

Decompositions of the Complete Mixed Graph into Mixed Stars

Chance Culver and Robert Gardner*

East Tennessee State University, Department of mathematics and statistics, Johnson City, TN 37614 U.S.A. *Corresponding author email id: gardnerr@etsu.edu Date of publication (dd/mm/yyyy): 20/05/2020

Abstract – In the widely studied area of graph and digraph decompositions, little attention has been given to mixed graph decompositions. In this paper, necessary and sufficient conditions are given for the isomorphic decomposition of the complete mixed graph into each of the four partial orientations of a 6-star which has two edges and four arcs, following up on a similar result for partial orientations of a 3-star given by Beeler and Meadows (in "Decompositions of mixed graphs using partial orientations of P_4 and S_3 ," International Journal of Pure and Applied Mathematics, Volume 56, Issue 1, pp. 63-67, 2009). Some results concerning decompositions of the complete graph into partial orientations of other stars are also given.

Keywords - Graph Decompositions, Mixed Graphs, Orientations of Stars.

I. INTRODUCTION

A *g*-decomposition of graph G is a set of subgraphs of G, $\gamma = \{g_1, g_2, ..., g_n\}$, where $g_i \cong g$ for $i \in \{1, 2, ..., n\}$, $E(g_i) \cap E(g_j) = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^n E(g_i) = E(G)$. The g_i are called *blocks* of the decomposition. When G is a complete graph, the g-decomposition is often called a graph design. The literature on graph designs and graph decompositions is extensive [4, 10]. However, decompositions of mixed graphs seem little-studied.

A mixed graph consists of a set V of vertices, a set E of edges (which correspond to unordered pairs of distinct vertices) and a set A of arcs (which correspond to ordered pairs of distinct vertices). Mixed graphs often arise in the study of network flows (see Chapter 9 of [1]). An application concerning mixed graph decompositions can be found in [9]. The *complete mixed graph* of order v, M_v , has a vertex set of cardinality v, edge set $E = \{uw \mid u \in V, w \in V, and u \neq w\}$, and arc set $A = \{(u, w) \mid u \in V, w \in V, and u \neq w\}$. So between any two distinct vertices of M_{ν} are one edge and two arcs (the arcsare converses of each other). Therefore M_{ν} has twice as many arcs as edges and a necessary condition for the existence of an m-decomposition of M_v is that m has twice as many arcs and edges. Decompositions of M_v were first addressed in the setting of mixed triple systems, where necessary and sufficient conditions were given for decompositions of M_v into each of the three partial orientations of a 3-cycle with two arcs and one edge [7]. Decompositions of M_v into partial orientations of 3-paths and 3-stars (each with two arcs and one edge) were explored in [2]; in fact, necessary and sufficient conditions were given for such decompositions of the λ -fold complete graph, λM_{ν} . More recently, the decomposition of certain mixed graphs was applied to the conjecture of Favaron et al. [6] concerning the 2k + 1-path decomposition of a 2k + 1-regular graph with a perfect matching [5]. The purpose of this paper is to address decompositions of M_v into copies of partial orientations of the 6-star which have two edges and four arcs.

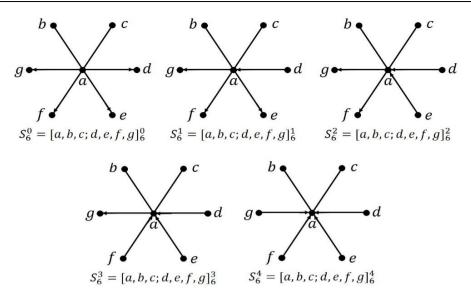


Fig. 1. The five partial orientations of the 6-star which have two edges and four arcs.

II. RESULTS FOR PARTIAL ORIENTATIONS OF 6-STARS

We now consider partial orientations of a 6-star which has two edges and four arcs. In Figure 1 we give drawings of these mixed stars and introduce notation for the representation of each of the five such mixed stars. Notice that we denote the partial orientation of the 6-star with two edges, four arcs, and with the center of the star having in-degree *i* and out-degree 4 - i as S_6^i . We now give necessary and sufficient conditions for the existence of an S_6^i - decomposition of M_v for each of i = 1, 2, 3, 4. In each case, we give a direct construction to establish sufficiency.

1. Theorem

A S_6^0 -decomposition of M_v exists if and only if $v \equiv 1 \pmod{4}$, $v \ge 9$.

