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Abstract

A Steiner triple system admitting an automorphism whose disjoint ¢yclic decomposition consists of
two cycles is said to be bicyclic. Necessary and sufficient conditions are given for the existence
of bicyclic Steiner triple systems.

1. Introduction

A Steiner triple system of order v, denoted STS or STS(v), is a v-element set X of
points, together with a set §, of unordered triples of elements of X, called blocks, such
that any two points of X are together in exactly one block of 8. It is well known that
a STS(v) exists if and only if v=1 or 3(modé6). An automorphism of a STS is
a permutation 7 of X which fixes . A permutation n of a v-element set is said to be of
type []=[p;, P2, ..., p,] if the disjoint cyclic decomposition of = contains p; cycles of
length i. The orbit of a block under an automorphism, r, is the image of the block
under the powers of n. A set of blocks B is said to be a set of base blocks for a STS
under the permutation = if the orbits of the blocks of B produce the STS and exactly
one block of B occurs in each orbit.

Several types of automorphisms have been explored in connection with the ques-
tion ‘for which orders v does there exist a STS(v) admitting an automorphism of the
given type? A cyclic STS(v) is one admitting an automorphism of type [0, 0,...,1]
and exists if and only if v=1 or 3(mod 6) and v #9 [5, 6,7, 10]. A reverse STS(v) admits
an automorphism of type [1, (v—1)/2, 0,...,0]. Reverse STS(v)s exist if and only if
v=1,3,9, or 19(mod 24) [3,9,11, 12}, A k-rotational STS(v} admits an automorphism
of type [1, 0, 0,...,0, k, 0,...,0]. k-rotational STSs have been addressed for
k=1,2,3,4, and 6 [2,8].
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In this paper, we explore STS(v)s admitting an automorphism of type []=
[0,0,...,0, pn,» 0, ..., 0, px,, 0,...,0] where py, =py,=1, Ny<N, and N, +N;=w.
That is, the disjoint cyclic decomposition of 7 consists of one cycle of length N,
and another (larger) cycle of length N,. We call such systems bicyclic Steiner triple

systems.

2. Previous results and necessary conditions

A bicyclic STS(v) with the smaller cycle of length 1 is also a 1-rotational STS(v) and
exists if and only if =23 or 9(mod 24) [8]. So, henceforth, we will assume N; > 1. If
N, =3, then a bicyclic STS(v) admitting an automorphism of type [0,0,1,0,...,0,1,0,
0, 0] exists if and only if =3 (mod 6) [1]. If Ny =7, then a bicyclic STS(v) admitting
the relevant type of automorphism exists if and only if v=21(mod 42) [4]. Some
necessary conditions, in particular the following lemmas, for the existence of bicyclic
STS(v)s were given in [4].

Lemma 2.1. A bicyclic STS(v) admitting the above automorphism m satisfies the
condition N, =1 or 3(mod6), N, #9, and N, |N,.

Lemma 2.2. A bicyclic STS(v) admitting the above automorphism n with Ny =1 (mod 6)
satisfies the condition, N,=2(mod 6). If N;=3(mod6) then N,=0(mod6) is
necessary.

We will show that these necessary conditions are sufficient for N, > 1.

In our constructions, we will require the use of two structures. An (4, n)-system is
a collection of ordered pairs (a,, b,) for r=1,2, ..., n that partition the set {1, 2, ..., 2n}
with the property that b,=a,+rforr=1,2,...,n An (A, n)-system exists if and only if
n=0 or 1 (mod4) [10]. A (B,n)-system is a collection of ordered pairs (a,, b,) for
r=1,2,...,n that partition the set {1,2,...,2n—1,2n+1} with the property that
b,=a,+r for r=1,2,...,n These systems exist if and only if n=2 or 3 (mod 4) [6].

