Decompositions, Packings, and Coverings of the Complete Digraph with Orientations of $K_3 \cup \{e\}$

Robert Beeler1, Robert Gardner1, Chrysanthus Gwellem2, and Jan Lewenczuk3

1Department of Mathematics and Statistics
East Tennessee State University
Johnson City, Tennessee 37614

2Association of University and Statistics Technology Managers
111 Deer Lake Road, Suite 100
Deerfield, IL 60015

3Division of Mathematics
Northeast State Community College
Blountville, TN 37617

Abstract. There are eight orientations of the complete graph on three vertices with a pendant edge, $K_3 \cup \{e\}$. Two of these are 3-circuits with a pendant arc and the other six are transitive triples with a pendant arc. Necessary and sufficient conditions are given for decompositions, packings, and coverings of the complete digraph with each of these eight orientations of $K_3 \cup \{e\}$.

1 Introduction

A G-decomposition of a graph H is a set $\{g_1, g_2, \ldots, g_n\}$ of subgraphs of H (called blocks) such that $g_i \cong G$ for $i \in \{1, 2, \ldots, n\}$, $E(g_i) \cap E(g_j) = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^n E(g_i) = E(H)$. A G-decomposition of H where G and H are digraphs is similarly defined (with arc sets replacing edge sets). Several decompositions of the complete graph K_v and the complete digraph D_v have been explored. In particular, a Steiner triple system of order v is equivalent to a K_3-decomposition of K_v and such systems exist if and only if $v \equiv 1$ or 3 (mod 6) [12]. A Mendelsohn triple system is equivalent to a 3-circuit (C_3) decomposition of D_v and exists if and only if $v \equiv 0$ or 1 (mod 3), $v \neq 6$ [9]. A directed triple system is equivalent to a transitive triple (T, see Figure 1) decomposition of D_v and exists if and only if $v \equiv 0$ or 1 (mod 3) [8]. Also of relevance to our results are decompositions of K_v into copies of K_3 with a pendant edge (the graph L of Figure 1). Bermond and Schönhem showed that such decompositions exist if and only if $v \equiv 0$ or 1 (mod 8) [2].

A maximum G-packing of graph H is a set $\{g_1, g_2, \ldots, g_n\}$ of subgraphs of H (called blocks) such that $g_i \cong G$ for $i \in \{1, 2, \ldots, n\}$, $E(g_i) \cap E(g_j) = \emptyset$ for $i \neq j$, $\bigcup_{i=1}^n g_i \subset H$, and $|E(H) \setminus \bigcup_{i=1}^n E(g_i)|$ is minimum. The leave of the packing is the set $E(H) \setminus \bigcup_{i=1}^n E(g_i)$. A maximum G-packing of H
where G and H are digraphs is similarly defined (with arc sets replacing edge sets). Maximum K_3-packings of K_v were explored by Schönheim [10]. Maximum 3-circuit and transitive triple packings of D_v were addressed in [5].

A minimum G-covering of graph H is a set $\{g_1, g_2, \ldots, g_n\}$ of subgraphs of H (called blocks) such that $g_i \cong G$ for $i \in \{1, 2, \ldots, n\}$, $H \subset \bigcup_{i=1}^{n} g_i$, and $|\bigcup_{i=1}^{n} E(g_i) \setminus E(H)|$ is minimum (the graph $\bigcup_{i=1}^{n} g_i$ may not be simple and $\bigcup_{i=1}^{n} E(g_i)$ may be a multiset). A minimum G-covering of H where G and H are digraphs is similarly defined (with arc sets replacing edge sets). The padding of the covering is the multiset $\bigcup_{i=1}^{n} E(g_i) \setminus E(H)$. Minimum K_3-coverings of K_v were explored by Fort and Hedlund [3]. Minimum 3-circuit and transitive triple coverings of D_v were addressed in [5].

