduced modulo v — 1. -

Corollary 2.3 A dz-decomposition of D, and a d4-decomposition of D,
each ezist if and only if v =0 or 1 (mod 4).

Proof. The necessary condition follows as in Theorem 2.1. In the case
v =1 (mod 4), blocks for such a d3-decomposition can be constructed from
the d;-decomposition of Theorem 2.2 by replacing every block of the form
{7, a+7,b+7; c+j]a1 with a block of the form [a+j, b+, j; a+c+j]43. In the
case v = 0 (mod 4), blocks for such a d3z-decomposition can be constructed
from the d;-decomposition of Theorem 2.2 by replacing every block of the
form {j, a7, b+7; c+jla1 with a block of the form [a+j,b+7, j;a+c+flaz
and by replacing every block of the form [j,a + j, co; ¢ + j]41 with a block
of the form [a + j, o, j;a + ¢ + j]d3-

D,, will similarly follow. ) =

Corollary 2.4 A ds-decomposition of D, and a dg-decomposition of D,
each exist if and only if v =1 (mod 4).

Proof. Asin Theorem 2.1, one necessary condition is that v = 0 or 1 (mod
4). Notice that the vertices of ds are of in-degrees 0, 0, 2, and 2. Therefore
another necessary condition for a ds-decomposition on D, (and similarly
for a dg-decomposition of D,) is that each vertex of IJ, is of even in-degree
— that is, v must be odd. Therefore v = 1 (mod 4) is necessary.

Blocks for such a ds-decomposition of D, can be constructed from the
d; system of Theorem 2.2 by replacing every block of the form [j,a+j, b+
7; ¢+ jla1 with a block of the form [b+ j,a + 7, 7; b + ¢ + j]as.

Since dg is the converse of ds, the construction of a d¢-decomposition of
D, will similarly follow. - o u
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3 Packings

We now give necessary and sufficient conditions for the packing of D, with
each of the eight orientations of L.

Theorem 3.1 A mazimum m,-packing of D, with leave L satisfies
(i) |A(L)| =0 ifv=0 orl (mod4),
(ii) |A(L)] =6 ifv=3, and |A(L)| =2 if v =2 or 3 (mod 4).

Mazimum mg-packings of D, satisfy the same conditions.

Proof. If v = 0 or 1 (mod 4), then there is a decomposition by Theorem
2.1 and the result follows. If v = 2 or 3 (mod 4), then |A(D,)| = 2 (mod
4), and so a packing with leave L where |A(L)| = 2 would be maximum.
Case 1. Let v = 3 (mod 4), say v = 4k + 3 where k > 4. We note that:

Diyr3 = War1(oog : 2k — 1) U Wig41(002 : 2k)

UC4k+1(17 2,..., 2k — 2) U {(001, 602): (0021' 001)}

As shown in the proof of Theorem 2.1, there exists an mj-decomposition
of Wyrsr and Wi_y for k > 4. Since Wiy is graceful, there exists a
Wi _1-decomposition of Car4+1(1,2,...,2k —2).

The result is trivial for v = 3.

For v = 7, we note that: D7 = Ws(c01 : 1)UW5(002 2)U{(ool, 003), (002,
001)}.

For v = 11, the required packing is given by the set of blocks {[4,] +
1, 001;j+7]m1, []r.7+5» 002;j+3]m-11 [j,j+3,j+1;j+5]m1 l i=01,..., 8}
where numerical vertex labels are reduced modulo 9.

For v = 15, we note that: D5 = Wis(co; : 5) U Wiz(oos : 6) U
Cia(1, 2, 3,4)U{(001, 002), (002, 001) }. As above, there exists an m;-decomp-
osition of Wj3. An mj-decomposition of Cy3(1,2,3,4) is given by the set
of blocks {[7,7+1,7+3; 5 +4lm1, [/, 7+ 3,5+ 155 +9]m1 |7=0,1,...,12}
where vertex labels are reduced modulo 13. _

In each case above, the leave of the packing is {(oo;, 003), (002, ool)}
Case 2. Let v =2 (mod 4), say v =4k 42 where k > 8. We note that:

- Dgxy2=DrU C4k~—5(1 2,...,2k - 10) ul_, W4k 5(00; : 2k —1— 2)

As above, there exists an m;-decomposition of W4k 5 and C4k__5(1 2,.
2k — 10) for k£ > 8. Further, there exists a maximum ml-packmg of D7
with leave 51ze two, as shown above
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For v = 6, the required packing is given by the set of blocks {[0,1,5; 2]m1,
[0, 51 1; 3]m1’ [4: 03 2; I]mly [4: 11 31 O]mh [53 37 2; 4]11’11: [21 3: 1; 5]m11 [33 51 43 O]ml}
This packing has leave {(4,2), (2,1)}.