Proof.

Every vertex of S_6^0 is of out-degree 4 and every vertex of M_v is of out-degree v - 1, so $v \equiv 1 \pmod{4}$ is a necessary condition for such a decomposition. Since S_6^0 has 7 vertices, then $v \ge 9$ is also necessary.

For sufficiency, let v = 4k + 1 where $k \ge 2$ and let the vertex set of M_v be $\{0, 1, 2, ..., 4k\}$. Consider the set $B = \{[0, 4k - 1, 4k; 1, 2, 3, 4]_6^0\} \cup \{[0, 3 + 2j, 4 + 2j; 5 + 4j; 6 + 4j; 7 + 4j; 8 + 4j]_6^0| j = 0, 1, 2, ..., k - 2\}.$

The copies of S_6^0 in set *B*, along with their images under the powers of the permutation (0, 1, 2, ..., 4k) form a S_6^0 -decomposition of M_v , as claimed.

Notice that the converse of S_6^0 (that is, the mixed graph that results by reversing the direction of each arc) is S_6^4 , and M_v is self-converse, so theorem 1 also gives the necessary and sufficient conditions for a S_6^4 -decomposition of M_v .

1. Lemma

For $i \in \{1, 2, 3\}$, aS_6^i -decomposition of M_v does not exist when $v \equiv 2$ or 3 (mod 4).

Proof.

With $v \equiv 2$ or 3 (mod 4), the number of arcs in M_v is $v(v - 1) \equiv 2 \pmod{4}$, but since S_6^i has 4 arcs, then a necessary condition for the existence of a S_6^i -decomposition of M_v is that the number of arcs in M_v is 0 (mod 4). The claim follows.

2. Lemma

For $i \in \{1,2,3\}$, a S_6^i -decomposition of M_8 does not exist.

Proof.

First, M_8 has 28 edges and S_6^i has 2 edges, so aS_6^i -decomposition of M_8 requires 14 copies of S_6^i . Now two vertices a and b are ends of an edge of S_6^i if and only if either a or b is the center of S_6^i . So for the edge ab, the arc (a, b), and the arc (b, a) to appear in a S_6^i -decomposition of M_8 we need the number of times a is the center in some S_6^i plus the number of times b is the center in some S_6^i to be at least three. But M_8 has 8 vertices and aS_6^i - decomposition of M_8 requires 14 copies of S_6^i , so at least two vertices, say vertices c and d, are the center of at most one copy of S_6^i and then the copies of S_6^i cannot include each of edge cd, arc (c, d), and arc (d, c). That is, aS_6^i - decomposition of M_8 does not exist.

2. Theorem

A S_6^1 -decomposition of M_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \ge 9$.

Proof.

The necessary condition follows from Lemmas 1 and 2.

For sufficiency, first let $v \equiv 0 \pmod{4}$, say v = 4k where $k \ge 3$ and let the vertex set of M_v be $\{0, 1, 2, ..., 4k - 2, \infty\}$. Consider the set $B = \{[0, \infty, 1; 4k - 2, 2, 3, 4]_6^1, [0, 2, 3; \infty, 5, 6, 7]_6^1, [0, 4, 5; 1, 8, 9, \infty]_6^1, \} \cup \{[0, 6+j, 2k-1-j; 2+4j; 10+4j; 11+4j; 12+4k]_6^0| j = 0, 1, 2, ..., k-4\}.$

The copies of S_6^1 in set *B*, along with their images under the powers of the permutation $(\infty)(0, 1, 2, ..., 4k - 2)$, form a S_6^1 -decomposition of M_v , as claimed.

Next let $v \equiv 1 \pmod{4}$, say v = 4k + 1 where $k \ge 2$ and let the vertex set of M_v be $\{0, 1, 2, ..., 4k\}$. Consider the set $B = \{[0, 1, 4k - 1; 4k, 2, 3, 4]_6^1\} \cup \{[0, 3 + 2j, 4 + 2j; 1 + j, 5 + 3j, 6 + 3j, 7 + 3j]_6^1 | j = 0, 1, 2, ..., k - 2\}.$

The copies of S_6^1 in set *B*, along with their images under the powers of the permutation (0, 1, 2, ..., 4k), form a S_6^1 - decomposition of M_v , as claimed.

