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“...the Nobility, of whom there are several degrees, beginning at
Six-Sided Figures, or Hexagons...” — E. A. Abbott, Flatland

Abstract. A minimal covering of a simple graph G with iso-
morphic copies of a graph g is a set {g1,92,...,9n} Where g; = g,
V(g:) c V(G), G C U1g:, and |UL; E(g;)\ E(G)| is minimal (the
graph UL, g; may not be simple and U?_; E(g;) may be a multiset).
Some studies have been made of covering the complete graph, in
which case an added condition of “E(g;) C E(G) for all i” implies
no additional restrictions. However, if G is not the complete graph
then this condition may have implications. We will give necessary
and sufficient conditions for minimal coverings (as defined above,
without the added restriction) of K, , with 6-cycles, which we call
minimal unrestricted coverings. We also give necessary and suffi-
cient conditions for minimal coverings of K, , with 6-cycles with
the added condition E(g;) C E(G) for all 7, and call these minimal
restricted coverings.

1. Introduction

A decomposition of a simple graph G into isomorphic copies of a graph
gisaset {g1,92,..., gn} Where g; = g and V(g;) C V(G) for all ¢, E(g;) N
E(g;) = 0 for i # j, and UL, E(g;) = E(G), where V(G) is the vertex
set of graph G and E(G) is the edge set of graph G. We will refer to
such a decomposition as a “g decomposition of G.” In the event that a
g decomposition of G does not exist, we can ask the question “How close
can we get to a g decomposition of G?” There are two approaches to this
question: packings and coverings.

A mazimal packing of a simple graph G with isomorphic copies of a
graph g is a set {g1,92,...,9n} Where g; = g and V(g;) C V(G) for all 1,
E(gi)NE(g;) =0 fori # j, U ,9: C G, and |E(G) \ U2, E(g;)| is minimal.
The set of edges for the leave, L, of the packing is E(L) = E(G)\ UL, E(g:)-

A covering of a graph G with graph g is a collection of copies of g
such that each edge of G appears in at least one copy of g. Coverings,
though studied less than packings, have been studied for G = K, 'and

CONGRESSUS NUMERANTIUM 217 (2013), pp. 107-128



g=Cs[3], g = Cy4 (8], and g = Cs (a “hexagon”) [6]. If G = K, then
obviously the edge sets of the copies of g are subsets of the edge set of G.
However, if G is not the complete graph, we are faced with the question:
Do we allow the copies of g to contain edges that are not in G, or do
we view such edges as “forbidden” and hence require the copies of g to
avoid such edges? Therefore we define two kinds of coverings. A minimal
unrestricted covering of simple graph G with isomorphic copies of a graph
g is a set {g1,92,...,9n} Where g; = g, V(g:) Cc V(G), G C U ,gi, and
| ur; E(gs) \ G| is minimal (the graph Uj_,g; may not be simple and

n_  E(g;) may be a multiset). A minimal restricted covering of simple
graph G with isomorphic copies of a graph g is a minimal unrestricted
covering that also satisfies E(g;) C E(G) for all i. The purpose of this
paper is to give necessary and sufficient conditions for both restricted and
unrestricted coverings of the complete bipartite graph, G = Ky, n, With
isomorphic copies of the hexagon, g = Cé.

2. Some Previous Results Concerning Hexagons

The following is well known:

Theorem 2.1 The complete graph K, can be decomposed into hezagons if
and only if v=1 or 9 (mod 12).

Conditions for a hexagon decomposition of K., » were given by Sotteau [9]:

Theorem 2.2 The complete bipartite graph Km n can be decomposed into
hezagons if and only if m =0 (mod 6) and n =0 (mod 2), n > 4.

Conditions for a hexagon decomposition of K, » minus a matching we given
in [2]:

Theorem 2.3 A hezagon decomposition of K, n\ M, where M is a perfect
matching of Kn n, exists if and only if n =1 or 3 (mod 6).

Maximal hexagon packings of K, , were given in [2}:

Theorem 2.4 A mazimal hezagon packing of Km,n with leave L satisfies
(1) when m =0 (mod 2) and n =1 (mod 2), |E(L)| = m+k where k is the
smallest nonnegative integer such that |E(Kmn)| — (m + k) = 0 (mod 6),
(2) when m = n =1 (mod 2)and m > n, |E(L)| = m + k where k is the
smallest nonnegative integer such that |E(Kmn)| — (m + k) =0 (mod 6),
(3) when m =0 (mod 6) and n =0 (mod 2), |E(L)| =0,

108



(4) when m =n =2 (mod 6) or m =n =4 (mod 6), then |E(L)| =4, and
(5) when m = 2 (mod 6) and n = 4 (mod 6), then |E(L)| = 8.

3. Restricted Hexagon Coverings of K, ,

Throughout this paper, unless stated otherwise, we denote the par-
tite sets of K, as V;, and V;, where V;,, = {11,21,...,m1} and V,, =
{12,24,...,n2}. We denote the hexagon (or “6-cycle”) with edge set {(a, b),
(b,¢), (c,d), (d,e), (e, f),(f,a)} by any cyclic shift of [a,b,c,d, ¢, f]. Since
the hexagon is not a subgraph of K,, , when either m or n is less than 3,
we assume in this section that both m and n are greater than or equal to

3.

Lemma 3.1 A minimal restricted hexzagon covering of Ky, n, where m and
n are even, m > 4 and n > 4, has a padding P satisfying:

(1) |E(P)| =0 when m =0 (mod 6),

(2) |E(P)| =2 when m =n =2 (mod 6) or m =n = 4 (mod 6), and

(3) |E(P)| = 4 when m =2 (mod 6) and n =4 (mod 6).

Proof. We consider cases.

Case 1. Suppose m = 0 (mod 6), n = 0 (mod 2), and n > 4. Then
Km,n can be decomposed into hexagons by Theorem 2.2 and in a minimal
covering |E(P)| = 0.

Case 2. Suppose m = n = 2 (mod 6), m,n > 4. Now |E(Kpn)| =4
(mod 6), so it is necessary that a covering have a padding with |E(P)| > 2.
Now Kpn = Km-gn U Ksn-gU Kgg where the partite sets of K,,—g
are {91,101, ...,m1} and V,,, the partite sets of Kg g are {11,21,...,81}
and {93,109, ...,n2}, and the partite sets of Kgg are {11,21,...,81} and
{15,22,...,82}. Now Kp,_gn and Kgn_g can be decomposed into hexagons
by Theorem 2.2. Next we note that there is a restricted hexagon cov-
ering of Kj s, namely the set {[21, 29,449,895, 14, 32], [31, 32,51,12,24, 42],
[511 32, 71, 32a 417 62], [711 7_2) 117 52a 61; 82]’ [81; 321 617 12a 41) 72]) [61, 62) 11’ 42’
517 72]7 [lla 12a 31; 82; 51a 32]’ [211 527 811 621 317 72]7 [81, 22a 717 62, 21, 82]a [Sla
25,61,42, 71, 12], [81,22,31,52,41,42]}. This is a minimal restricted cov-
ering of K, with padding P where E(P) = {(81,22), (81,22)} and so
|E(P)| = 2.

Case 3. Suppose m = n = 4 (mod 6). As in Case 2, a packing with
padding P satisfies |E(P)| > 2. Now Kpmn = Km—sn U Kgng U Ky 4
where the partite sets of K4, are Vi, \ {11, 21, 31,41} and V,,, the par-
tite sets of K4,n_4 are {11,21,31,41} and V,, \ {12,22,32,42}, and the
partite sets of K44 are {11,22,31,41} and {12,22,32,42}. Now Kp_4n
and K4n—4 can be decomposed into hexagons by Theorem 2.2. Next
we note that there is a restricted hexagon covering of K44, namely the
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set {[1y, 12, 31,42, 41, 22], [11, 12,21, 22, 31, 32], [11, 12, 41, 32, 21, 42]}. This is
a minimal restricted covering of K,,, with padding P where E(P) =
{2 x (11,12)} and so |E(P)| = 2.

Case 4. Suppose m = 2 (mod 6), m > 8, and n = 4 (mod 6). Now
|E(Kmn| = 2 (mod 6), so it is necessary that a covering have a padding
with |E(P)| > 4. Now Kpmn = Kgn_4 U Km-8n U Kg 4 where the par-
tite sets of Kgn—4 are {11,21,...,81} and V, \ {12, 22, 32, 42}, the partite
sets of Km—s,n are {91,104,...,m;} and V,, and the partite sets of Ks,4
are {11,2a,...,81} and {12,29,32,42}. Now Kgn_4 and Kpm_s,n can be
decomposed into hexagons by Theorem 2.2. Next we note that there is a
restricted hexagon covering of Kg 4, namely the set {[11, 12,21, 22, 31, 32),
[41, 127 311 421 21a 32]7 [51, 125 61, 227 71, 32], [811 121 71; 427 611 32]) [115 42) 81, 127
51,22], [41, 42,51, 12, 81, 22]}. This is a minimal restricted covering of Km,n
‘with padding P where E(P) = {(51,12), (51, 12), (81, 12), (81,12)} and so
|E(P)| = 4. -

Lemma 3.2 A minimal restricted hexagon covering of Kp, n where m is
even and n is odd (m > 4,n > 3) has a padding P satisfying |E(P)| = m+k
where k is the smallest nonnegative integer such that |E(Kpm n)|+(m+k) =
0 (mod 6).