For v = 10, the required packing is given by the set of blocks {[1 +
j,Ool,j;2+j]m1 l J = 0,1,.-.,5}U {[2 + 3j,002,5 +3.7;6 +3]]m1 I J =
0,1,2,3, 4)U{[2], 003, 2j+2; 2j+5}m, | =0,1,...,6}U{[6,0,3;001m1, (6,3,
002; 2)m, » [001, 002, 003; O]y 5 [002, 001, 003; 6]m, }, Where all numerical ver-
tex labels are reduced modulo 7. This packing has leave {(1,0), (002, 2)}.

For v = 14, the required packing is given by the set of blocks {[37 +
3, 001,3§; 35 + Blmt | 5 = 0,1,...,9}H{[1 + 45,002,5 + 45;8 + 4jlm1 | J =
0,1,...,8} U {[2],003,2j + 2;2j + m1, G d + 1,5 + 557 + 10}ma | J
Oa ) P 10} U {[870’ 41 Ool]ml’ [8’ 47 x2; 1]mlr [001, 002, OC3; O]mly [0021 001,
003; 8)m1}, where all numerical vertex labels are reduced modulo 11. The
leave on this packing is {(3,0), (c02,1)}.

For v = 18, the required packing is given by the set of blocks {[j +
1,001,757 +2m1 | 5 =0,1,...,13} U {[6 + 7j, o0z, 13475514+ Tj|lm |5 =
0.1,.. 12YU{(2], 003, 27 +2; 2 +13]m1, [, 5 +4,5+9 5+ 8lm1, [4, 5 +9, 5 +
4;5+12)m1 | 5=0,1,...,14} U {[14,0, 7; 00t]m1, [14,7,00; 6]m1, [001, 002,
003; 0}m1, [002, 001, 003; 14];m1}, where all numerical vertex labels are re-
duced modulo 15. The leave is {(1,0), (c02,6)}-

For v = 22, we have Doy = D7 U]_; Wis(c0; : i). This has a maximum
packing with leave size two by the above comments.

For v = 26, the required packing is given by the set of blocks {{j,7 +
181 A1) J+4]m11 [ij+141 a7, 3+61m17 [.77 J+121 003, J+8]m13 [js J+101 GQ4; J+
11]‘m11 [Jy.’]-{"gy o o J+12]m11 [Js .7+6, 006;J+14]m1a [Jr]+3; a7, J+15]ml7 [Jy
i+ 1,7+35+2m | =0,1,...,18}, where all numerical vertex labels
are reduced modulo 19. The remaining arcs are isomorphic to Dz, which
has a maximum packing with leave size two by the above comments.

For v = 30, we have D3p = D;UC23(1,2,3,4) U7_, Was(oo; : 4+1). The
required m;-decomposition of C23(1,2,3,4) is given by the set of blocks
{l,5+ 1,7 +3;5 +8m1, 15,3 + 3,5+ 15+ 19m1 | § =0,1,...,22}, where
are numerical labels on the vertices are reduced modulo 23. Ws3 has an
m,-decomposition by the above comments. Dy has a maximum m;-packing
with leave size two. '

Since ms is the converse of mi, the construction of an ma-packing of

D, will similarly follow. : |

3

Theorem 3.2 A marimum dl-ﬁacking of D, with leave L satisfies
(i) {A(L)| =0 ifv=0 orl (mod 4),

(ii) |A(L)} = 6 if v € {3,6}, and |JA(L)} = 2 if v = 2 or 3 (mod 4),
v ¢ {3,6}. _ |
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Mazimum da-packings of D, satisfy the same conditions.