The converse of S_6^1 is S_6^3 , and M_v is self-converse, so theorem 2 also gives the necessary and sufficient conditions for a S_6^3 -decomposition of M_v .

3. Theorem

A S_6^2 -decomposition of M_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \ge 9$.

Proof.

The necessary condition follows from Lemmas 1 and 2.

For sufficiency, first let $v \equiv 0 \pmod{4}$, say v = 4k where $k \ge 3$ and let the vertex set of M_v be $\{0, 1, 2, ..., 4k - 2, \infty\}$. Consider the set $B = \{[0, \infty, 1; 2, 4k - 2, 3, 4]_6^2, [0, 2, 3; \infty, 1, 5, 6]_6^2, [0, 4, 5; 4k - 8, 4k - 9, \infty, 2]_6^2, \} \cup \{[0, 6 + 2j, 7 + 2j; 3 + 2j, 4 + 2j, 9 + 2j, 10 + 2j]_6^2\} | j = 0, 1, 2, ..., k - 4\}.$

The copies of S_6^2 in set *B*, along with their images under the powers of the permutation $(\infty)(0, 1, 2, ..., 4k - 2)$, form a S_6^2 -decomposition of M_v , as claimed.

Next let $v \equiv 1 \pmod{4}$, say v = 4k + 1 where $k \ge 2$ and let the vertex set of M_v be $\{0, 1, 2, ..., 4k\}$. Consider the set $B = \{[0, 4k - 1, 4k; 2, 3, 1, 4]_6^2\} \cup \{[0, 3 + 2j, 4 + 2j; 6 + 4j, 7 + 4j, 5 + 4j, 8 + 4j]_6^2 | j = 0, 1, 2, ..., k - 2\}.$

The copies of S_6^2 in set *B*, along with their images under the powers of the permutation (0, 1, 2, ..., 4k), form a S_6^2 -decomposition of M_v , as claimed.

The results of the section combine to give us the necessary and sufficient conditions for an S_6^i -decomposition of M_v for i = 0, 1, 2, 3, 4, as follows.

4. Theorem

A S_6^i -decomposition of M_v exists if and only if $v \ge 9$ and

- 1. If $i \in \{0, 4\}$ then $v \equiv 1 \pmod{4}$, and
- 2. If $i \in \{1, 2, 3\}$ then $v \equiv 0$ or 1 (mod 4).

III. SOME RESULTS FOR PARTIAL ORIENTATIONS OF GENERAL STARS

We now give two results concerning decompositions of M_v involving partial orientations of a star S_{3k} (where $k \in \mathbb{N}$), where it is necessary that the partial orientation has k edges and 2k arcs. We denote by $S_{3k}^i = [v_0, v_1, v_2, ..., v_k; v_{k+1}, v_{k+2}, ..., v_{3k}]_{3k}^i$ the orientation of S_{3k} with edge set $\{v_0v_1, v_0v_2, ..., v_0v_k\}$ and arc set $\{(v_{k+1}, v_0), (v_{k+2}, v_0), ..., (v_{k+i}, v_0), (v_0, v_{k+1+i}), (v_0, v_{k+2+i}), ..., (v_0, v_{3k})\}$. We give direct constructions and, as in the previous section, we take advantage of a cyclic permutation. We do not give necessary and sufficient conditions, but instead show sufficiency for some specific values of v.

5. Theorem

A S_{3k}^i -decomposition of M_v exists for v = 4k + 1 and for each i = 0, 1, 2, ..., 2k.

Proof.

Let the vertex set of M_v be $\{0, 1, 2, ..., 4k\}$. Consider the set $B = \{[0, 4k, 4k - 1, ..., 3k + 1; 1, 2, 3, ..., 2k]_{3k}^{i}, [0, 2k, 2k - 1, ..., k + 1; 4k, 4k - 1, ..., 2k + 1]_{3k}^{i}\}$.

The copies of S_{3k}^i in set *B*, along with their images under the powers of the permutation (0, 1, 2, ..., 4k), form a S_{3k}^i -decomposition of M_v , as claimed.

6. Theorem

A S_{6k+3}^i -decomposition of M_v exists for v = 12k + 7 and for each $i = 0, 2, 4, \dots, 4k + 2$.

Proof.

Let the vertex set of M_v be {0, 1, 2, ..., 12k + 6}. Consider the set $B = \{[0, 12k + 6, 12k + 5, ..., 10k + 6; 1, 2, ..., 4k + 2]_{6k+3}^i, [0, 8k + 4, 8k + 3, ..., 6k + 4; 12k + 6, 12k + 5, ..., 8k + 5]_{6k+3}^i, [0, 10k + 5, 10k + 4, ..., 8k + 5; 8k + 4, 8k + 3, ..., 8k + 5 - i/2, 4k + 3, 4k + 4, ..., 8k + 4 - i/2]_{6k+3}^i\}.$

The copies of S_{3k}^i in set *B*, along with their images under the powers of the permutation (0, 1, 2, ..., 12k + 6), form a S_{6k+3}^i -decomposition of M_v where i = 0, 2, 4, ..., 4k + 2, as claimed.

We see from these two results that there is much potential for additional research concerning the existence of S_{3k}^i -decompositions of M_v .

IV. CONCLUSION

Theorem 4 gives necessary and sufficient conditions for the decomposition of the complete mixed graph into copies of S_6^i for i = 0, 1, 2, 3, 4. This is a second step (following the first step taken by Beeler and Meadows for partial orientations of an S_3 in [2]) in the general problem of the existence of S_{3k}^i - decompositions of M_v . Cyclic permutations were used in the constructions of Theorems 1, 2, and 3 in the cases when v was odd. The constructions for v even employed a permutation with one fixed point and cycle of length v - 1; such a permutation is called rotational or 1-rotational [11]. Star decompositions of the complete graph which admit cyclic or rotational automorphisms are explored in [8], and rotational mixed triple systems (as well as mixed triple systems admitting bicyclic and reverse automorphisms) are addressed in [3]. Future research, in addition to the existence problem, could focus on S_{3k}^i -decompositions of M_v which admit cyclic, rotational, or other types of automorphisms.

REFERENCES

- [1] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, *Linear Programming and Network Flows*, 4th Edition, Hoboken, NJ: John Wiley & Sons, 2010.
- R.A. Beeler and A.M. Meadows, "Decompositions of mixed graphs using partial orientations of P₄ and S₃,"*International Journal of pure and applied mathematics*, Volume 56, Issue 1, pp. 63-67, 2009.
- [3] B. Bobga and R. Gardner, "Bicyclic, Rotational, and reverse mixed triple systems," *Bulletin of the Institute of Combinatorics and its Applications*, Volume 48, pp. 45-52, 2006.
- [4] J. Bosák, Decompositions of graphs, Mathematics and its applications #47, Boston: Kluwer academic publishers, 1990.
- [5] F. Botler, G.O. Mota, Y. Wakabayashi, "Decompositions of Triangle-Free 5-Regular graphs into paths of length five," *Discrete Mathematics*, Volume 338, Issue 11, pp. 1845-1855, 2015.
- [6] O. Favaron, F. Genest, M. Kouider, "Regular path decompositions of odd regular graphs," *Journal of Graph Theory*, Volume 63, pp. 114-128, 2010.
- [7] R. Gardner, "Triple systems from mixed graphs," *Bulletin of the Institute of Combinatorics and its Applications*, Volume 27, pp. 95-100, 1999.
- [8] R. Gardner, "Cyclic and rotational decompositions of K_n into Stars," Ars combinatoria, Volume 61, pp. 313-318, 2001.
- [9] K. Kruger, N.V. Shakhlevich, Y.N. Sotskov, and F. Werner, "A heuristic decomposition algorithm for scheduling problems on mixed graphs," *Journal of the operational research society*, Volume 46, pp. 1481-1497, 1995.
- [10] C. Lindner and C. Rodger, *Design theory*, 2nd Edition, Baton Rouge: CRC Press, 2008.
- [11] K.T. Phelps and A. Rosa, "Steiner triple systems with rotational automorphisms," Discrete mathematics, Volume 33, pp. 57-66, 1981.

AUTHOR'S PROFILE

First Author

Chance Culver, was a graduate student in the master's program in the department of mathematics and statistics at East Tennessee State University (U.S.A.). He graduated spring 2020. The content of his master's thesis is summarized in this IJISM paper.

Second Author

Robert B. Gardner, Professor in the department of mathematics and statistics at East Tennessee State University (U.S.A.). He teaches a large variety of graduate level classes at ETSU. His main areas of research are classical complex analysis and graph decompositions.