Proof. Since each vertex of V;, is of odd degree in K, », in the padding
of a covering each of these vertices will be of odd degree. Therefore in a
restricted covering of K, , with padding P, it is necessary that |E(P)| > m.
Since a covering yields a decomposition of K, » U P, then it is necessary
that |[E(Kmn)| + |E(P)| =0 (mod 6).
Case 1. First, suppose m = 0 (mod 6) and n = 5. Consider the set
of hexagons {[(1 + 6)1, 12, (2 + 6i)1, 22, (3 + 64)1,32], [(4 + 61)1,32,(5 +
6i)17 42a (6+61)1; 52]) [(3+62)17 129 (5+6l)1, 227 (4+62)1, 42], [(1+61’)1’ 221 (6+
6i)1, 32, (2-+6i)1, 4a], [(3-+6i)1, 1, (6+6)1, 32, (5+64)1, 5a], [(1+6i)1, 1o, (4+
6i)1, 22, (2 + 6i)1,52] | ¢ = 0,1,...,m/6 — 1}. This is a restricted hexagon
covering of K, with padding P satisfying E(P) = {((1 + 61)1, 12), ((2 +
61’)11 22)a ((3 + 62‘)1’ 12), ((4 e 6":)1’ 22)7 ((5 + 61:)1’ 32)’ ((6 i 6i)1, 32) I i =
0,1,...,m/6—1}, and so | E(P)| = m and the restricted covering is minimal.
Next, suppose m = 0 (mod 6), n = 1 (mod 2), and n # 5. Now
Kmn = Kmn-3 U % X Kg3 where the partite sets of Kpn-3 are Vi,
and V, \ {12, 29, 32}, and E(% X K6_3) =S {[(1 + 6’i)1, 1o, (4 + 6i)1, 29, (2 +
Gi)l, 32], [(3+6i)1, 29, (5+6i)1, 1o, (6-{-6?:)1, 32], [(3+6i)1, 1o, (5+6'i)1, 39, (4+
Gi)la 22]) [(1 +6'L)1) 227 (6 +6'L)1, 121 (2+ 67:)1) 32] I 1= O, 1, ey % - 1} Now
Ky n-3 can be decomposed into hexagons by Theorem 2.2. Therefore
there is a restricted covering of K, , with hexagons with padding P where
E(P) = {((1 + 64)1, 32), ((2 + 6i)1, 32), (3 + 64)1, 22), (4 + 6i)1,22), (5 +
6i)1,12), ((6 + 61)1,12) | i = 0,1,...,% — 1} and so |E(P)| = m and the
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restricted covering is minimal.

Case 2. Suppose m = 2 (mod 6), m > 8, n =1 (mod 6), and n > 7.
Now Ky n = Km—8nUKgn_7UKg 7 where the partite sets of Ky—g,n are
Vi \ {11,21,...,81} and V,,, the partite sets of Kg n_7 are {11,21,...,81}
and V,, \ {12,22,...,72}, and the partite sets of Kg7 are {11,21,...,8:1}
and {12,25,...,72}. Now K,,_gn has a restricted hexagon covering with
padding P where |E(P)| = m — 8 (by Case 1) and Kgn_7 can be de-
composed into hexagons by Theorem 2.2. Next, we note that there is a
restricted hexagon covering of Kjs 7, namely the set {[21, 42, 31, 52, 41, 62],
(61,42, 71, 52, 81, 62, [11, 12,21, 22, 31, 2], [51, 12, 61, 22, 71, 32], [11, 22, 31, 12,
41, 72], [51’ 22, 71, 12) 81, 72], [111 427 41a 327 21) 52]7 [511 42’ 81) 32, 617 52]7 [11’
62, 31, 72, 21, 12], [51, 62, 71, 72, 61, 12], [41, 22, 81, 32, 31, 12]} with padding Pz
SatiSfying E(PZ) = {(31,22)) (71a22)1 (11a12), (21a12)’ (51112)1 (61112)1
(81,32), (31,32), (31,12), (41,12)} and so |E(P,)| = 10. Therefore there
is a restricted covering of K., , with hexagons with padding P = P U P
where |E(P)| = m + 2 and the restricted covering is minimal.

Case 3. Suppose m = 2 (mod 6), n = 3 (mod 6), and m > 8. Now
Kmn = Kmn-gn U Kgn_3U Kg3 where the partite sets of Ky—gn are
Vn \ {11, 21, . - -, 8,} and V,, the partite sets of Kg n—3 are {11,24,...,81}
and V,, \ {12,22,32}, and the partite sets of Kg 3 are {11,21,...,81} and
{15,22,32}. Now Ky_g,n has a restricted hexagon covering with padding
Py where |[E(P;)| = m—8 (by Case 1), and there is a hexagon decomposition
of Kgn—3 by Theorem 2.2.

Next, we note that there is a restricted hexagon covering of Kg 3, namely
the set {[11, 32, 31, 22, 21, 12], [41, 12, 51,22, 61, 32], (61, 12, 71, 32, 81, 22), [21,
12, 71, 22, 51, 32], [11, 12, 81, 32, 41, 22], [31, 12, 41, 22, 51, 32]} with padding P2
SatiSfinlg E(PZ) - {(61,22)a (21’12)7 (71a12), (51,22)7 (11a12)’ (41,32)1
(81,32), (31,32), (51,32), (51,22), (41,22), (41,12)} and so |E(P2)| = 12.
Therefore there is a restricted covering of Ky, ,, with hexagons with padding
P = P, U P, where |E(P)| = m + 4 and the restricted covering is minimal.
Case 4. Suppose m = 2 (mod 6), n = 5 (mod 6), and m > 8. Now
Kmnn = Km—8n U Kgn-sU Kgs where the partite sets of Kp,_gn are
Vin \ {11, 21, ..,81} and V,,, the partite sets of Kgn—s are {11,21,...,81}
and Vj, \ {12,22,...,52}, and the partite sets of Kg s are {11,21,...,8:}
and {lz,22,...,52}. Now Kp,_g» has a restricted hexagon covering with
padding P; where |[E(P;)| = m — 8 (by Case 1), and there is a hexagon
decomposition of Kgn—5 by Theorem 2.2. Next, we note that there is a
restricted hexagon covering of Kj 5, namely the set {[11, 12,21, 32, 31, 23],
(11, 32,41, 12, 21, 42], [51, 12, 61, 32, 71, 22], [11, 12, 31, 42, 41, 52, ] [51, 12, 71, 42,
81, 52], [21, 22, 41, 32, 31, 53], [61, 22, 81, 32, 71, 52}, [51, 32, 81, 12, 61, 42|} with
padding P; satisfying E(Ps) = {(11,12), (31,32), (51, 12), (71, 32), (61, 12),
(81,32), (21,12), (41,32)} and so |E(P;)| = 8. Therefore there is a re-
stricted covering of K, » with hexagons with padding P = P, U P; where
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E(P)| = m.
Case 5. Suppose m = 4 (mod 6), n = 1 (mod 6), and n > 7. Now
Knn = Kn—apn U Kgpn7U K47 where the partite sets of K4 are
Vin \ {11,21,31,41} and V},, the partite sets of K4,n—7 are {11,21,31,41}
and V,, \ {12,22,...,72}, and the partite sets of Ky 7 are {11,21,31,41}
and {12,22,...72}. Now Ky,_4,n has a restricted hexagon covering with
padding P, where |E(P;)| = m — 4 (by Case 1), and there is a hexagon
decomposition of K4 n,—7 by Theorem 2.2. Next, we note that there is a
restricted hexagon covering of K, 7, namely the set {[11, 12,21, 22,31, 32},
[21, 52, 31, 62, 41, 72], [11, 32, 21, 42, 41, 53], [11, 62, 21, 42, 31, T2], [11, 22, 41, 32,
21, 42], [21, 52, 31, 12, 41, 62]}, with padding P2 satisfying E(Pz) = {(11, 32),
(21,42), (21, 32), (21,42), (21, 52), (21, 62), (31,52), (41, 62)} and so |E(P)|
= 8. Therefore there is a restricted covering of K,,, with hexagons with
padding P = P; U P, where |E(P)| =m + 4.

Case 6. Suppose m = 4 (mod 6), n = 3 (mod 6). Now K = Kjp_gn U
K4 n—3UKy 3 where the partite sets of Km—4,n are V5 \ {11,21, 31,41} and
V,,, the partite sets of K4 n—3 are {11,21, 31,41} and Vy, \ {12, 29, 32}, and
the partite sets of K4 3 are {11, 21, 31,41} and {12,22,32}. Now Ky 4,5, has
a restricted hexagon covering with padding P, where |E(P;)| = m — 4 (by
Case 1), and there is a hexagon decomposition of K4n—3 by Theorem 2.2.
Next, we note that there is a restricted hexagon covering of K4 3, namely the
set {[11,11,21,22,31,32), [11,19,21,32,41,22], [21,22,31, 12,41, 32]} with
padding P satisfying E(Pp) = {(11,12), (21, 12), (21,22), (21, 32), (31,22),
(41,32)} and so |E(P;)| = 6. Therefore there is a restricted covering of
K n with hexagons with padding P = P, U P, where |E(P)| =m + 2.
Case 7. Suppose m =4 (mod 6), n = 5 (mod 6). Now Ky, = Km—gn U
K4,n—5U Ky 5 where the partite sets of Km—4,n are Vin \ {11,21,31,41} and
V,., the partite sets of K4 n—5 are {11,21,31,41} and V,, \ {12,22,...,52},
and the partite sets of K45 are {11,21,31,41} and {12,23,...52}. Now
K n—4,n has arestricted hexagon covering with padding P, where |E(P)| =
m —4 (by Case 1), and there is a hexagon decomposition of K4 5 by The-
orem 2.2. Next, we note that there is a restricted hexagon covering of K4 s,
namely the set {[11, 12,23, 22, 31, 32, [11, 22, 41, 52, 31, 42], [21, 32, 31, 12, 41,
42], [11,12,41,32,21,52]} with padding P, satisfying F(P;) = {(31,32),
(11,12), (21,32), (41,12),} and so |E(P2)| = 4. Therefore there is a re-
stricted covering of K, » with hexagons with padding P = P U P, where

|E(P)| =m. N

Lemma 3.3 A minimal restricted hexagon covering of Kp; n where m =
n=>5 (mod 6) has padding P satisfying |E(P)| = m.