We note that K_3-decompositions of K_v were followed by decompositions of D_v with orientations of K_3. Thus, a natural follow-up to the work of [2] would be to consider orientations of graphs of order four or less. Because of this, we are motivated to consider decompositions, packings, and coverings of D_v with copies of digraph G where G is an orientation of $L = K_3 \cup \{e\}$ (see Figure 2). We denote the orientations of $L = K_3 \cup \{e\}$ given in Figure 2 as $[a, b, c; d]_{m_1}$, $[a, b, c; d]_{m_2}$, $[a, b, c; d]_{d_1}$, ..., $[a, b, c; d]_{d_6}$, respectively. The purpose of this paper is to give necessary and sufficient conditions for decompositions, packings, and coverings of D_v with each of the eight orientations of $L = K_3 \cup \{e\}$.

2 Decompositions

We note that since each of these orientations has four arcs, it is necessary that $|A(D_v)| \equiv 0 \pmod{4}$ for the existence of a decomposition of D_v into one of the digraphs of Figure 2. Hence $v \equiv 0$ or 1 (mod 4) is necessary in all cases.

The wheel, denoted W_n, is the graph containing a cycle on n vertices such that every vertex in the cycle is adjacent to a center vertex, ∞. We will denote the wheel W_n with center ∞ and cycle $(0, a, 2a, \ldots, (n-1)a)$ by $W_n(\infty : a)$. Note that $|V(W_n)| = n + 1$ and $|E(W_n)| = 2n$. This can
be extended to a digraph by replacing each edge with a forward arc and a backward arc.

\[\begin{array}{cccc}
 b & c & b & c \\
 a & d & a & d \\
 m_1 & m_2 & d_1 & d_2 \\
\end{array} \]

\[\begin{array}{cccc}
 b & c & b & c \\
 a & d & a & d \\
 d_3 & d_4 & d_5 & d_6 \\
\end{array} \]

Figure 2. The eight orientations of \(L = K_3 \cup \{e\} \).

The circulant, denoted \(C_n(S) \), has vertex set \(V(C_n(S)) = \{0, 1, \ldots, n-1\} \). Two vertices \(u \) and \(v \) are adjacent if and only if \(|u - v|_n \in S \), where \(|x|_n = \min\{x \mod n, n - x \mod n\} \). The directed circulant will have a forward arc and a backward arc for each of these edges.

A graceful labeling on a graph \(G \) with \(q \) edges is an injective mapping \(f \) from \(V(G) \) to \(\{0, 1, \ldots, q\} \) such that the edge labels defined by \(f'(u, v) = |f(u) - f(v)| \) satisfy \(f'(E) = \{1, 2, \ldots, q\} \) [6, 11]. We note that wheels have graceful labelings [4, 7]. This being the case, there exists a \(W_p \)-decomposition of \(C_n(1, 2, \ldots, 2p) \) where \(n \geq 4p + 1 \) [1].

Theorem 2.1 An \(m_1 \)-decomposition of \(D_v \) and an \(m_2 \)-decomposition of \(D_v \) each exist if and only if \(v \equiv 0 \) or \(1 \) (mod 4).

Proof. We note that \(v \equiv 0 \) or \(1 \) (mod 4) is necessary by the above comments. Further note that there exists an \(m_1 \)-decomposition of the directed wheel \(W_p \), where \(p \geq 3 \). This decomposition is given by the set of blocks \(\{[j, \infty, j+1; j-1]_{m_1} \mid j = 0, 1, \ldots, p-1\} \) where the numerical vertex labels are reduced modulo \(p \).

Case 1. Suppose \(v \equiv 0 \) (mod 4), say \(v = 4k + 4 \) where \(k \geq 3 \). We note that \(D_{4k+4} = W_{4k+3}(\infty; 2k+1) \cup C_{4k+3}(1, 2, \ldots, 2k) \) where \(V(D_{4k+4}) = \)
{0, 1, 2, ..., 4k + 2, \infty}. There exists an \(m_1\)-decomposition of \(W_{4k+3}\) and \(C_{4k+3}(1, 2, \ldots, 2k)\) for \(k \geq 3\) by the above comments.