3, Constructions and sufficient conditions

In this section, we present several constructions to show that the necessary condi-
tions of Lemmas 2.1 and 2.2 are sufficient. We will construct bicyclic STS(v)s on the set
X=Zy x{1}UZy, x{2} with the automorphism being n=(0,,t;,...,(N;—1);)
(02, 15, ...,{N,—1);). Since N;|N,, we will let N;=kN, and express base blocks in
terms of k and N,. :

Lemma 3.1. A bicyclic STS(v) on the set X admitting the automorphism n exists if:
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N;=1(mod 24) and k=2 (mod 24), or
Ny=1(mod 24) and k=8 (mod 24), or
N, =13 (mod 24) and k=14 (mod 24), or

N, =13 (mod 24) and k=20 (mod 24),

Proof. Under any one of these conditions,

N2 Nzl 26 or 3(mod 12)

M > 5

and M =0 or 1 (mod 4). Consider the following coilection of blocks:

N, —1 (2k+1)N, -5 _ N5
04, 3N1+1+r , Q’f_t"i)ﬂl—_"_, forr=0,1,...,N1_5,
4 3 4 3 4

o, (3N:~3 (k+3)N{—3
1 4 2, 4 2:

and (0,,75,(b,+M),) for r=1, 2,...,M, where the g, and b, are from an
(A4,M )-system. 7

This coliection of blocks along with the base blocks for a cyclic STS(N;) on
Zy, x {1} under the automorphism (04, 14, ...,(N{ ~1),;} form a complete set of base
blocks for a bicyclic STS(v) with v=N,;+N,. [

Lemma 3.2. A bicyclic STS(v) on the set X admitting the automorphism © exists if:
Ni=7(mod 24) and k=2 (mod 24), or
N, =7 (mod 24) and k=8 (mod 24), or
N,=19 (mod 24) and k=14 (mod 24}, or

N, =19 (mod 24) and k=20 (mod 24).

Proof. Under é.ny one of these conditions,

3M=%-——A—r—1{—1-—150 or 3 (mod 12)
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and M =0 or 1 (mod 4). Consider the following collection of blocks:

) . _ —
01’ N1+1+J" , W—r for r=0,1:-"1u’
4 2 4 2 4

f0.(B= ), (B424=5) Y e, B
_ 4 2 4 2 4

0 N,-3 (2k+1)N, -3
1 4 2: 4 , s

and (0,,r,,(b,+ M),) for r=1,2,...,M, where the a, and b, are from an (A,M)-
system.

This collection of blocks along with the base blocks for a cyclic STS(N;) on
Zy, x {1} under the automorphism (0,14, ...,(N; —1),) form a complete set of base
blocks for a bicyclic STS(v) with v=N,;+N,. [

Lemma 3.3. A4 bicyclic STS(v) on the set X admitting the automorphism  exists if.
N;=1(mod 24) and k=14 (mod 24), or
Ni=1(mod 24) and k=20 (mod 24), or
N,=13(mod 24) and k=2 (mod 24}, or
' ) Ny =13 (mod 24) and k=8 (mod 24).
Proof. Under any one of these conditions,
_N» N1

~————1=0 or 3 (mod 12)

IM 7 5

and M =2 or 3 (mod 4). Consider the following collection of blocks:

N{—1 (2k+1)N; -5 B N,-5
(01,( 4 +r)2,( y r , forr=0,1,..., YR
0y, 3NI-H+1" , W-r forr=0,1,...,Nl_9,

4 2 4 2 4

(o (55), () p () (597))

and (0,,r,,(b, + M),) for r=1,2, ..., M, where the a, and b, are from a (B,M )-system.

This coliection of blocks along with the base blocks for a cyclic STS(N;) on
Zy, x {1} under the automorphism (04, 1,,...,(N;—1);) form a complete set of base
blocks for a bicyclic STS(v) with v=N;+N,. []




Bicyelic Steiner triple systems 39

Lemma 3.4. A bicyclic STS(v) on the set X admitting the automorphism = exists if:
Ny =7{mod 24) and k=14 (mod 24), or
N =7 (mod 24) and k=20 (mod 24), or
N1=19 (mod 24) and k=2 (mod 24), or
N1 =19 (mod 24) and k=8 (mod 24).

Proof. Under any one of these conditions,

—1
3M=§£3—-Aﬁru1:=-o or 3 (mod 12)

and M =2 or 3 (mod 4). Consider the following collection of blocks:

1 - —
(01’(N1+1+r) ,(M_r) ) for r_—-_O’l,___’N_l_4..z,
2 2

4 4
0., 3N1—1+r , w——r for r=0,1,...,&:—z,
4 2 4 2 4

(oo (52 (B L (o (5, (520,

and (03,73, (b,+M),}forr=1,2, ..., M, where the a, and b, are from a (B,M)-system.

This collection of blocks along with the base blocks for a cyclic STS(N;) on
Zy, x {1} under the automorphism (0,, 1,, ... (N —1),) form a complete set of base
blocks for a bicyclic STS(v) with =N, +N 2. O

Lemmas 3.1-3.4 combine to give us the following theoremn.
Theorem 3.5. A bicyclic STS(v) where v=N, +N 2 and Ny =kN, admitting an automor-
phism whose disjoint cyclic decomposition is a cycle of length Ny and a cycle of length N,
exists if Ny=1(mod 6), N, > 1, and k=2 (mod 6).

We now turn our attention to the case when N 1 =3 (mod 6).

Lemma 3.6. A bicyclic STS(v) on the set X admitting the automorphism © exists if
N(=3(mod 12), N; >3, and k=0 (mod 12).

Proof, Consider the following collection of base blocks:

kN, —24 KN, —3 ~ kN, —36
(02,(—"6—-———'21')2,( 3 —r)z) forr=0,1,..., TR
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kN,—18 kN, -2
(02’( 6 zr)z’(' 2 r)z)

Ny—9 Ny—-3  kN,—-24
for r= 6 3 6 $reey 12 L)

(0 kN, +6 (kN1+3 )(0 (kN (g_ii&))

2’(6)2’ 3)2 P\ 03 L)
N;-3 (k+1)N,—21

(o (7o) (252,

N, —

1
for r=0,1, ..., 2 (omit if N;=15),

S5N,—63 (4k+5)N; -39 N,—27
- —_— f =
(01,( 1 r)z,( B r)z) or r=0,1, ..., 7

(omit if N, =15),

IN,;—351 (6k+7)N,—-69 _ Ny{—15
(01,( T r)z,( P r2 for r=0,1,..., TER

(3N, —29 (4k+9N, =51 | ~ N, —27
(01,( 7 ?‘)2,( P i"2 for r=0,1, ..., 5

{omit if N, =15),

(01,(111\71-47 r) ,((6k+11)N1—81_r)) forrzO,l,...,N1;27
2 2

12 12
(omit if Ny=15),

; N1—15 (3k+2)N,—18 (0 (3N1—21
1» 12 5 ’ 1 4 2, .

(4k+11 k+6)N,—36
+ )Nl )2) (01)(N1-5)25 (( hJ )gl )2)s

-
o252 (225=2))
<

01’(N1'_1)2!((k+6)6 18) ),(OIS(N1_4)2,(QC—?|:-&—:£—12) )a
2 2

and (01 (5N16—33)2, ((3k+ 5)6Nl —-—33)2).
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This collection of blocks along with the base blocks for a cyclic STS(N;)onZy x{1}
under the automorphism (04, 14, ...,(N,—1),) form a complete set of base blocks for

a bicyclic STS(v) with v=N,+N,. O

Lemma 3.7. A bicyclic STS(v) on the set X admitting the automorphism n exists if
N,;=3(mod 12), N, >3, and k=6 (mod 12),

Proof, Consider the following collection of base blocks:

(o (), (557))

N,—9 N -3 kN, —30
6 > 6 ' 12 7

kN, —24 kN, -3 B kN, —-30
(02,( ; ~2r )2 ( 3 r)z) for r=0,1, ..., T
kNl kN1+3 kN, 2kN,

02’ 029 3 ’ 3 s
2 2

fo (2 r),(__wl—ts ).) ercn, Mt

2 6 3 6

(01,<5N1——51 r) , (w+r> ) for r-—-O,l,...,Nl_ls,

2 2 2 12

0,, 7N1 +r ], Mﬁ—r forr=0,1,...,N1_27r
2 12 2 12

~ (omit if N;=15),

N - )N, — 17 N, 15
0y, 3N —13 +r ), Qﬁ.)_l____r for r=0,1,...,— »
) 4 2 12

(01’(111\11 r) ’((4k+11)kN1—33+r) )
2 12 2

Ny—
12

(ol,(Nl—l)z,(@—Q%ﬁ) ),(01,(N1-4)2, ((-’ii—ﬁ-)—?‘——_l%) )
2 2
(0 11N1—'45) ((5k+11)N1~—39) (0 (11N1~57)

1, 12 2’ 12 5 ] 1y '_"_1—2—_ 2s
(2k+T)N,—33 Ny =5\ [(k+1)N,=5
(BI2), ) (0(%52), (H52=2) ).

for r=

for r=0,1, ..., U (omit if Ny=15),
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This collection of blocks along with the base blocks for a cyclic STS (N))onZy x {1}
under the automorphism (0,, 1,, ...,(N; — 1)} form a complete set of base blocks for
a bicyclic STS(v) with v=N;+N,. O

Lemma 3.8. A bicyclic STS(v) on the set X admitting the automorphism n exists if
Ny=9(mod 12), N;>9, and k=0 (mod 12).

Proof. Consider the following collection of base blocks:

kN, +18 kN; -3 _ kN, —36
(02,( 3 +r)2,( 3 -r)z) for r=0,1,..., o

KN, +6 ) (kNI—Z ) )
0 3 +Fr ’ —r
(2 ( 3 2 2 2

N—9 Ny—3  N,—24
for r=
OF r=—p—, ==,

oomn (252)) (03, (3))

o (e, ) (EEDN=Z Y om0, M2
6 2 6. 2 6

— - N—
o (=T WH for r=0,1,..., =21
. 12 ) 12

N,-21

forr=0,1,...,

12’

(2 +
(o,, 3N1—19 (2k+3)N1—27_r forr=0,1,...,N1_21,
4 2 S ¥

—~ - ~21
o 11N1 87 . @t 1ON, =51 for r=0,1,., M= 2L
12 . 12

0 3N,——23 (2k+5)N1-45 0 (N1—~15 ((3k+2)N1—18)
1 12 2 L] 1s 6 2’ 12 5 ’
11N, —63\ [Qk+11)N,—75 (k+6)N; —18
) ) o )
(01,(N1-—4)2, (&i_"@gﬁ-*—m—lg)z), and (01,(N1“5)2,(&?—)]2'Viq)2).
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This collection of blocks along with the base blocks for a cyclic STS(N,) on Zy x {1}

* under the automorphism (04, 1,, . .-,(N1—1),) form a complete set of base blocks for

a bicyclic STS(v) with v=N, +N2. O

Lemma 3.9. A bicyclic STS(v) on the set X admitting the automorphism w exists if
Ny=9(mod 12), N;>9, and k=6 (mod 12).

Proof. Consider the following collection of base blocks:

kN, —18 kN, —2
(o (5-2) (7))

N ~9 Ny=3  kN,—30
6 H 6 yrrey 12 3

0, kN‘"24-2r , kN1_3—r forr=0,1,...,kN1—30,
2 3 2 12
0 kN1 kN, +3 0 kNl 2kN,
23 3 5 2 3 2’ 3 5 ]
0,, N1—3 , w_r forr:O’I’m’ﬂj’
2 6 2 6

for r=

5N, — (4k+5)N,—21 . N;—33
(Ols( r)z’ ("—T""_‘""'r \ forr—wo,l,..., 12
(omit if N, =21),
TN, — (4k+ TIN; —27 _ N, 21
(01,( r)z’ (—““‘Tz—'-’r-r)z) forr=0,1,..., T

0, 3”‘ (@GNS NN im0, M2
2 4 2 12

0, 11N1 +r), (6k+11)N1-—63_r forr=0,1,...,Nlu33
2 12 2 12

(omit if N, =21),

( (7N1 ) ((6k+7)N1-——51) )( (3N1-11) ((4k+11)N1—51))
01’ s 01’ 3 ]
12 2 2 12 2
(01’ (111\?2—39) , ((5k+11)N1—33) ) (01’ 1)2’((k+6)é\f1—18) )
2 . 2
(01,(N,-4)2, ((k+6)N1—12) ), and (01,(2N1—9) ’((3k+4)N1—18) )
6 2 3 2 6 2
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This collection of blocks along with the base blocks for a cyclic STS(N;)on Zy, x {1}
under the automorphism (0,, 14, ..., (N, —1),) form a complete set of base blocks for

a bicyclic STS(v} with v=N,;+N,. O
Lemmas 3.6-3.9 combine to give us the following theorem.

Theorem 3.10. A bicyclic STS(v) where v=N, + N, and N, =kN, admitting an auto-
morphism whose disjoint cyclic decomposition is a cycle of length Ny and a cycle of length
N, exists if N;=3 (mod 6), N, >9, and k=0 (mod 6).

Combining Theorems 3.5 and 3.10 with the previous mentioned results for Ny =3
and N, =7 gives us the necessary and sufficient conditions.

Theorem 3.11. A bicyclic STS(v) where v=N; + N, admitting an automorphism whose
disjoint cyclic decomposition is a cycle of length Ny, where Ny > 1, and a cycle of length
N, exists if and only if Ny=1 or 3 (mod6), N;#9, Ni|N,, and v=N,+N,=1 or
3 (mod 6). '
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