Proof. Each vertex of V,,, is of odd degree, so in a minimal covering, as in
Lemma 3.2, it is necessary that |E(P)| > m. In the constructions for this
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case, we assume that V,, = {01,11,...,(m—1)1} and Vi, = {02, 1,,..., (n—
1)2}. In each of the following two cases, we reduce the vertex labels modulo
m.

Case 1. Suppose m = n = 5 (mod 12). Consider the set of hexagons
{[jl) (4+j)2, (1 +j)1v (1 +j)2’ (m_ 1 +j)1aj2]} U {[jlv (11 e 12i+j)21 (2 +
71, (9+12i+7)2, (1+5)1, (6+12i+5)2], [j1, (16+12i+7)2, (1+7)1, (15+12i+
D2y (249)1, A2412i+5)5] | i = 0,1,..., (n=17)/12;5=0,1,2,...,m~1}
This is a minimal hexagon covering of K, , with padding P where E(P) =
{(i1,42) | 4 =0,1,...,m — 1}, and so |E(P)| = m.

Case 2. Suppose m = n = 11 (mod 12). Consider the set of hexagons
{2, (6+12i + 5)2, 2+ 5)1, (44126 + 1)z, (1+5)1, (1 + 120+ 5)al, [jr, (11 +
12’5"!‘,7)2; (1 +j)1a (10+ 12i+j)2a (2+.7)11 (7+ 12'L+J)2] | 1=0,1,..., (TL .
11)/12;5=10,1,2,...,m — 1} This is a minimal hexagon covering of Ky, n
with padding P where E(P) = {(i1,%2) | ¢ = 0,1,...,m — 1}, and so
|E(P)| = m. o

Lemma 3.4 A minimal restricted hexagon covering of Ky, n wherem and n
are both odd, m > n > 3, has a padding P satisfying |E(P)| = m+k where
k is the smallest nonnegative integer such that |E(Kmpmn)|+ (m+k) =0
(mod 6).

Proof. The necessary conditions follow as in Lemma 3.2. We now establish
sufficiency.

Case 1. Suppose m=n =1 (mod 6), m >2n > 7. Now Ky, p = Kp p U
Kn—n,n where the partite sets of Kp—pn » are {(n+1)1, (n+2)1...,m1} and
V.., and the partite sets of K, , are {11,21,...,n1} and V,. By Theorem
2.3, there is a decomposition of K, , \ M where M is a perfect match-
ing of Knn, say E(M) = {(i1,12) | i = 1,2,...,n}. Taking the collec-
tion of hexagons for such a decomposition along with the set of hexagons
([(1+30)1, (3+30)2, (3+3i)1, (2+80)z, (2+30)1, (1+3)a] | =0,1,..., 254},
and we see that K, » \ {(n1,n2)} has a hexagon covering with padding P,
where E(Pr) = {((1+31)1, (3+31)2), ((2+30)1, (1+31)2), (3+34)1, (2+31)2) |
im= 0,1,...,ﬂ§—4} and so |[E(P1)| = n — 1. We cover edge (n1,ng) with
hexagon [n1, ng, (n—1)1, (n—1)2,(n—2)1, (n —2)3] and add to the padding
the edges in E(P) = {(n2,(n — 1)1),((n — 1)1, (n — 1)2),((n — 1)2,(n —
2)1), ((n —2)1, (n — 2)2), (n1, (n—2)2)} and so |E(P;)| = 5. By Lemma 3.2
Case 1, there is a restricted hexagon covering of K;—n n with padding Ps
where |E(P3)| = m — n. Therefore there is a restricted covering of K n
with hexagons with padding P = P, U Py U P3 where |E(P)| = m +4.
Case 2. Suppose m = 1 (mod 6), n = 3 (mod 6), m > n. Now Kpp, =
Ky nUKm—n,n where the partite sets of Kn » are {(n+1)1, (n+2)1...,m1}
and V,,, and the partite sets of Ky—n . are {11,21,...,n1} and V,. By
Theorem 2.3, there is a decomposition of K, , \ M where M is a perfect
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matching of Ky n, say E(M) = {(i1,i2) |1 =1,2,.. .,n}. Taking the col-
lection of hexagons for such a decomposition along with the set of hexagons
and we see that K, , has a hexagon covering with padding P; where
E(Py) = {((1+ 30)1, (3 -+ 30)2), ((2 + 3i)1, (1 +30)2), (3 + 3i)1, 2+ 30)2) |
i=0,1,...,%5%} and so |E(Py)| = n. By Lemma 3.2 Case 6, there is a
restricted hexagon covering of Kyp,—nn With padding Py where |E(Py)| =
m — n -+ 2. Therefore there is a restricted covering of K n with hexagons
with padding P = Py U P; where |E(P)| =m +2.

Case 3. First, suppose m =n +2 =1 (mod 6). Then the set of hexagons
{[111 22; 31: 121 21 ) 32]1 [41:421 61: 32$ 51) 52]7 [31, 327 417 22a 71’ 52]a [11, 12’ 61,
22, 51, 42]1 [11: 1a, 711 32, 611 52]| [21:! 22, 41, 1o, 71, 42]7 [21, 42’ 31’ 12’ 511 52]}
U{[ll, (6+ 61)a2, (8 + 6i)1, 12, (9-+ 6%')1, 72], [21, (8 -+ 6’1:)2, (10 + 6i)1, 29, (11 +
67:)11 92]: [11: (8+62)2, (12"1"6?')1: 521 (9+62)1, 92]7 [311 (7+67')2) (10+67')1, 327
(9+ 61)1, 82], [31, (10 + 61)a2, (12+ 64)1, 32, (13 +6i)1, 112], [41, (6 +61:)2, (9+
61)1, 42, (8 + 61)1, 72], [41, (9 + 61)2, (13 4+ 6i)1, 15, (11 + 6i)1, 112], [51, (8 +
61)2, (11+6i)1, 59, (10—]'-6?;)1, 9q], [61, (10+6’i)2, (13+6’i)1, 29, (12+6'i)1, 112],
[71, (6 +- ﬁi)g, (13 -+ 51:)1,52, (8 + 6?:)1, 82], [71, (9 + 6’i)2, (12 + 6'i)1, 4,, (11 +
6i)1, 104], [11, (10 + 6i)2, 51, (7 + 6)2,21, (11 + 61)2], [21, (6 + 61)2,61, (8 +
61)2, 41, (10+61)2], [(6 4 6i)2, (10 + 6i)1, 12, (12 +6i)1, (74 6i)2, (11 +6i)1],
[(10-1-—6?:)2, (8+461)1, 22, (9+4-61)1, (11+6i)2, (10+6i)1], [31, (6+61)3, 51, (11+
61)2, (8 -+ 6‘.‘1)1, (9 + 6%)2] [61, (7 - 63')2, (11 + 6’i)1, 32, (8 + 6i)1, (9 + Gi)g],
(70, (7 + 6i)a, (13 + 60)1, 4, (10 4+ 63)1, (11 + 6:)3], (6 + 6¢)2, (9 +61)1, (10+
6i)z, (13+61)1, (8 +61)z, (12+6i)1] | i =0,1,..., (m—7)/6 —1} is an unre-
stricted covering of Ky, » with padding P where E(P) = {(11,12), (21,42),
(31-: 12): (41% 2'2)% (511 52): (61! 32): (71’ 12)} U{((S =t 6i)1’ (9 + 67;)2)’ ((9 +
6i)1, (6+60)2), ((10+6d)1, (11468)2), (11 +6i)1, (7+6)2), (124 60)1, (8+
6i)2), ((13+6i);, (10+6i)3) | 1 =0,1,.. .,(m—"T7)/6—1} and so |E(P)| = m.
Next, suppose m = 1 (mod 6), n = 5 (mod 6), m > n + 8. Now
Kpn = Knn U Km—n,n where the partite sets of K, n are {11,21...,n1}
and V,, and the partite sets of Kpm—n,n are {(n+1)1, (n+2)1,...,m1} and
V... Now K, has a restricted hexagon covering with padding P; where
|E(P;)| = n (by Lemma 3.3), and there is a restricted hexagon covering of
Kyn—nn with padding P, satisfying |E(P;)| = m —n (by Lemma 3.2 Case
4). Therefore there is a restricted covering of K,, , with hexagons with
padding P = Py U P, where |E(P)| = m.

Case 4. Suppose m = 3 (mod 6), n =1 (mod 6), m >n > 7. Now Kpn =
Kn—2.nU Km_nt2,n where the partite sets of K,_3n are {11,21....,(n -
2);} and Vj,, and the partite sets of Km_nt2,n are {(n —1)1,n1,...,m1}
and V,,. By Case 3, there is a restricted covering of Kn—2,n with padding
P, where |E(Py)| = n — 2, and there is a restricted covering of Km—ni2,n
with padding P; satisfying |E(P,)| = m —n+ 6 (by Lemma 3.2 Case 5).
Therefore the is a restricted covering of Ky, with hexagons with padding
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P = P, U P, where |E(P)| =m + 4.

Case 5. Suppose m =n =3 (mod 6), m > n. Now Ky n = Kpn n UKm—n,n
where the partite sets of K;—pn . are {(n +1)1,(n +2)1...,m1} and V,,
and the partite sets of Kp—n n are {11,21,...,n1} and V,,. By Theorem
2.3, there is a decomposition of K, , \ M where M is a perfect match-
ing of Kpn, say E(M) = {(i1,42) | ¢ = 1,2,...,n}. Taking the collec-
tion of hexagons for such a decomposition along with the set of hexagons
{[(1+3'i)1, (3+3i)2, (3+3i)1, (2+3i)2, (2+431)1, (1+37)2] l 1=0,1,..., %—-1},
and we see that K, , has a hexagon covering with padding P; where
E(P1) = {((1 + 31)1, (3 + 31)2), (2 + 31)1, (131)2), (3 + 30)1, (2 + 34)) | i =
0,1,...,%2 — 1} and so |E(P1)| = n. By Lemma 3.2 Case 1 there is a
restricted hexagon covering of K,,_, » with padding P, where |E(P)| =
m —n. Therefore there is a restricted covering of K, , with hexagons with
padding P = P, U P, where |E(P)| = m.

Case 6. Suppose m = 3 (mod 6), n = 5 (mod 6), m > n. Now
Kmn = KnnUKm_nn where the partite sets of K, are {11,21...,n1}
and V,,, and the partite sets of K;n—pn n are {(n+1)1,(n+2)1,...,m1} and
Vn. Now K, , has a restricted hexagon covering with padding P; where
|E(P1)| = n (by Lemma 3.3), and there is a restricted hexagon covering of
Km—nn with padding P; satisfying |E(P;)| = m — n (by Lemma 3.2 Case
7). Therefore there is a restricted covering of K, , with hexagons with
padding P = P, U P, where |E(P)| =m.

Case 7. Suppose m = 5 (mod 6), n = 1 (mod 6), m > n. Now K,,, , =
Kn—2,n U Kpm_nyo,n wWhere the partite sets of K,,_2, are {11,2;....,(n —
2):} and V,,, and the partite sets of Kp—ni2,n are {(n —1)1,n1,...,m1}
and V,,. By Case 3, there is a restricted covering of K,,_o , with padding
P; where |[E(P;)| = n — 2, and there is a restricted covering of Km—ni2.n
with padding P, satisfying |E(P,)| = m —n + 2 (by Lemma 3.2 Case 1).
Therefore the is a restricted covering of K,, , with hexagons with padding
P = P, U P, where |E(P)| =m.

Case 8. First, suppose m =n + 2 =5 (mod 6). Then the set of hexagons
{[11, 12, 21, 32, 311 22]; [11, 12, 21; 22, 51, 32]) [31, 12a 51, 32? 41a 22]a [311 12) 41,
32,51, 22]} U{[ll, (4+6i)2, (6+6i)1, 1q, (7+61)1, (5+6’i)2], [21, (4+6i)2, (7-|-
60)1, 22, (6 + 63)1, (5 + 60)a], [21, (6 + 61)a, (8 -+ 6i)s, 22, (9 + 60)s, (7 + i)a),
[41, (6-}—61:)2, (9+614)1, 12, (8+61)1, (7—|—6’i)2], [31, (8+46i)2, (10467),, 32, (11+
60)1, (9 + 61)2), [51, (8 + 6i)z, (11 + 67)1, 25, (10 + 6i)1, (9 + 66)2], [31, (5 +
6i)2, (8 + 6i)1, 32, (74 6i)1, (6 + Gi)z], [41, 8+ 6i)2, (94 67)1, (4 + 6’i)2, (8 +
61)2, (9 + 61:)2], [31, (4 + 61:)2, 4,,(5 + 6’i)2, 51, (7 + 6i)2], [(11 + Gi)l, (4 +
61)a, (10 +64)1, (6 +64)a, (6+61)1, (7+66)2), [11, (8+61)2, (6+61)1, 3, (9+
67:)1’ (9 + 6’&)2]’ [11’ (6 + 6i)2, (11 + 6i)1a 1o, (10 + 6i)1a (7 + 61)2]’ [211 (8 +
613, (7 + 60)1, (7 + 63, (6 + 60)1, (9 + 6i)a], [51, (4 + 6i)a, (9 + 61, (5 +
61)3, (10--63)s, (6-+61)a], [(LL-+61)s, (5-+6i)z, (8--6i)1, (8+6)z, (7-+6i)1, (9+
6i)2] | ¢ = 0,1,...,(m — 5)/6 — 1} is an unrestricted covering of K,,,
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with padding P where E(P) = {(31,22), (11,12), (21,12), (31,12), (31,22),
(41,32), (51,22), (51,32), (51,32)} U{((6 + 6)1, (7 + 60)2), ((7 + 61)1, (8 +
6i)2), ((8-+6i)1, (5 +6i)a), ((9+6a)1, (4+63)z), (104 6i)1, (6+67)2), (11 +
6i)1, (9+ 6i)2) | i =0,1,...,(m —5)/6 — 1} and so |E(P)| =m + 4.

Next, suppose m = 5 (mod 6), n = 3 (mod 6), m > n. Now Kmn =
Kpn U Km—n,n where the partite sets of Ky n are {11,21...,n1} and Vi,
and the partite sets of Kin—n,n are {(n+1)1,(n+2)1,..., my} and V. By
Theorem 2.3, there is a decomposition of Knn \ M where M is a perfect
matching of Ky n, say E(M) = {(i1,12) [ i =1,2,.. .,n}. Taking the col-
lection of hexagons for such a decomposition along with the set of hexagons
(1(14+30)1, (3-30)z, (3-3i)1, (2+30), (2+8i)1, (1430)2] [ §=0,1,..., 31},
and we see that K, , has a hexagon covering with padding P; where
E(P1) = {((1 + 301, (3 + 30)2), (2 + 30)1, (1 + 3i)2), (3 + 301, (2 + 30)) |
i=0,1,...,% — 1} and so |[E(P1)| = n. By Lemma 3.2 Case 3 there is a
restricted hexagon covering of K —n,» with padding P, where |E(P1)| =
m — n + 4. Therefore there is a restricted covering of Km,n with hexagons
with padding P = P, U P; where |E(P)| =m +4.

Case 9. Suppose m = n =5 (mod 6), m > n. Now Ky = KnnUKm—nn
where the partite sets of Kp n are {11,21..., n1} and V,, and the partite
sets of Ky—n,n are {(n + D1, (n+2)1,...,m1} and V. Now K, has a
restricted hexagon covering with padding Py where |E(P1)| = n (by Lemma
3.3), and there is a restricted hexagon covering of Km—n,n With padding P,
satisfying |E(P2)| = m —n (by Lemma 3.2 Case 1). Therefore there is a
restricted covering of Ko, » with hexagons with padding P = P, U P, where

E(P)| = m. .

Theorem 3.1 A minimal restricted hezagon covering of Km n (where m 2>
3 and n > 3) with padding P satisfies

(1) when m =0 (mod 2) and n =1 (mod 2), |E(P)| = m+k where k is the
smallest nonnegative integer such that |E(Kmn)| + (m + k) =0 (mod 6),
(2) when m =n =1 (mod 2)and m > n, |E(P)| = m + k where k is the
smallest nonnegative integer such that |E(Kmn)| + (m + k) =0 (mod 6),
(3) when m =0 (mod 6) and n =0 (mod 2), |E(L)| =0,

(4) when m =n =2 (mod 6) or m =n = 4 (mod 6), then |E(P)| =2, and
(5) when m = 2 (mod 6) and n = 4 (mod 6), then |E(P)| = 4.

4. Unrestricted Hexagon Coverings of K, »

The following two result immediately show a difference between a re-
stricted hexagon covering (which does not exist for K, or K, ) and an
unrestricted hexagon covering (which the result describes).

Lemma 4.1 A minimal unrestricted covering of Kin, n > 5, has a padding
P where |E(P)| = 2n when n is even and |E(P)| = 2n + 3 when n is odd.
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Proof. For n even, n > 6, we have V1 and V,, as the partite sets of
Ks . If a hexagon in such a covering contains no vertices of Vi, then
it must contain 6 edges in the padding. If a hexagon in a covering con-
tains 1 vertex of Vi, then it must contain at least 4 edges in P and at
most 2 edges in Ks . Since K1,n contains n edges, then an unrestricted
covering with padding P must satisfy |E(P)| > 2n. The set of hexagons
{[11, 12, 52, 42, 32, 23], [11, 32, 22, 12, 52, 42], [11, B2, 42, 32, 22, 62]} U {[11, (5 +
2i)g, 32, 29, 12, (6 + 2i)3] | i = 1,2,...,(n — 6)/2 forms an unrestricted cov-
ering of Ko, with padding P where E(P) = {(12, 52), (42, 52), (32, 42), (22,
32), (22, 32)1 (12a 32)7 (12, 52)a (427 52)’ (42a 52)3 (327 42)) (22a 32), (22a 62) } U
{(33, (5+2)2), (22, 32), (12, 22), (13, (6+24)2) | i = 1,2,..., (n—6)/2} and
so |E(P)| = 2n.

For n odd, as when n is even, each hexagon of an unrestricted covering
contains at least 4 edges in the padding, so an unrestricted with padding P
must satisfy |E(P)| = 2n. Since |E(Kmn)|+|E(P)| =0 (mod 6), it follows
that 'E(P)| > 2n 4+ 3. The set of hexagons {[11, 19, 59, 49, 39, 22], [11, 39, 29,
13, 52,42], [11, 42, 12, 22, 32, 52]} U {[(11, (4 + 2i)2,32, 22,12, (6 + 2¢)2] | ¢ =
1,2,...,(n—5)/2} forms an unrestricted covering of Km,n with padding P
where E(P) E {(12, 52)3 (427 52)1 (32) 42)'; (22’ 32); (227 32)a (121 32), (12, 52)’
(427 52), (11, 42)3 (12a 42)a (12’ 22)7 (227 32)> (32, 52)} U {(327 (4+2"/)2)1 (22a 32)7
(12,22), (12, (5 +28)2) | i =1,2,...,(n—5)/2} and so |[E(P)|=2n+3. m

Lemma 4.2 A minimal unrestricted covering of Ko n, n > 4, has a padding
P where |[E(P)| = n when n is even and |E(P)| = n + 3 when n is odd.

Proof. For n even, n > 4, we have V, and V,, as the partite sets of K5 . If
a hexagon in such a covering contains no vertices of V4, then it must contain
6 edges in the padding. If a hexagon in a covering contains 1 vertex of V3,
then it must contain at least 4 edges in P and at most 2 edges in Kj .
If a hexagon in a covering contains 2 vertices of V5, then it must contain
either (1) at least 2 edges in P and at most 4 edges in Kp,n, or (2) at least
4 edges in P and at most 2 edges in K3 ,. Since Kj , contains 2n edges,
then an unrestricted covering with padding P must satisfy |E(P)| > n.
Since n > 4 is even, then n = 4n; + 6ny for some n;,n2 € N. Then the
set of hexagons: {[11, (1 + 4%)2, (4 + 41)2, (3 + 44)2, 21, (2 + 44)2], [11, (3 +
4i)g, (2 + 4i)2, (1 + 44)2,21, (4 + 4i)2) | ¢ = 0,1,...,n1 — 1} U {[11,(6 +
6_7)2, (2+6.7)27 (1+6.7)2a 21a (5+6J)2]$ [11, (1+6])2, (4+6.7)2a (3+6.7)2’ 2la (2+
6j)2]1 [11, (3 + 6j)21 (2 + 6j)2a (6 + 6j)27 21a (4 + 6.7)2] | .7 . Oa 1, <oy — 1}
is an unrestricted covering of K>, with padding P = {((1 + 4i)2,(2 +
46)2), (2 + 4i)a, (3 + 48)2), (3 + 4)z, (4 + 4i)2), (1 + 4i)a, (4 + de)a) | § =
0,1,...,n1—1}U{((1 +65)2, (2+65)2), ((2+65)z2, (3+65)2), ((3+64)2, (4 +
61)2), (1 + 67)2, (4 + 65)2),2 X ((2+ 652, (6+ 61)2) | 7 =0,1,...,n5 ~ 1}
and so |E(P)| = 4n1 + 6ny = n and this unrestricted covering is minimal.
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For n odd, as when n is even, each hexagon of a covering of K, con-
tains at least 2 edges of the padding and at most 4 edges of K3 ,. Since
|E(K3n)| = 2n, then the number of hexagons in a covering must be at
least [2n/4] = [n/2] = (n+ 1)/2 since n is odd. Since each hexagon con-
tains at least 2 edges of the padding P, we have |E (P)| 2 n+ 1. Now we
need |E(Kz,n)| + |E(P)| =0 (mod 6) and |E(Kz,s)| + |E(P)| > 3n+1, so
|E(P)| > n-+3. Since n is odd and n 2 5, then either (1) n = 4£+ 5 where
¢ = (n—>5)/4 €N, or (2) n =4+ 7 where £ = (n —T7)/4 € N. Define
A = {[L1, (144i)s, (4+4i)3, (3-+4i)2, 21, (2+44)a], [11, (3+41)2, (2+48)z, (1+
4i)9,21,(4 4+ 4i)2] |1 =0,1,...,£— 1}. For n = 4£ + 5, consider the set of
blocks AU{[11, (n—4)2, 21,12, (n—1)2, (n—2)2), (11, (n—4)2, 21, (n—1)2, (n—
2)a, (n—3)2), [11, (R —1)2, (n—2)2, 21, (n—3)2,n2]}. This is an unrestricted
covering of K3, with padding P where E(P) = {((1+41)2, (2+41)2), (2+
4}, (3 +40)a), (3 + 4i)a, (4 + 40)s), (1 + 4i)a, (4+4i)3) | 1 =0,1,..., €=
1U{(11, (n—4)2), (21, (n—4)2), (n=3)2, (n = 2)2), (n—3)2, n2), 3% ((n—
2)a, (n—1)2), ((n —1)2,n2)}. Since |E(P)| = 4£+8 = n + 3, the covering is
minimal. For n = 4£-+7, consider the set of blocks AU{[11, (n—6)2, 21, (n—
2)2’ (n— 3)21 (n - 4)2]’ [11'1 (n - 6)2’ 21, (n - 3)2’ (n - 4)27 (n - 5)2]’ [11’ (n -
1), (n— 4)a, 21, (n — 5)2, na), 15, (n— 3)2, n2, 21, (n—1)2,(n — 2)2]}. This
is an unrestricted covering of K3, with padding P = {((1 + 4i)2,(2 +
0,1,...,£— 1} U {(11’ (n - 6)2)’ (217 (n - 6)2)7 ((n - 5)2’ (n - 4)2)a ((n -
S)a.m2).2 x (= 42, (1 — 3)a). ((n — 4)a, (n — 1)), (n — 3)2,ma), ((n -
3)2, (n — 2)2), ((n — 2)2, (n — 1)2)}. Since |E(P)| = 4¢+ 10 = n + 3, the
covering is minimal. m

When m and n are both even, the constructions of Lemma 3.1 immedi-
ately give the following.

Lemma 4.3 A minimal unrestricted hezagon covering of Km . where m
and n are even, m > 4 and n > 4, has a padding P satisfying:

(1) |E(P)| = 0 when m =0 (mod 6),

(2) |E(P)| =2 whenm=n=2 (mod 6) orm=n=4 (mod 6), and

(3) |E(P)| = 4 when m =2 (mod 6) and n = 4 (mod 6).

Lemma 4.4 A minimal unrestricted hezagon covering of K, n where m is
even, m > 4, and n is odd, n > 3, has a padding P satisfying |[E(P)| =
m/2 + k where k is the smallest nonnegative integer such that |E(Kmn)| +
(m/2 + k) =0 (mod 6).

Proof. Since each vertex of V,, is of odd degree in Ky, n, in the padding
of a covering each of these vertices will be of odd degree. Therefore in a
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restricted covering of Ky, n with padding P, it is necessary that |E(P)| >
m/2. Since a covering yields a decomposition of K, , U P, then it is nec-
essary that |E(Kmn)| + |E(P)| =0 (mod 6).

Case 1. First, suppose m = 0 (mod 12) and n = 3. Then the set of
hexagons {[(1 + 12i)1, 29, (3 + 12'i)1, 1o, (2 + 12i)1, 32], [(4 + 12i)1, 29, (6 -+
123)1, 12, (5 + 124)1, 32, [(7 + 126)1, 22, (9 + 124)1, 12, (8 + 123)1, 32, [(10 +
12)1, 22, (12-+12i)1, 1g, (114+124)1, 33], [(14+124)1, 1g, (4+126);, (5+124)1, 25,
(24124)1], [(64121)1, 32, (9+120)1, (10+121)y, 15, (7+124)1], [(3+123)1, 3s,
(12 4 121)1, (11 + 124), 29, (8 + 12¢)4) | ¢ = 0,1,...,m/12 — 1} is an unre-
stricted covering of K, » with padding P where E(P) = {((1 + 12i),,(2 +
124)1), ((3+120)1, (8+120)1), (4+124)1, (5+124);), (6+124)y, (T+123),),
((9+124)1, (10+12i)y), (11+124)1, (12+124)1) [=0,1,..., m/12—1} and
so |E(P)| = m/2.

Second, suppose m = 0 (mod 12) and n = 5. Then the set of hexagons
{[(1+121')17 12’ (2+127')1) 227 (3+12Z)1a 32]7 [(1+127‘)1) 42a (3+127’)1, 12a (5+
120)1, 5], [(2 + 124)1, 32, (6 + 124)1, 29, (4 + 124)1,45), [(4 + 124)1,3,, (5 +
12’i)1, 42,(6 + 129)1, 52], [(7 + 121);, 4o, (8 + 122')1, 52, (9 + 127), 12], [(7 +
12)1, 22, (9 + 12i)1, 4z, (11 + 124)1, 3], [(8 +124)1, 15, (12 + 123)1, 55, (10 +
124)1, 2a], [(10+124)1, 13, (117 +124)y, 29, (124+124)1, 3], [(1+124);, 29, (5+
124)1, (T+124)1, 52, (114+124)y], [(2+124)1, 52, (3+124)1, (10+124);, 4, (12+
12'i)1], [(4+12'i)1, 1o, (64+129);, (84+12i)1, 32, (9+12i)4] |1 =0, 1,.. ., m/12—
1} is an unrestricted covering of K., with padding P where E(P) =
{((14+124)1, (11+124)1), ((2+12¢)1, (12+12)1), ((3+121)1, (104+124)1), ((4+
124)1, (9-+120)1), ((5+124)1, (T+124)1), ((6+12i)1, (8+123),) | i =0,1,...,
m/12 — 1} and so |E(P)| = m/2.

Finally suppose m = 0 (mod 12), n = 1 (mod 2), and n > 5. Now
Kmn C Kmn—3U% xCeUZ x Cs where the partite sets of Ky n—3 are Vi,
and V, \{12, 29, 32}, % xCg = {[(1 +31:)1, 29, (3+3i)1, 1s, (2+3’i)1, 32] | 1=
0,1,..., r_g_ —1}, and -Z—T xCg = {[(1+12'L)1, 1o, (4+12’l)1, (2+12i)1, 29, (5+
12i)1], [(3+12i)1, 32, (6+12’i)1, (7+12i)1, 14, (10+12’i)1], [(8+12i)1, 29, (11—|—
124)1, (12 4+ 128)1,32,(9+ 124)1] | ¢ = 0,1,..., 2 — 1}. Therefore there is
an unrestricted covering of K, , with hexagons with padding P where
E(P) = {((1 +124)1, (5 + 12i)1), ((2 + 124)1, (4 + 124)1), ((3 + 124)1, (10 +
124)1), ((6+121)1, (7+124)1), (8+121)1, (9+12)1), (11+124);, (12+124)y) |
i=0,1,...,m/12 -1} and so [E(P)| = 5 and the unrestricted covering is
minimal.