For \(v = 4\), \(D_4 \cong W_3\) and a decomposition of \(W_3\) is given above.

For \(v = 8\), the decomposition is given by the set of blocks \(\{[j, \infty, j + 2; j + 1]_{m_1}, [j, j + 1, j + 3; j + 4]_{m_1} \mid j = 0, 1, \ldots, 6\}\) where vertex labels are reduced modulo 7.

For \(v = 12\), the decomposition is given by the set of blocks \(\{[j+5, \infty, j+10; j]_{m_1}, [j, j+1, j+3; j+7]_{m_1}, [j, j+3, j+1; j+4]_{m_1} \mid j = 0, 1, \ldots, 10\}\) where numerical vertex labels are reduced modulo 11.

Case 2. Suppose \(v \equiv 1 \pmod{4}\), say \(v = 4k + 1\), where \(k \geq 3\). Since \(W_k\) is graceful, there exists a decomposition of \(K_{4k+1}\) by the above comments. It follows that the directed wheel \(W_k\) decomposes the directed complete graph \(D_{4k+1}\).

For \(v = 5\), the decomposition is given by the set of blocks \(\{[4, 0, 1; 3]_{m_1}, [4, 3, 0; 2]_{m_1}, [3, 2, 0; 1]_{m_1}, [1, 0, 2; 4]_{m_1}, [2, 3, 1; 4]_{m_1}\}\).

For \(v = 9\), the decomposition is given by the set of blocks \(\{[j, j+1, j+3; j+5]_{m_1}, [j, j+3, j+1; j+4]_{m_1} \mid j = 0, 1, \ldots, 8\}\) where vertex labels are reduced modulo 9.

Since \(m_2\) is the converse of \(m_1\), the construction of an \(m_2\)-decomposition of \(D_v\) will similarly follow.

Theorem 2.2 A \(d_1\)-decomposition of \(D_v\) and a \(d_2\)-decomposition of \(D_v\) each exist if and only if \(v \equiv 0\) or \(1 \pmod{4}\).

Proof. The necessary condition follows as in Theorem 2.1. We now construct a \(d_1\)-decomposition of \(D_v\) for each \(v \equiv 0\) or \(1 \pmod{4}\) and, since \(d_2\) is the converse of \(d_1\), the construction of a \(d_2\)-decomposition of \(D_v\) will similarly follow.

Case 1. Suppose \(v \equiv 1 \pmod{12}\), say \(v = 12k + 1\). Consider the set of blocks: \(\{[j, 6k - i + j, 12k - 2i + j; 3k + 1 + i + j]_{d1}, [j, 5k - i + j, 10k - 2i + j; 8k + 1 + 2i + j]_{d1} \mid i = 0, 1, \ldots, k-1, j = 0, 1, \ldots, 12k\}\)
\(\cup\{[j, k - 1 - i + j, 12k - 3 - 2i + j; 2k + 2 + i + j]_{d1} \mid i = 0, 1, \ldots, k-2, j = 0, 1, \ldots, 12k\}\) \(\cup\{[j, k + j, 12k - 1 + j; k + 1 + j]_{d1} \mid j = 0, 1, \ldots, 12k\}\).