Proof. The necessary conditions follow as in Theorem 3.1. If v = 0 or
1 {(mod 4), then there is a decomposition by T heorem 2.2 and the result
follows.

Case 1. Suppose v = 2 (mod 8), say v = 8k + 2 where k 2 1. Consider
the sets A = {[j,sk—i+j,5k+2+i+j;2k+3—i+j]d1,[j,3k+2~z'+
7,3k +3+i+7;6+i+j|la1 |i=0,1,...,k-2,j = 0,1,...,8k— 2} and
B = {[j, 1+, 0013 4+jla1, [, 2+3, 002; 3+ a1, [, 5+, 003 Sk +1+jlar | J =
0,1,...,8k—2}. Then AUBU{[ocs, 001, 003; 2}a1, [001, 002, 002; 3Ja1, [0,3,2;
002]a1} \ {[2,3, c<1; 6la1, [0, 2, 002; 3]a1}, where V(D) = {003, 002, 03,0, 1,
...,v — 4} and numerical vertex labels are reduced modulo 8k — 1, is a
maximum d;-packing of D, with leave L where A(L) = {(c01,2), (6, 2}}.

The result is trivial when v = 2.

Case 2. Suppose v = 3 (mod 4), say v = 4k+3 where k > 1. Consider the
sets A = {[j, k+3—i+j,4k—2i+5;2k+3+2i+jla1 [1=0,1,.. wk=2,j=
0,1,...,4k} and B = {[J,l + 2t + j,00i41;2 + 21 "}‘j]dl l i =017 =
0,1,...4k} where V(D,) = {001,002,0,1,...,v— 3} and numerical vertex
labels are reduced modulo 4k + 1. Then AU B is a maximum d1-packing
of D, with leave L where A(L) = {(co1, 002), (002, 001}}.

The result is trivial when v = 3. _

Case 3. Suppose v = 6 (mod 8), say v = 8k + 6 where k 2> 1. Consider
the sets A = {[j,5k+3—-i+j,5k+5+i+j;2k+4—»i+j]d1 | 7 =
0,1,....,k—2,j=0,1,...,8k+2}U[j,3k+4—i+ 5,3k +5+1+ 56+
i+jla|i=0,1,...,k—1,7=0,1,...,8k+2} and B = {[5,1 +j,001;4+
j}dl?[jEQ + J,002; 3 +J}dl-b!5 +g,003,5k + 4 +j]d1 ] J = 0, 1!°":8k +
2}. Then AU B U {[oco2, 001, 003; 2]a1, [001, 002, 003; a1, [0,3,2;0000a1} \
{[2, 3, co1; 6]a1, [0, 2, 009; 3]a1 }, where V(D) = {oco1,002,3,0,1,.. ., v—4}
and numerical vertex labels are reduced modulo 8k -+ 3, is a maximum d1-
packing of D, with leave L where A(L) = {(c01,2),(6,2)}.

When v = 6, |A(D,)] = 30 and a d;-packing of Dg could contain as
many as seven copies of d;. However, each vertex of Dg is of in-degree 5
and d; contains a vertex of in-degree 3. Therefore the number of dis in a d;-
packing of Dg cannot exceed the number of vertices in D¢—namely, six. So
in a maximum d;-packing of Dg with leave L, we have |A(L)| = 6. A max-
imum packing is given by {[0,2,4;3}a1, (1,2, 3;0a, [2,4,3; 1)41, {3,5,1;0]a1,
(4,5,6:3lay, [5,1,0; 4lar} where A(L) = {(3,5),(0,2),(2,5),(5,2), (1,4), (4,
1)} and |A(L)| = 6. B

Since d, is the converse of d1, the construction of a dy-packing of D,
will similarly follow. | , ]

Corollary 3.3 A marimum d3-packing of D,, with leave L _satisﬁes |
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(i) [A(L)l =0 ifv =0 or1l (mod 4),
(ii) |A(L)| =6 ifv=23, and |JA(L)| =2 ifv=2 or 3 (mod 4), v # 3.

Mazximum dg4-packings of D, satisfy the same conditions.

Proof. The necessary conditions follow as in Theorem 3.1.

For v # 6, the blocks for such a d3-packing of D, can be constructed
from the d;-packing D, of Theorem 3.2 by replacing every block of the form
[5,a+ 3,6+ 7; ¢+ j]a1 with a block of the form [a + 7, b+ 4, 5; a + ¢ + jlas,
replacing every block of the form [a, b, 00;; cJa1 with a block of the form
[-a, 00i, —b; ¢ — 2a]gs, and then (1) when v = 2 (mod 8) by replacing
the two blocks [2, 00z, 0; 5]43 and [5, 003, 0; 5k + 6]4z with the three blocks
[00g, 001, 003; 2)da, [003, 001, 002; Bl43, and [5,2,0; 5k + 6]a3, and (2) when
v = 6 (mod 8) by replacing the two blocks [2, 002, 0; 5]a3 and [5, o3, 0; 5k +
9]43 with the three blocks [002, 001, 003; 2]a3, [003, 001, 002; 5]43, and [5,2,0;
5k + 9)q3. In the case v = 2 (mod 4), this is a d3-packing of D,, where
V(D,) = {001, 002,003,0,1,...,v—4}, with leave L where A(L) = {(c02,0),
(003,0)}. In the case v = 3 (mod 4), this is a ds-packing of D,, where
V(D,) = {o01,02,0,1,...,v— 3}, with leave L where A(L) = {(o01, 002),
(o002, 001)}

For v = 6, consider the set of blocks {[4,1, 3; 0]d3, [4,5,2; 343, [5,3,0; 1]as,
(3,1, 2;0]as, [0 5,1;2]as, [1,4,0;2}a3, [2,5,4; 0]d3} This is a maximum d3-
packmg of Dg with leave L where A(L) = {(2,3), (3,5)}.

Since d4 is the converse of da, the construction of a d4-packing of D,
will similarly follow. u

Theorem 3.4 A mazimum ds-packing of D, with leave L satisfies

(1) |A(L)] = v ifv=0 (mod 2),

(ii) |A(L)] =0ifv=1 (mod4), and

(iii) |JA(L)| =6 ifv =3, and |A(L)|=2ifv=3 (mod4),v2>T.
Mazimum dg-packings of D, satisfy the same conditions.

Proof. When v =1 (mod 4), a decomposition exists by Corollary 2.4 and
|A(L)] = O in this case. Notice that the vertices of ds are of in-degrees
0, 0, 2, and 2. So when v is even, a ds-packing of D, will have a leave L
where the in-degree of each vertex of L is odd. So for v even, a ds-packing
of D, with leave L where |A(L)| = v would be maximum (and similarly

for a dg-packing of D,). When v = 3 (mod 4), |[A(D,)| = 2 (mod 4) and
in this case a d5-packmg (and similarly for a de-packmg) of D, with Ieave
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L where |A(L)| = 2 would be maximum. In the following cases, we have
V(D,)={0,1,...,v—~1}.
Case 1. Suppose v = 0 (mod 4). Consider AU B where A = {[2j,4k—1+
2j,1+25;4k —2+2jlus | § =0,1,...,2k—1} and B = {[j, 3k — 3+ j, 4k —
2473k —2+7las}U{[§, 2k —1+i+5,2k+2+2i+ 552k — 3 —2i + jlas |
i =0,1,...,k—3,7 = 0,1,...4k — 1} where vertex labels are reduced
modulo 4k. Then A U B is a maximum ds-packing of D, with leave L
where A(L) = {(j,7—1) |7 =0,1,...,4k - 1)}.
Case 2. Suppose v = 2 (mod 4), say v = 4k + 2. Consider {[j,k+2+i+
G 142i+52 +2+2is |i=0,1,...,k—1,j =0,1,...,4k + 1} where
vertex labels are reduced modulo 4k + 2. This is a maximum ds-packing of
D, with leave L where A(L) = {(,5~1)|7=0,1,...,4k+1)}.
Case 3. Suppose v = 3 (mod 4). Consider AU B where A = {{2i,4k+2+
26,1424k +142il4s |1 =0,1,...,2k} B={[5,3k—1+4,4k+2+j;4k+
flas 13 =0,1,...,4k+2}U{[j, 2k +i+ 5,2k +4+2i+ 52+ 2i+flas | i =
0,1,...,k—~2,7=20,1,...,4k+ 2} where vertex labels are reduced modulo
4k + 3. Then AU B is a maximum ds-packing of D, with leave L where
A(L) = {(4k, 4k +2), (4k + 1,4k + 2)}.

Since dg is the converse of ds, the construction of a dg-packing of D,
will similarly follow. u

4 Covering

We now give necessary and sufficient conditions for the covering of D, with
each of the eight orientations of L. '

Theorem 4.1 A minimum my-covering of D,, v > 4, with padding P
satisfies

(i) |A(P)]=04iv=0orl (mod4), and
(ii) JA(P)|=2ifv=2 or 3 (mod 4).

Minimum mqy-coverings of D, satisfy the same conditions.

Proof. If v = 0 or 1 (mod 4), then there is a decomposition by Theorem
2.1 and the result follows. If v = 2 or 3 (mod 4), then [A(D,)} = 2 (mod 4),
and so a covering with padding P where |A(P)| = 2 would be minimum.
Case 1. Let v = 2 (mod 4), say v = 4k + 2 where k > 5. We note that:

Dykyio = D3 UCi_1(1,2,...,2k — 4) U?zl Wak—1(o0s : 2k —1).

As above, there exists an m;-decomposition of Wyx1 and Cyx_1(1, 2,...,2k
—4) for k > 5. The remaining arcs are covered by the set {[co1, 002, 003; 0]m1,
[003, 002, 001; 1]m1}. This covering has padding {(0, c01), (1, 003)}.

162



For v = 6, the required covering is obtained from the packing in The-
orem 3.1 along with the set {[2,1,4;3]m1}. This covering has padding
{(1,9),(3,2)}.

For v = 10, the required covering is obtained from the packing in The-
orem 3.1 along with the set {[2,1,0;002m1}. This covering has padding
{(2,1),(0,2)}.

For v = 14, the required covering is obtained from the packing in The-
orem 3.1 along with the set {[1,3,0;002]m1}. This covering has padding

{(1,3),(0,1)}.

For v = 18, the rea l_ed c

Py vaals & _-

OV
orem 3.1 along with the set {[6,1

{(6,1),(0,6)}.
Case 2. Let v = 3 (mod 4), say v = 4k + 3 where k > 7. We note that:

D4k+3 = Uq___ W4k...3(001' :2k—1 ——i) UC4-3(1,2,...,2k—8 U Dg.
i=1

g is obtained from the packing in The-
1,0;002]m1}- This covering has padding

verin

As shown in the proof of Theorem 2.1, there exists an m;-decomposition of
Wik—3 and Wy_g for k > 7. Since Wy_4 is graceful, there exists a Wi_4-
decomposition of Cik—3(1,2,...,2k — 8). Further, there exists a minimum
covering of Dg as given above. Thus there exists a minimum covering of
Dy 43 for k > 8 with padding {(o01, 004), (003, 002} }.

For v = 7, the covering is given by the set of blocks {[0, 6, 1; 4]n1, {0, 1, 6;

Nemis [5+1, 35 O, 15, 05 25 mis [4, 3, 0; 6}mt, [3, 4, 6; 01, [3, 6, 2; 5, [5, 2, 4;
6]m1, [4,2, 1; Blm1, [6, 3, 2; 5}m1, [1,5, 2; 4}yn1 }. The padding is {(6 3),(5,3)}.

For v = 11, the covering is given by the set of blocks {[1 + 3%, 00,7 +
3i; 3+ 3i]m1, [2+3i,001,8+3i;4+3i]m1 | =0,1,2}U {[4+ 44, 009,4i;5 +
4ilm1 | i=0,1,. .., 7}U{fi,i+1,i+3;i+4)m1 | i =0,1,...,8} U{[c01,6,0;
002} m1, [002, 5, 0; 001]m1, (3, 001, 0; 5}m1, [6, 001, 3; 8]m1, [0, 3, 1; 2}m1}, where
all numerical vertex labels are reduced modulo 9. The padding is {(0, 3), (3,
D}.

For v = 15, the covering is given by the set of blocks {[5i, 00y, 5i +5; 5i -+
8}m1, [61, 002, 6i+6; 6i+T]m1 | 1 =0,1,..., 11 YU{[i,i+1,i+3; i+4]m1, [£, i+
3,i+1;i4+9)m1 | i = 0,1,...,12}U{[ocoy, 0,8; 002} m1, [002,0, 7; 001]m1, [7, 3, 8;
1)rn1}, where all numerical vertex labels are reduced modulo 13. The
padding is {(7,3), (8,7)}.

For v = 19, we note that: Dyg = US_, Wi3(o0; : i) UDG There exists an
m,-decomposition of Wiz by the above comments. Further, there exists a
minimum m,-covering of Dg by above.

For v = 23, the covering is given by the set of blocks {[10%,001,10¢ +
10; 10i4+11] 1, (9, 002, 9i49; 9i+12)ms | i = 0,1, .. ., 19}U{[001,0, 11; 002]m1,
[c03,0,12; 001}m1, {11, 3, 12;1}n1}, where all numerical vertex labels are re-
duced modulo 21. The remaining arcs are isomorphic to Ca(1,2,...,8),
which has an m,-decomposition by the above comments. The paddmg is
{(11,3), (12, 11)}
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For v = 27, the covering is given by the set of blocks {[12i, 00;,12¢{ +
12;12i+13] 1, [114, 002, 11i-+11; 11i+1d]pmy | i =0, 1, ..., 23}U{[001,0, 13;
002]m1, [002, 0, 14; 001}m1, [13, 3, 14; 1]m1}, where all numerical vertex labels
are reduced modulo 25. The remaining arcs are isomorphic to Ca5(1,2,.
10), which has an m;-decomposition by the above comments. The padding
is {(13,3), (14,13)}.

Since ms is the converse of m;, the construction of an ma-covering of
D, will similarly follow. u
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satisfies
(i) JA(P)| =0 ifv=0 orl (mod4), and
(if) JA(P)| =2 ifv=2 or3 (mod 4).
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Minimum da-coverings of D, satisfy the same conditions.

Proof. The necessary conditions follow as in Theorem 4.1. If v = 0 or
1 (mod 4), then there is a decomposition by Theorem 2.2 and the result
follows. In the following cases, we have V(D, ) = {001,002,0,1,...,v~3}.
Case 1. Suppose v = 2 (mod 4), say v = 4k + 2 where k > 2. Take the
d;-packing of D, given in Theorem 3.2 and replace the block [0, 3, 2; cog]a;
with the two blocks {0,2, 009; 3l41 and [2,3,001;6]4;. This is a minimum
covering of D, with padding P where A(P) = {(2, 0o2), (3,001)}.

For v = 6, consider the set of blocks {[5,0, 1;4]a1, [1,5, 4; 2]a1, 3,1,
2.4.3:115:. [4.3.1:00x. 10.2.4:3);:. 5.9 3:4];, fo:nth Th}

12,4, 3; 1}a1, (4,3,1;0]41, {0,2,4;3]a1, {5,2,3;4)d1, {2,3,0;3]d1}- a
minimum dj-covering of Dg with padding P where A(P) = {(3,2), (4,5)}.
Case 2. Suppose v = 3 (mod 4), say v = 4k + 3. Consider the blocks in
Al B\ {[0,3,002;4]a1} U {[0, 002, co1; 4ld1, {002, 3,0; 0011} where sets A
and B are defined in Theorem 3.2 Case 2. This is a minimum covering of
D, with padding P where A(P) = {(0, o02), (001, 0)}.
Since d is the converse of d;, the construction of a dg—covenng of D,

will similarly follow. ' : o -

0; 5]as,

5
5)

Theorem 4.3 A minimum d3-covering of D, where v > 4 wzth paddmg P
satisfies '

(i) JA(P)|=0ifv=0o0rl (mod4), and
(ii) JA(P)| =2 ifv=20r3 (mod4).

Minimum d4-coverings of D, satisfy the same conditions.
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Proof. The necessary conditions follow as in Theorem 4.2. When v =0 or
1 (mod 4), a decomposition exists by Corollary 2.3 and |A(P)| = 0 in this
case.

Case 1. Suppose v = 2 (mod 8), v # 6. Take the ds-packing of D), given
in Corollary 3.3 and replace the block [5, 2, 0; 5k + 6]43 with the two blocks
[2, 002, 0; 5]a3 and [5, c03,0; 5k + 6]43. This is a minimum covering of D,
with padding P where A(P) = {(2, co2), (5, 003)}.

For v = 6, take the d3-packing of Dg given in Corollary 3.3, along with
the block [2, 3, 5; 1]43. This yields a minimum covering of Dg with padding
P where A(P) = {(1,2),(2,5)}.

Case 2. Suppose v = 3 (mod 4). Take the ds-packing of D, given in
Corollary 3.3 and replace the block [0, 00y, 4k;2]43 with the two blocks
{001, 0, 4k; 00343 and [0, 001, 002; 2]a3. This is a minimum covering of D,
with padding P where A(P) = {(0c0},0), (0, c02)}.

Case 3. Suppose v = 6 (mod 8). Take the ds-packing of D, given in
Corollary 3.3 and replace the block [5,2,0;5k + 9}q3 with the two blocks
[2, 002, 0; 5]43 and [5, 003, 0; 5k + 9)q3. This is a minimum covering of D,
with padding P where A(P) = {(2, cc2), (5, 003)}.

Since d4 is the converse of d3, the construction of a d4-covering of D,
will similarly follow. ™

Theorem 4.4 A minimum ds-covering of D, where v > 4 with padding P
satisfies
(i) |[A(L)|=v if v=10 (mod 2),

) AV =0 ifv
J O\ =V

[

1 {mod 4), and
(iii) |A(L)| =2 if v =3 (mod 4).

Minimum dg-coverings of D, satisfy the same conditions.

Proof. When v =1 (mod 4), a decomposition exists by Corollary 2.4 and
the result follows. Notice that the vertices of ds are of in-degrees 0, 0, 2,
and 2. So when v is even, a ds-covering of D, will have a padding P where
the in-degree of each vertex of P is odd. So for v even, a ds-covering of D,
with padding P where |A(P)| = v would be minimum (and similarly for
a dg-covering of D,). When v = 3 (mod 4), |A(D,)| = 2 (mod 4) and in
this case a dz-covering (and similarly for a dg-covering) of D, with padding
P where |A(P)| = 2 would be minimum. In the following cases, we have
V(Dy)={0,1,...,v—1}. '

Case 1. Suppose v = 0 (mod 4), say v = 4k. Consider the blocks in AUB
where A = {[j,2k+ 7,2k — 1+ j;4k—1+3jlas | =0,1,...,4k — 1} and
B={ljk+1+i+414+2i+54k—-2-2i+jlas |1 =0,1,... k-2, =
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0,1,...,4k — 1} where vertex labels are reduced modulo 4k. Then AUB is
a minimum ds-covering of D, with padding P where A(P) = {(4,7+ 1) |
i=0,1,...,4k —-1}.
Case 2. Suppose v = 2 (mod 4), say v = 4k + 2. Consider the blocks in
AU B where A = {[2j,4k+1+ 25,1+ 25;4k +2j)as | 7 =0,1,...,2k} and
B = {[4, k+1+7,1+5; 2k-+14j]as | § =0, 1,. .., 4k+1}U{[j, k+2+i+7, 3+
2i4+7;4k—2—-2i+j5)as |1 =0,1,...,k—2,7=0,1,...,4k+1} where vertex
labels are reduced modulo 4k + 2. Then A U B is a minimum ds-covering
of D, with padding P where A(P) = {(j,7+1) |7=0,1,...,4k+ 1}.
Case 3. Suppose v = 3 (mod 4), say v = 4k + 3. Consider the blocks in
AUB where A = {[27,4k+2+25,1+24;4k+14+2j)a5 | 7 =0,1,...,2k+1}
and B = {[,3k—1+7,4k+2+j;4k+jlas | j =0,1,..., 4k + 2} U{[4, 2k +
i+5,2k+4+2i4+52+2i4+5es|:=0,1,...,k-2,7=0,1,...,4k -1}
where vertex labels are reduced modulo 4k +- 3. Then AU B is a minimum
ds-covering of D, with padding P where A(P) = {(4k +1,0), (4k+ 2,0)}.
Since dg is the converse of ds, the construction of a dg-covering of D,
will similarly follow. [
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