Case 2. Suppose m = 2 (mod 12), m > 14, and n = 1 (mod 6), n > 7.
Now Kpmn = Ki147U Km_14,7 U Kinn—7 where the partite sets of Ky47
are {11,21,...,141} and {12,29,...,72}, the partite sets of K,,_147 are
{15,,163,...,m1} and {1g,22,..., 72}, and the partite sets of K, n_7 are
Vin and {82,92,...,n2}. There exists an unrestricted covering of K,,—14 7
with padding P; where |E(P;)] = (m — 14)/2 by Case 1 and there ex-
ists a hexagon decomposition of K, n—7 by Theorem 2.2. Next, we note

119



that K147 = K77 U Kr,7 where the partite sets of the first copy of K77
are {11,21,...,71} and {12,23,.. ., T2}, and the partite sets of the second
copy of Ky 7 are {81,91,...,141} and {12,22,...,72}. By Theorem 2.3,
there is a hexagon decomposition of K77 \ M where M is a matching of
K7 7. So there is a hexagon decomposition of Kia,7 \ M1 where E(M,;) =
{(31,12), (3 + T)1,12) |i=1,2,...,7}. This decomposition along with the
set {[111 1g, 81: 91, 22: 21]: [311 32, 1011 114, 42, 41]’ [511 52, 1217 131, 62, 61]a [611
64,131,144, 79,71} forms an unrestricted covering of K4 7 with padding P»
where E(P2) = {(11121)v [311 41)1 (51} 61)! (613 71)’ (617 62)7 (81, 91), (101, 111)5
(121, 131), (131, 141), (131, 62)} and so |E(P,)| = 10. Therefore there is an
unrestricted covering of K with hexagons with padding P = Py U P,
where |E(P)| = m/2 + 3.

Case 3. Suppose m = 2 (mod 12), m 2 14, and n = 3 (mod 6).
Now Kpmyn = Kiaa U K143 U Kmn-3 where the partite sets of K43
are {11,21,. -+, 14} and {12, 22,32}, the partite sets of Km_14,3 are Vi \
{11,21,...,141} and {12,22,32}, and the partite sets of Kmn-3 are Vi,
and V,, \ {12,22,32}. There exists an unrestricted covering of K143
with padding Py where |E(P)| = (m —14)/2 by Case 1 and Kp n—3 can
be decomposed by Theorem 2.2. Next, we note that there is an unre-
stricted hexagon covering of K43, namely the set {[11, 22,21, 1131, 32, 144],
[313 1g, 61, 71, 221 41]) [911 1g, 1211 134, 29, 101?] [3].: 221 91, 1o,44, 32]1 [61: 2y,
8y, 12,71, 32), [91, 22, 111, 12,101, 3], [121, 22, 141, 12, 134, 32], [11, 12,21, 51,
32, 81], [11, 1g, 31, 29, 21, 32]} with padding Pg satisfying E(Pz) = {(11, 141),
(21,111), (31,41) (61,71), (91,101), (121,131), (11, 12), (11,81), (21,22),
(21, 51), (31,12), (31, 922)} and so |[E(P;)| = 12. Therefore there is an unre-
stricted covering of Ky n with hexagons with padding P = P, U P, where
|E(P)| =m/2+5.

Case 4. Suppose m = 2 (mod 12), m 2 14, and n = 5 (mod 6), n > 5.
Now Kmn = Kiaps U Km-145 Y Kmnn-s where the partite sets of Kiaps
are {11,21,..., 141} and {12, 22, 32,42, 52}, the partite sets of Kim—14,5 are
{151, 164,...,m1} and {12,232, 32,42, 52}, and the partite sets of Kinn—s5 are
V.. and {62, 72,...,n2}. There exists an unrestricted covering of Kp—14,5
with padding P; where |E(Py)| = (m — 14)/2 by Case 1 and Km,n—s can
be decomposed by Theorem 2.2. Next, we note that there is an unre-
stricted hexagon covering of Ki45, namely the set {[11, 12, 21, 22, 31, 32),
[21:32: 41,52, 31, 42]: [51, 1,61, 29, Ty, 32], [617 32, 81, 52, 71, 42]’ [81, 12,44, 29,
1y, 42]: [gls 22, 124, 43, 10y, 32]1 [1111 52: 131a 42a 141$ 12]’ [91, 52) 141» 221 1]-17
4], [104, 52,124, 39,131, 12], [11, 52,21, 91, 19, 124], [31, 12, 71, 51, 29, 81, (101,
2,131, 51, 52, 61, [111, 32, 141,44, 4o, 5,]} with padding P> satisfying E(Pa)
= {(111 12]): (211 91)1 (311 81)1 (411 141): (51) 71): (51! 111): (511 131)1 (61: 101)}
and |E(P;)| = 8. Therefore there is an unrestricted covering of K, n with
hexagons with padding P = P1 U P, where |E(P)| =m/2+ 1.

Case 5. Suppose m = 4 (mod 12), and n =1 (mod 6), n > 7. Now
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Kpnn = Kn—an U K4 n_7U K47 where the partite sets of K4, are
Vi \ {11,21,31,41} and V,, the partite sets of K4,n_7 are {11,21, 31,41}
and V; \ {12,22,...,72}, and the partite sets of K47 are {11,21,31,4:}
and {12,22,...,72}. There exists an unrestricted covering of Km_4n with
padding P, where |[E(P;)| = (m—4)/2 by Case 1 and K4,,—7 can be decom-
posed by Theorem 2.2. Next, we note that there is an unrestricted hexagon
covering of K4 7, namely the set {[11, 12,21, 22, 31, 32}, [21, 52, 41, 72, 31, 62},
[11, 62, 4, 4o, 21) 72]; [11, 22,44, 12,31, 52], [11’ 4o, 31, 41, 32, 21]} with Pad-
ding P; satisfying E(P2) = {(11,21), (31,41)} and so |E(FP;)| = 2. There-
fore there is an unrestricted covering of K,, , with hexagons with padding
P = P, U P, where |E(P)| =m/2.
Case 6. Suppose m = 4 (mod 12), n = 3 (mod 6). Now Ky o = Km—4,nU
K4 n—3U K43 where the partite sets of Kin—an are Viu \ {11,21,31,41} and
V.., the partite sets of K4 ,—3 are {11, 21, 31,41} and V,\{12, 2, 32}, and the
partite sets of K4 3 are {11,21, 31, 4,} and {12, 22, 32}. There exists an un-
restricted covering of Kp,—4,, with padding P, where |E(Py)| = (m —4)/2
by Case 1 and Ky n_3 can be decomposed by Theorem 2.2. Next, we
note that there is an unrestricted hexagon covering of K4 3, namely the
set {[11, 19,21, 29, 31, 32], [11, 29,44, 19, 31, 21], [11, 12,21, 39,44, 22]} with
padding P, satisfying E(Ps) = {(11,21), (21,31), (11,12), (11,22), (21, 12),
(41,22)} and so |E(Pz)| = 6. Therefore there is an unrestricted covering of
Ko n with hexagons with padding P = Py U P, where |E(P)| =m/2 + 4.
Case 7. First, suppose m = 4 (mod 12) and n = 5. Now Ky o = K4 5U
K45 where the partite sets of K45 are Vin \ {11, 21, 31,41} and V,, and
the partite sets of K45 are {11,21,31,41} and V,,. There is an unrestricted
covering of K_4,5 by Case 1 with padding P; where |E(P)| = (m —4)/2.
Next, we note that there is an unrestricted hexagon covering of K4 5, namely
the set {[117 12a 211 227 31, 32]) [21) 1a, 317 49,44, 52]7 [111 22) 41’ 32) 21, 42], [111
12,44, 42, 31, 52)} with padding P, satisfying E(P;) = {(11, 12), (21, 12), (31,
45), (41,42)} and so | E(P)| = 4. Therefore there is an unrestricted covering
of K, n with hexagons with padding P = P;U P, where |E(P)| =m/2+2.
Now suppose m = 4 (mod 12) and n = 5 (mod 6), n > 11. Now
Kmn = Kmn-4 U Kp4 where the partite sets of Kpyn—q are Vi, and
Vo \ {12, 22, 32,42} and the partite sets of Ky, 4 are V;;, and {12, 2, 32, 42}
There exists an unrestricted hexagon covering of K, ,—4 with padding P;
where |E(P;)| = m/2 by Case 5 and there is a restricted hexagon covering
of Ky 4 with padding P, where |E(P;)| = 2 by Lemma 3.1 Case 3. There-
fore there is an unrestricted hexagon covering of K,, , with hexagons with
padding P = P; U P, where |E(P)| =m/242.
Case 8. First, suppose m = 6 (mod 12) and n = 3. Now K, =
K6 3UK,,—6,3 Where the partite sets of K¢ 3 are {11,2y,.. ., 61} and V,,, and
the partite sets of Km—6,3 are Vin \ {11,21,...,61} and V,,. There exists an
unrestricted covering of K,—¢,3 with padding P; where |E(Py)| = (m—6)/2
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by Case 1. Next, we note that there is an unrestricted hexagon cov-
ering of Kg 3, namely the set {[11,22,31,12,21,32], [41,22,61,12,53,32],
[11, 12, 41, 51, 22, 21], [31, 12, 51, 22, 61, 32]} with padding P2 satisfying E(Pg)
= {(]-la 21)7 (41) 51), (31, 12), (51, 12)a (51a 22)) (611 22)} and so |E(P2)| = 6.
Therefore there is an unrestricted covering of K,, . with hexagons with
padding P = P, U P, where |E(P)| = m/2 + 3.

Second, suppose m = 6 (mod 12) andn = 5. Now K, n = K6 5UKm—6,5
where the partite sets of Kg 5 are {11,21,...,61} and V;,, and the partite
sets of Kyn—6,5 are Vi \ {11,21,...,61} and V,. There exists an unre-
stricted covering of Km—g,» with padding P; where |E(Py)| = (m — 6)/2
by Case 1. Next, we note that there is an unrestricted hexagon cov-
ering of Kg 5, namely the set {[11,12,21, 29,31, 3], [11,42,31,12,51, 59,
[21, 32, 61, 22, 41, 42), [41, 32, 51, 42, 61, 52], [11, 22, 51, 31, 52, 21}, [41, 12, 61, 5o,
51,45]} with padding P, satisfying E(P2) = {(11, 21), (31, 51), (41, 42), (51,
45), (51,52), (61,52)} and so |E(P;)| = 6. Therefore there is an unre-
stricted covering of K., with hexagons with padding P = P, U P, where
|[E(P)| =m/2+3.