Case 2. Suppose \(v \equiv 5 \pmod{12}\), say \(v = 12k + 5\). Consider the set of blocks: \(\{[j, 6k + 2 - i + j, 12k + 4 - 2i + j; 3k + 1 + i + j]_{d1}, [j, 5k + 1 - i + j, 10k + 2 - 2i + j; 8k + 5 + 2i + j]_{d1} \mid i = 0, 1, \ldots, k-1, j = 0, 1, \ldots, 12k + 4\}\)
\(\cup\{[j, k - 1 - i + j, 12k + 1 - 2i + j; 2k + 2 + i + j]_{d1} \mid i = 0, 1, \ldots, k-2, j = 0, 1, \ldots, 12k + 4\}\)
\(\cup\{[j, 5k + 2 + j, 10k + 4 + j; 4k + 1 + j]_{d1} \mid j = 0, 1, \ldots, 12k + 4\} \cup\{[j, 5k + 2 + j, 10k + 4 + j; 4k + 1 + j]_{d1} \mid j = 0, 1, \ldots, 12k + 4, \text{ omit if } k = 0\}.)

Case 3. Suppose \(v \equiv 9 \pmod{12}\), say \(v = 12k + 9\). Consider the set of
blocks: \{[j, 6k + 4 - i + j, 12k + 8 - 2i + j; 3k + 4 + i + j]_A, [j, 5k + 3 - i + j, 10k + 6 - 2i + j; 8k + 7 + 2i + j]_A, [j, k - i + j, 12k + 5 - 2i + j; 2k + 4 + i + j]_A \mid i = 0, 1, \ldots, k - 1, j = 0, 1, \ldots, 12k + 8\} \cup \{[j, 5k + 4 + j, 10k + 8 + j; 8k + 6 + j]_A, [j, k + 1 + j, 12k + 7 + j; k + 2 + j]_A \mid j = 0, 1, \ldots, 12k + 8\}.

In each of Cases 1–3, the given set of blocks forms a decomposition of \(D_v\) where \(V(D_v) = \{0, 1, \ldots, v - 1\}\) and vertex labels in the blocks are reduced modulo \(v\).

Case 4. Suppose \(v \equiv 0 \pmod{4}\), say \(v = 4k\). Consider the set of blocks: \{\([j, 2 + j, \infty; 1 + j]_A \mid j = 0, 1, \ldots, 4k - 2\}\} \cup \{\{[j, k + 1 - i + j, k + 2 + i + j; 2k + 1 + 2i + j]_A \mid i = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 4k - 2\}\}. In Case 4, the given set of blocks forms a decomposition of \(D_v\) where \(V(D_v) = \{\infty, 0, 1, \ldots, v - 2\}\) and numerical vertex labels in the blocks are reduced modulo \(v - 1\).

Corollary 2.3 A \(d_3\)-decomposition of \(D_v\) and a \(d_4\)-decomposition of \(D_v\) each exist if and only if \(v \equiv 0 \text{ or } 1 \pmod{4}\).

Proof. The necessary condition follows as in Theorem 2.1. In the case \(v \equiv 1 \pmod{4}\), blocks for such a \(d_3\)-decomposition can be constructed from the \(d_1\)-decomposition of Theorem 2.2 by replacing every block of the form \([j, a + j, b + j; c + j]_A\) with a block of the form \([a + j, b + j, j; a + c + j]_A\). In the case \(v \equiv 0 \pmod{4}\), blocks for such a \(d_3\)-decomposition can be constructed from the \(d_1\)-decomposition of Theorem 2.2 by replacing every block of the form \([j, a + j, b + j; c + j]_A\) with a block of the form \([a + j, b + j, j; a + c + j]_A\) and by replacing every block of the form \([j, a + j, \infty; c + j]_A\) with a block of the form \([a + j, \infty; a + c + j]_A\).

Since \(d_4\) is the converse of \(d_3\), the construction of a \(d_4\)-decomposition of \(D_v\) will similarly follow.

Corollary 2.4 A \(d_5\)-decomposition of \(D_v\) and a \(d_6\)-decomposition of \(D_v\) each exist if and only if \(v \equiv 1 \pmod{4}\).

Proof. As in Theorem 2.1, one necessary condition is that \(v \equiv 0 \text{ or } 1 \pmod{4}\). Notice that the vertices of \(d_5\) are of in-degrees 0, 0, 2, and 2. