Near-Rotational Directed Triple Systems

Robert B. Gardner

Department of Mathematics
Louisiana State University in Shreveport
Shreveport, Louisiana 71115

Abstract. A directed triple system of order v, denoted DTS(v), is said to be k-near-rotational if it admits an automorphism consisting of 3 fixed points and k cycles of length $\frac{v-3}{k}$. In this paper, we give necessary and sufficient conditions for the existence of k-near-rotational DTS(v)s.

1. Introduction

A directed triple system of order v, denoted DTS(v), is a v-element set, X, of points, together with a set, β , of ordered triples of elements of X, called blocks, such that any ordered pair of points of X occur in exactly one block of β . The notation [x, y, z] will be used for the block containing the ordered pairs (x, y), (x, z), and (y, z). Hung and Mendelsohn [7] introduced directed triple systems as a generalization of Steiner triple systems and showed that a DTS(v) exists if and only if $v \equiv 0$ or 1 (mod 3). An automorphism of a DTS(v) is a permutation of X which fixes β . A permutation π of a v-element set is said to be of $type[\pi] = [p_1, p_2, \ldots, p_v]$ if the disjoint cyclic decomposition of π contains p_i cycles of length i. The orbit of a block under an automorphism, π , is the image of the block under the powers of π . A set of blocks, B, is said to be a set of base blocks for a DTS(v) under the permutation π if the orbits of the blocks of B produce the DTS(v) and exactly one block of B occurs in each orbit.

Several types of automorphisms have been explored in connection with the problem of determining the values v for which there are certain types of block designs of order v admitting the automorphism. In particular, a cyclic DTS(v) admits an automorphism of type $[0,0,\ldots,1]$ and exists if and only if $v\equiv 1,\,4,\,$ or $(1,0,\ldots,0,k,\ldots,0]$ is said to be k-rotational. A k-rotational DTS(v) exists if and only if $kv\equiv 0\pmod 3$ and $v\equiv 1\pmod k$ [2]. Steiner triple systems, denoted STS, have been extensively explored in connection with this question. For a survey of results, see [4]. A cyclic STS(v) exists if and only if $v\equiv 1$ or $3\pmod 6$, $v\neq 9$ [6, 8, 11]. The case of k-rotational STSs has been solved for k=1,2,3,4, and k=1,2,3,4, and k=1,2,3,4, and k=1,3,4, and k=1,3,4, and k=1,4,4, and k=1

2. Near-Rotational Directed Triple Systems

We have the following necessary conditions:

Lemma 2.1. If a k-near-rotational DTS(v) exists, then $k(v+2) \equiv 0 \pmod{3}$, $v \equiv 3 \pmod{k}$, and $v \equiv 0$ or $1 \pmod{3}$.

Proof: A k-near-rotational DTS(v) on the set $X = \{\infty_1, \infty_2, \infty_3\} \cup \{\mathbf{Z}_N \times \mathbf{Z}_k\}$ where $N = \frac{v-3}{k}$ admitting $\pi = (\infty_1)(\infty_2)(\infty_3)(0_0, 1_0, \dots, (N-1)_0) \cdots (0_{k-1}, 1_{k-1}, \dots, (N-1)_{k-1})$ as an automorphism may contain blocks of the following forms only:

- 1. $[\infty_i, \infty_j, \infty_m]$ where $i \neq j \neq m \neq i$ and $i, j, m \in \{1, 2, 3\}$,
- 2. $[x_i, \infty_m, y_j]$ where $m \in \{1, 2, 3\}$ and $x_i, y_j \in \mathbb{Z}_N \times \mathbb{Z}_k$,
- 3. $[\infty_m, x_i, y_j]$ or $[x_i, y_j, \infty_m]$ where $m \in \{1, 2, 3\}, i \neq j$, and $x_i, y_j \in \mathbb{Z}_N \times \mathbb{Z}_k$, and
- 4. $[x_i, y_j, z_m]$ where $x_i, y_j, z_m \in \mathbb{Z}_N \times \mathbb{Z}_k$.

There are two blocks of the first type, both of which are fixed under π . The orbits of blocks of the second, third and fourth types are of length N. The number of blocks in a DTS(v) is $\frac{v(v-1)}{3}$ so a requirement for a k-near-rotational DTS(v) is $\frac{v(v-1)}{3} - 2 \equiv 0 \pmod{N}$. That is, $k(v+2) \equiv 0 \pmod{3}$. The other two conditions follow trivially.

Lemma 2.1 says that a necessary condition for a k-near-rotational DTS(v) is that

- 1. if $k \equiv 0 \pmod{3}$ then $v \equiv 3 \pmod{k}$, or
- 2. if $k \equiv 1$ or 2 (mod 3) then $v \equiv 1 \pmod{3}$ and $v \equiv 3 \pmod{k}$.

If π is an automorphism on a v-element set and is of type $[3,0,\ldots,0,k,0,\ldots,0]$, then π^n is of type $[3,0,\ldots,0,nk,0,\ldots,0]$ provided $n\mid N$ where $N=\frac{v-3}{k}$. So it would be sufficient to show the existence of k-near-rotational DTS(v)s for

- 1. k = 1 and $v \equiv 1 \pmod{3}$ and
- 2. k = 3 and $v \equiv 0 \pmod{3}$.

In each of the following lemmas, k-near-rotational DTS(v)s will be constructed on the set X with the automorphism π , where X and π are as described in Lemma 2.1.

We address the case for k = 1 in the next two lemmas.

Lemma 2.2. A 1-near-rotational DTS(v) exists for $v \equiv 1 \pmod{6}$.

Proof:

case 1. If v = 7 then consider the blocks:

$$[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1], [0_0, \infty_1, 1_0], [0_0, \infty_2, 2_0], \text{ and } [0_0, \infty_3, 3_0].$$

case 2. If v = 13 then consider the blocks:

$$[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1], [0_0, \infty_1, 3_0], [0_0, \infty_2, 4_0],$$

$$[0_0, \infty_3, 6_0], [0_0, 1_0, 9_0], \text{ and } [0_0, 2_0, 7_0].$$

case 3. If $v \equiv 1 \pmod{6}$, $v \geq 19$, say v = 6t + 1 where $t \geq 3$, then consider the blocks:

$$[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1],$$

$$[0_0, \infty_1, (3t-1)_0], [0_0, \infty_2, (2t-2)_0], [0_0, \infty_3, (2t)_0],$$

$$[0_0, (2r)_0, (3t-1+r)_0]$$
 for $r = 1, 2, ..., t-2$, and

$$[0_0, (2r-1)_0, (5t-3+r)_0]$$
 for $r=1, 2, \ldots, t$.

In each case, these are collections of base blocks for a 1-near-rotational DTS(v) under the automorphism π .

Lemma 2.3. A 1-near-rotational DTS(v) exists for $v \equiv 4 \pmod{6}$, $v \geq 10$.

Proof: Suppose $v \equiv 4 \pmod{6}$, say v = 6t + 4. Consider the blocks:

$$[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1],$$

$$[0_0, \infty_1, (2t)_0], [0_0, \infty_2, (5t)_0], [0_0, \infty_3, (6t)_0],$$

$$[0_0, (2r-1)_0, (3t+r)_0]$$
 for $r=1, 2, \ldots, t$, and

$$[0_0, (2r)_0, (5t+r)_0]$$
 for $r=1, 2, \ldots, t-1$ (omit if $t=1$).

These are the base blocks for a 1-near-rotational DTS(v) under π .

Lemmas 2.1-2.3 combine to give us:

Theorem 2.1. A k-near-rotational DTS(v) where $k \equiv 1$ or 2 (mod 3) exists if and only if $v \equiv 1 \pmod{3}$, $v \geq 7$ and $v \equiv 3 \pmod{k}$.

We now turn our attention to the case k = 3. In each of the following lemmas, the subscripts are reduced modulo 3.

Lemma 2.4. If $v \equiv 0 \pmod{18}$, then there exists a 3-near-rotational DTS(v).

Proof: Suppose $v \equiv 0 \pmod{18}$, say v = 18t. Consider the blocks:

 $[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1], [0_i, \infty_1, (3t-1)_i] \text{ for } i \in \mathbb{Z}_3,$

 $[\infty_2, 0_0, 0_1], [0_0, \infty_2, 0_2], [0_1, 0_2, \infty_2], [0_1, 0_0, \infty_3], [0_2, \infty_3, 0_0], [\infty_3, 0_2, 0_1],$

 $[0_0, r_1, (2r)_2]$ and $[(2r)_2, r_1, 0_0]$ for r = 1, 2, ..., 6t - 2,

 $[0_i, (2r-1)_i, (5t-2+r)_i]$ for $r=1, 2, \ldots, t$ and for $i \in \mathbb{Z}_3$, and

 $[0_i, (2r)_i, (3t-1+r)_i]$ for r = 1, 2, ..., t-1 (omit if t = 1) and for $i \in \mathbb{Z}_3$.

These are the base blocks for a 3-near-rotational DTS(v) under π .

Lemma 2.5. If $v \equiv 6 \pmod{18}$ and $v \geq 24$, then there exists a 3-near-rotational DTS(v).

Proof: Suppose $v \equiv 6 \pmod{18}$, say v = 18t + 6. Consider the blocks:

 $[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1],$

 $[0_i, \infty_1, (2t)_i]$ for $i \in \mathbb{Z}_3$, $[0_i, \infty_2, (2t+1)_i]$ for $i \in \mathbb{Z}_3$,

 $[0_i, \infty_3, (3t+1)_i]$ for $i \in \mathbb{Z}_3$,

 $[0_0, r_1, (2r)_2]$ and $[(2r)_2, r_1, 0_0]$ for $r = 0, 1, \ldots, 6t$,

 $[0_i, (2r-1)_i, (5t+r)_i]$ for r = 1, 2, ..., t and for $i \in \mathbb{Z}_3$,

 $[0_i, (2r)_i, (3t+1+r)_i]$ for r = 1, 2, ..., t-1 (omit for t = 1) and for $i \in \mathbb{Z}_3$.

These are the base blocks for a 3-near-rotational DTS(v) under π .

Lemma 2.6. If $v \equiv 12 \pmod{18}$, then there exists a 3-near-rotational DTS(v).

Proof:

case 1. If v = 30 then consider the blocks:

 $[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_3], [0_i, \infty_1, 3_i] \text{ and } [0_i, \infty_2, 5_i] \text{ for } i \in \mathbb{Z}_3,$

 $[\infty_3, 0_0, 0_1], [0_0, \infty_3, 0_2], [0_1, 0_2, \infty_3], [0_2, 0_1, 0_0],$

 $[0_0, r_1, (2r)_2]$ and $[(2r)_2, r_1, 0_0]$ for $r = 1, 2, \dots, 8$,

 $[0_i, 1_i, 8_i]$ and $[0_i, 2_i, 6_i]$ for $i \in \mathbb{Z}_3$.

case 2. If $v \equiv 12 \pmod{18}$, $v \neq 30$, say v = 18t + 12 where $t \neq 1$, then consider the blocks:

 $[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1] [0_i, \infty_1, (2t+1)_i]$ for $i \in \mathbb{Z}_3, [0_i, \infty_2, (4t+2)_i]$ for $i \in \mathbb{Z}_3$,

 $[\infty_3, 0_0, 0_1], [0_0, \infty_3, 0_2], [0_1, 0_2, \infty_3], [0_2, 0_1, 0_0],$

 $[0_0, r_1, (2r)_2]$ and $[(2r)_2, r_1, 0_0]$ for $r = 1, 2, \dots, 6t + 2$,

 $[x_i, y_i, z_i]$ and $[z_i, y_i, x_i]$ where (x_i, y_i, z_i) is a base block of a cyclic STS(6t+3) on $\mathbb{Z}_{6t+3} \times \{i\}$ under the automorphism $(0_i, 1_i, \ldots, (6t+2)_i)$ for $i \in \mathbb{Z}_3$, with the exception of the base block in the orbit of the block $(0_i, (2t+1)_i, (4t+2)_i)$ (omit these blocks if t=0).

In both cases, these are the base blocks for a 3-near-rotational DTS(v) under π .

The following lemma will make use of a particular structure. A (C, k)system is a set of ordered pairs $\{(a_r, b_r) \text{ for } r = 1, 2, ..., k\}$ such that

 $b_r - a_r = r$ for r = 1, 2, ..., k and $\bigcup_{r=1}^{n} \{a_r, b_r\} = \{1, 2, ..., k, k+2, ..., 2k+1\}.$

A (C, k)-system exists if and only if $k \equiv 0$ or 3 (mod 4) [10].

Lemma 2.7. If $v \equiv 3$ or 9 (mod 24) $v \geq 9$, then there exists a 3-near-rotational DTS(v).

Proof: Consider the blocks:

 $[\infty_1,\infty_2,\infty_3], [\infty_3,\infty_2,\infty_1], [0_i,\infty_1,(\frac{v-3}{6})_i] \text{ for } i\in \mathbf{Z}_3,$

 $[0_1, \infty_2, (\frac{v-3}{6})_0], [0_2, \infty_2, (\frac{v-3}{6})_1], [0_0, \infty_2, (\frac{v-3}{6})_2],$

 $[0_0, \infty_3, (\frac{v-3}{6})_1], [0_1, \infty_3, (\frac{v-3}{6})_2], [0_2, \infty_3, (\frac{v-3}{6})_0],$

 $[0_0, 0_1, 0_2], \, [0_2, 0_1, 0_0], \, \text{and} \,$

 $[0_i, r_i, (b_r)_{i+1}]$ and $[(b_r)_{i+1}, r_i, 0_i]$ for $r = 1, 2, \dots, \frac{v-9}{6}$ and $i \in \mathbb{Z}_3$ where $\{(a_r, b_r) \text{ for } r = 1, 2, \dots, \frac{v-9}{6}\}$ is a $(C, \frac{v-9}{6})$ -system.

These are the base blocks for a 3-near-rotational DTS(v) under π .

Lemma 2.8. If $v \equiv 15 \pmod{24}$, then there exists a 3-near-rotational DTS(v).

Proof: Suppose $v \equiv 15 \pmod{24}$, say v = 24t + 15. Consider the blocks:

 $[\infty_1, \infty_2, \infty_3]$, $[\infty_3, \infty_2, \infty_1]$, $[0_0, 0_1, 0_2]$, $[0_2, 0_1, 0_0]$, $[0_i, \infty_1, (4t+2)_i]$ for $i \in \mathbf{Z}_3$,

 $[0_0, \infty_2, (2t+1)_1], [0_1, \infty_2, (2t+1)_2], [0_2, \infty_2, (2t+1)_0],$

 $[0_1, \infty_3, (6t+3)_0], [0_2, \infty_3, (6t+3)_1], [0_0, \infty_3, (6t+3)_2],$

- $[0_i, (2r-1)_i, (6t+2+r)_{i+1}]$ and $[(6t+2+r)_{i+1}, (2r-1)_i, 0_i]$ for $r = 1, 2, \ldots, 2t+1$ and for $i \in \mathbb{Z}_3$,
- $[0_i, (2r)_i, (2t+1+r)_{i+1}]$ and $[(2t+1+r)_{i+1}, (2r)_i, 0_i]$ for $r = 1, 2, \ldots, 2t$ and for $i \in \mathbb{Z}_3$.

These are base blocks for a 3-near-rotational DTS(v) under π .

Lemma 2.9. If $v \equiv 21 \pmod{24}$, then there exists a 3-near-rotational DTS(v).

Proof: Suppose $v \equiv 21 \pmod{24}$, say v = 24t + 21. Consider the blocks:

 $[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1], [0_0, 0_1, 0_2], [0_2, 0_1, 0_0],$

 $[0_i, \infty_1, (4t+3)_i]$ for $i \in \mathbb{Z}_3, [0_0, \infty_2, (2t+2)_1], [0_1, \infty_2, (2t+2)_2],$

 $[0_2, \infty_2, (2t+2)_0], [0_1, \infty_3, (6t+4)_0], [0_2, \infty_3, (6t+4)_1], [0_0, \infty_3, (6t+4)_2],$

 $[0_i, (2r-1)_i, (6t+4+r)_{i+1}]$ and $[(6t+4+r)_{i+1}, (2r-1)_i, 0_i]$ for $r=1, 2, \ldots, 2t+1$ and for $i \in \mathbb{Z}_3$, and

 $[0_i, (2r)_i, (2t+2+r)_{i+1}]$ and $[(2t+2+r)_{i+1}, (2r)_i, 0_i]$ for $r = 1, 2, \ldots, 2t+1$ and for $i \in \mathbb{Z}_3$.

These are the base blocks for a 3-near-rotational DTS(v) under π .

Combining the results of Lemmas 2.2-2.9, we see that the necessary conditions of Lemma 2.1 are also sufficient. We therefore have:

Theorem 2.2. A k-near-rotational DTS(v) exists if and only if $k(v+2) \equiv 0 \pmod{3}$, $v \equiv 3 \pmod{k}$, and $v \equiv 0$ or $1 \pmod{3}$, $v \geq 7$.

References

- 1. C.J. Cho, Rotational Steiner triple systems, Discrete Math. 42 (1982), 153-159.
- 2. C. J. Cho, Rotational directed triple systems, J. Korean Math. Soc. 24(2) (1987), 133-142.
- 3. M. J. Colbourn and C. J. Colbourn, The analysis of directed triple systems by refinement, Annals of Discrete Math. 15 (1982), 97-103.
- 4. R. Gardner, Automorphisms of Steiner triple Systems, M.S. Thesis, Auburn University, Auburn, AL (1987).

- 5. R. Gardner, Steiner triple systems with near-rotational automorphisms, J. Comb. Theory Series A, to appear.
- 6. L. Heffter, *Ueber tripelsysteme*, Math. Ann. 49 (1897), 101-112.
- 7. S. H. Y. Hung and N. S. Mendelsohn, Directed triple systems, J. Comb. Theory Series A 14 (1973), 310-318.
- 8. R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939), 251-257.
- 9. K.T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
- 10. A. Rosa, Poznámka o cyklických Steinerových systémoch trojíc, Mat. Fyz. Cas. 16 (1966), 285-290.
- 11. T. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957), 57-68.