Finally, suppose m = 6 (mod 12), n = 1 (mod 2), and n > 5. Now
Ko = Ko,nUKm_6n Where the partite sets of K¢ r, are {11,21...,61} and
V,,, and the partite sets of Ky,_gn are Vin \ {11,21,...,61} and V.. There
exists a restricted covering of Kg, with padding P, where |E(P;)| = 6
by Lemma 3.2 Case 1 and there exists an unrestricted covering of K., —6,n
with padding Pz where |E(P2)| = (m — 6)/2 by Case 1. Therefore there is
a unrestricted covering of K, ,, with hexagons with padding P = P, U P,
where |E(P)| = m/2 + 3 and the unrestricted covering is minimal.

Case 9. Suppose m = 8 (mod 12), n =1 (mod 6), andn > 7. Now Ky, , =
Ks 7 U Kp—g,7U Ky n7 where the partite sets of Kg 7 are {11,21,...,81}
and {13,22,..., T2}, the partite sets of Kp—sg 7 are Vin\ {11,21,...,8;} and
{12,22,..., 72}, and the partite sets of Ky n—7 are Vi and Vi \ {12, 2o,.. .,
72}. There exists an unrestricted covering of Kn—g7 with padding P,
where |E(P;)| = (m — 8)/2 by Case 1 and Ky, n—7 can be decomposed
by Theorem 2.2. Next, we note that there is an unrestricted hexagon
covering of Kg 7, namely the set {[11, 22, 61, 52, 21, 3], [11, 49,51, 12, 41, 64,
[317 32’ 51) 22, 41, 42]a [217 62> 51a 525 417 72]a [61a 32; 81, 22’ 71) 42]1 [61a 62) 81’ 527
711 72]5 [117 1,, 811 72, 311 52]7 [21, 121 1, 62; 31’ 22]7 [11, 72’ 51, 81a 42a 21]a [31,
19, 61, 71, 32, 41]} with padding P, satisfying E(P;) = {(11,21), (31, 41), (51,
81), (61,71)} and so [E(P;)| = 4. Therefore there is an unrestricted cover-
ing of Ky » with hexagons with padding P = P,U P, where |E(P)| = m/2.
Case 10. Suppose m = 8 (mod 12), n = 3 (mod 6). Now K,,, =
Ks3U Km_gn U Kgn—3 where the partite sets of Kg3 are {11,21,...,81}
and {1z, 22, 32}, the partite sets of Km—_g,n are Vin\{11,21,...,81} and V,,
and the partite sets of Kg 3 are {11, 21,...,81} and V,,\ {12, 22, 32}. There
exists an unrestricted covering of K,,—s n with padding P, where |E(P;)| =
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(m—8)/2 by Case 1 and Kg 3 can be decomposed by Theorem 2.2. Next,
we note that there is an unrestricted hexagon covering of Kg 3, namely the
set {[11, 12,21, 22,41, 32], [11, 22, 71,51, 32, 21], [31, 12, 61, 81, 32,41), [31,22,
51,12,41,32], [61,22,81,12,71,32]} with padding P, satisfying E(P) =
{(11,21), (31,41), (51,71), (61,81), (41,32), (41,32)} and so |E(P)| = 6.
Therefore there is an unrestricted covering of K., » with hexagons with
padding P = P; U P; where |E(P)| =m/2 + 2.

Case 11. Suppose m = 8 (mod 12), n = 5 (mod 6). Now K, n =
Kg s VU K85 U Km n—5 Where the partite sets of Kg 5 are {11,24,...,81}
and {12, 22, ..., 52}, the partite sets of Kn,—g,5 are Ve \ {11,21,...,81} and
{12,22,..., 52}, and the partite sets of Ky n—5 are Vp, and V3, \ {12, 29,...,
52}. There exists an unrestricted covering of K,,_gs with padding P;
where |E(P1)| = (m — 8)/2 by Case 1 and Kmn—s can be decomposed
by Theorem 2.2. Next, we note that there is an unrestricted hexagon
covering of Kg s, namely the set {[11, 12,31, 32, 61, 22], [21, 12, 41, 51, 22, 34],
[31, 42, 515 32, 41, 52]’ [61a 421 811 32’ (&5 52]7 [11a 32’ 21a 22’ 81, 52]7 [217 421 71) 12,
51,52], [41, 29,71, 81, 12, 61], [11, 12,24, 22,4, 42]} with padding P, satisfy-
ing E(P,) = {(21,31), (41,51), (11,12), (21,12), (21,22), (41, 22), (41,61),
(71,81)} and so |E(Pz)| = 8. Therefore there is an unrestricted covering of
K n with hexagons with padding P = P; U P, where |E(P)| =m/2 + 4.
Case 12. Suppose m = 10 (mod 12) and n = 1 (mod 6), n > 7. Now
Knn = Kn—an U Kyn—7 U K47 where the partite sets of Km_4n are
Vin \ {11,21,31,41} and V;,, the partite sets of K47 are {11,21,31, 41}
and V, \ {12,22,...,72}, and the partite sets of K47 are {11,21,31,41}
and {13,22,...,72}. There exists an unrestricted covering of Km_4n with
padding P; where |E(P;)| = m/2 + 1 by Case 8 and Ky4,n—7 can be de-
composed by Theorem 2.2. Then by Case 5 gives an unrestricted hexagon
covering of K47 with padding P; where |E(P;)| = 2. Therefore there is
an unrestricted covering of K., » with hexagons with padding P = P U P,
where |E(P)| =m/2 + 3.

Case 13. Suppose m = 10 (mod 12), n = 3 (mod 6). Now K, =
K10,3UKm—10,3UKm n—3 where the partite sets of Kio3are {11,21,...,101}
and {12, 22, 32}, the partite sets of Km—10,3 are Vi \ {14,21,...,10;} and
{12,22, 32}, and the partite sets of Km,n-3 are Vm and V7 \ {12, 22, 32}.
There exists an unrestricted hexagon covering of K,,—10,3 with padding P,
where |E(P;)| = (m — 10)/2 by Case 1 and Ky n—3 can be decomposed
by Theorem 2.2. Next, we note that there is an unrestricted hexagon cov-
ering of K103, namely the set {[11,12,21,22,101, 32, (11,22, 31,51, 12, 84],
[41a 32, 71, 91; 22a 61]7 [211 22a 41a 127 311 32]; [51) 221 71, 121 61a 32], [81’ 22) 101)
12, 91, 32]} with padding P; satisfying E(P;) = {(11,81), (21,22), (31,51),
(4,61), (71,91), (101,22)} and so | E(P2)| = 6. Therefore there is an unre-
stricted covering of Ky, » with hexagons with padding P = P; U P» where

\E(P)| =m/2 + 1.
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Case 14. Suppose m = 10 (mod 12), n = 5 (mod 6). Now K,,, =
Ko n—4U K 4 where the partite sets of Ky n—4 are Vi, and V;, \ {12, 22, 35,
45} and the partite sets of K 4 are Vi, and {12,22,32,42}. There ex-
ists an unrestricted hexagon covering of K,, n—4 with padding P; where
|E(P1)| = m/2 + 3 by Case 12 and there is a restricted hexagon covering
of K, 4 with padding P, where |E(P;)| = 2 by Lemma 3.1 Case 2. There-
fore there is an unrestricted hexagon covering of K, , with hexagons with
padding P = P; U P, where |E(P)| =m/2 +5. m

Lemma 4.5 A minimal unrestricted hezagon covering of K, , where m
and n are both odd, m > n > 3, has a padding P satisfying |E(P)| = (m +
n)/2+ k where k is the smallest nonnegative integer such that |E(Km n)|+
(m+n)/2+ k=0 (mod 6).

Proof. Since each vertex of K, » is of odd degree, in the padding of a cover-
ing each of these vertices will be of odd degree. Therefore in an unrestricted
covering of Ky, » With padding P, it is necessary that |E(P)| > (m +n)/2.
Since a covering yields a decomposition of K, n U P, then it is necessary
that |E(Kmnn)| + |E(P)| =0 (mod 6).

Case 1. Suppose m = 1 (mod 12), m > 13, and n = 7 (mod 12).
We have Kyn = KnnU Kmonn—3 U K¢z U Kin—n—g,3 where the par-
tite sets of K n are {11,2,...,n1} and V,,, the partite sets of Ky—pn n-3
are {(n+1)1,(n+2)1,...,m1} and {42, 53, ..., n2}, the partite sets of K¢ 3
are {(n+1)1,(n +2)1,...,(n+6)1} and {12,22,33}, and the partite sets
of Km—n—s,3 are {(n+ 7)1, (n+ 8)1,...,m1} and {12,22,32}. There is a
hexagon decomposition of Ky » \ M by Theorem 2.3, where (without loss
of generality) E(M) = {(i1,42) | ¢ = 1,2,...,n}. There is a hexagon
decomposition of Ky,—n n-3 by Theorem 2.2. There is an unrestricted
covering of Ky—n—6,3 with padding P, where |E(P1)| = (m —n — 6)/2
by Lemma 4.4 Case 1. Taking these decompositions, the covering, and
{((3i — 2)1, (31 — D, (3i)1, (3i)a, (3 = D1, (3 — 1)a) | i = 1,2,.... (n -
1)/3}U{((n+1)1, 12, (n+4)1, (n+5)1,22, (n+2)1), (n1, 2, (n+6)1, 32, (n+
3)1, (n+2)1)} yields an unrestricted covering of K, » with padding P where
E(P) = E(P1) U {((3¢ — 2)1, (3 = 1)2), ((8 — 1)1, (37)2), ((3)1, (31 — 2)2) |
i=1,2,...,(n— 1)/3} U{((n + D1, (n + 2)0); ((n + 2)1, (n + 3)0), (n +
41, (n+5)1), (n1, (n+2)1), ((n +6)1,m2)} and so |E(P)| = (m +n)/2+1.
Case 2. First, suppose m = 3 and n = 1 (mod 12), n > 13. We have
Kmn = K313 U K3 n_13 where the partite sets of K313 are {11,24,31}
and {1g,22,...,132}, and the partite sets of K313 are {11,21,3:} and
{145,159, ...,n2}. Now K3 ,_13 has an unrestricted covering with padding
P, where |E(P;)| = (n —13)/2 by Lemma 4.4 Case 1. Next, we note
that there is an unrestricted hexagon covering of Ks 13, namely the set
{[11, 32, 31, 22, 211 12], [11’ 122, 1027 112i 317 132]7 [31a 82) 102’ 21a 132) 52]7 [11a
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62, 42,21, 72, 92|} with padding P> = {((21, 12), (31, 22), (11, 32), (102, 115),
(102, 122), (52, 132), (82, 102), (42, 62), (72, 92)} and so |E(P2)| = 9. There-
fore there is an unrestricted covering of K, , with hexagons with padding
P = P, U P, where |E(P)| = (m+n)/2+ 1.

Now suppose m = 3 (mod 12), m > 15, and n = 1 (mod 12), n > 13.
We have Ky = K7,13U Kg 13U Km_15,13U K15,n—13U Km—15n—13 Where
the partite sets of K713 are {11,21,...,71} and {12,22,...,132}, the par-
tite sets of Kg 13 are {81,91,...,151} and {12,2,,..., 135}, the partite sets
of Ky_1513 are {161,17y,...,m;} and {12,22,...,132}, the partite sets
of Kp_15n—13 are {161,171,...,my} and {142,153,...,n2}. Now K713
has an unrestricted hexagon covering with padding P; where |E(P;)| = 11
by Case 1, Kg 13 has an unrestricted covering with a padding P, where
|E(P;)| = 4 by Lemma 4.2 Case 9, Kin—15,13 has an unrestricted covering
with a padding Ps; where |E(P)| = (m — 15)/2, Ki5n-13 has an unre-
stricted covering with a padding Py where |E(Py)| = (n—13)/2, and there
is a hexagon decomposition of K,_15nr—13 by Theorem 2.2. Taking these
coverings and the decomposition yields an unrestricted covering of Ky, n
with padding P = P; U P,U P; U Py where |[E(P)| = (m +n)/2 + 1.

Case 3. Suppose m = 5 (mod 12) and n = 7 (mod 12). We have
Kmn = Km-4,n U K4, where that partite sets of Km—4,n are Vi \ {(m —
3)1, (m —2)1, (m —1)1,m1} and V,,, and the partite sets of K4 n, are {{m —
3)1, (m — 2)1,(m — 1)1,m} and V,,. Now K4 has an unrestricted
hexagon covering with padding P; where |E(P1)| = (m +n —2)/2 by Case
1, and Ky, has an unrestricted hexagon covering with padding P» where
|E(Ps)| = 2 by Lemma 4.4 Case 5. Taking these two coverings together
gives a covering of Ko, , with padding P where |E(P)| = (m +n)/2 + 1.
Case 4. Suppose m = 7 (mod 12) and n = 1 (mod 12), n > 13.
We have Kmpn = Km—4n U K4n where that partite sets of Ky,—4,n are
Vi \{(m=3)1, (m—2)1, (m—1)1,m; } and V;,, and the partite sets of Ky, are
{(m—3)1,(m—2)1,(m—1)1,m;} and V,,. Now K;_4,n has an unrestricted
hexagon covering with padding P; where |E(P1)| = (m+n —2)/2 by Case
2, and Ky, has an unrestricted hexagon covering with padding P, where
|E(P;)| = 2 by Lemma 4.4 Case 5. Taking these two coverings together
gives a covering of K, ,, with padding P where |E(P)| = (m 4 n)/2 +1.
Case 5. Suppose m = 9 (mod 12) and n = 7 (mod 12). We have
Kmn = Km—8n U Kg,n Where that partite sets of Kp—g n are Vi, \ {(m —
7)1,(m — 6)1,...,m1} and V;, and the partite sets of Kgn are {(m —
7)1,(m —6)1,...,m1} and V;,. Now Kp,_gn has an unrestricted hexagon
covering with padding Py where |E(P;)| = (m+n—6)/2 by Case 1, and Kz »
has an unrestricted hexagon covering with padding P, where |E(P)| = 4
by Lemma 4.4 Case 9. Taking these two coverings together gives a covering
of K n with padding P where |E(P)| = (m +n)/2 + 1.

Case 6. Suppose m = 11 (mod 12) and n = 1 (mod 12). We have
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Kmn = Km—8n U Ksrn where that partite sets of Kp—g,n are Vi, \ {(m —
1, (m — 6)1,...,m1} and V,, and the partite sets of Ks,, are {(m —
7)1, (m — 6)1,...,m1} and V. Now Kp,_s,n has an unrestricted hexagon
covering with padding P; where |E(P;)| = (m+n—6)/2 by Case 2, and Kg
has an unrestricted hexagon covering with padding P, where |E(P,)| = 4
by Lemma 4.4 Case 9. Taking these two coverings together gives a covering
of Ky n with padding P where |E(P)| = (m +n)/2+ 1.

For the remaining cases, Kmn = Knn U Km-nn where the partite
sets of Knn are {11,21,...,m1} and V,, and the partite sets of Km_n,»
are {(n+ 1)1, (n +2)1,...,m1} and V,,. There exists a restricted hexagon
covering of K, with padding P; and an unrestricted hexagon covering
of Ky—nn with padding Py, by previous results. These allow us to cover
K with padding P = Py U P, which satisfies the required conditions.
We present the results in a table which covers these 30 cases.

m n m-—n [E(P1)] | Lemma/ |E(Pa)| Lemma/
(mod 12) | (mod 12) | (mod 12) Case Case
1 1 0 n+ 4 3.4/1 (m—n)/2 4.471
1 3 10 n 3.4/5 (m—n)/2+1 4.4/13
1 5 8 n 3.3 (m—n)/2+4 4.4711
1 9 4 n 3.4/5 (m~—n)/2+4 4.4/6
1 11 2 n 3.3 (m—n)/2+1 4.4]4
3 3 0 n 3.4/5 (m—mn)/2 42/1
3 5 10 n 3.3 (m—n)/2+5 4.4/14
3 7 8 n+4 3.4/1 (m —n)/2 4.4/9
3 9 6 n 3.4/5 (m—-n)/2+3 44/8
3 11 4 n 3.3 (m—n)/2+2 4.4/7
5 1 4 n+4 3.4/1 (m—n)/2 4475
5 3 2 n 3.4/5 (m—-n)/2+5 44/3
5 5 0 n 3.3 (m —n)/2 4.4]1
5 9 8 n 3.4/5 (m—-n)/2 +2 4.4710
5 11 6 n 3.3 (m—-n)/2+3 4.4/8
7 3 4 n 3.4/5 (m—mn)/2+4 4.4/6
7 5 2 n 3.3 (m—-n)/24+1 4.4/3
7 7 0 n+4 3.4/1 (m—n)/2 4.4/1
7 9 10 n 3.4/5 (m—-n)/2+1 4.4/13
7 11 8 n 3.3 (m—=n)/2+4 4.4/11
9 1 0 n+4 34/1 (m —n)/2 4.4/9
9 3 10 n 3.4/6 (m —n)/2+3 4.4/8
9 5 8 n 3.3 (m—mn)/2+2 4.4/7
9 9 4 n 3.4/5 (m—n)/2 4.4/1
9 11 2 n 3.3 (m—-mn)/245 4.4/14
11 3 8 n 3.4/5 (m—n)/2+1 4.4/10
11 5 6 n 3.3 (m—n)/2+4 4.4/8
11 7 4 n+4 3.4/1 (m—n)/2 4.4/5
11 9 2 n 3.4/5 (m—mn)/2+4 4.4/3
11 11 0 n 3.3 (m—-—n)/2+1 4.4/1

The results of this section combine to give us the following.
Theorem 4.1 A minimal unrestricted hexagon covering of K, n with pad-

ding P satisfies:
(1) when m =1 and n > 4, |E(P)| = 2n for n even and |E(P)| = 2n+ 3
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for n odd,

(2) when m =2 and n > 4, |E(P)| =n forn even and |E(P)| =n+3 for
n odd,

(3) when m = 0 (mod 2), m > 4, and n = 1 (mod 2), n > 3, |E(P)| =
m/2+ k where k is the smallest nonnegative integer such that |E(Kmn)| +
(m/2+ k) =0 (mod 6),

(4) whenm =n =1 (mod 2) andm > n > 3, |E(P)| = (m+n)/2+k where
k is the smallest nonnegative integer such that | E(Kp, n)|+(m+n)/2+k =0

(mod 6),

(5) when m =0 (mod 6) and n =0 (mod 2), n > 4, |[E(L)| =0,

(6) whenm =n =2 (mod 6), n > 4, or m =n = 4 (mod 6), m > 4, then

|E(P)| =2, and

(7) when m =2 (mod 6), m > 8, and n = 4 (mod 6), then |E(P)| = 4.
Notice that an unrestricted covering exists when m = 1 and when m =

2, even though a restricted covering does not exist in these cases. In the

cases when (a) m = 0 (mod 2), m > 4, and n = 1 (mod 2), n > 3, and

(b)y m=n=1 (mod 2) and m > n > 3, both restricted and unrestricted

coverings exist, but the unrestricted covering yields a smaller padding by a

factor of 2 (roughly).
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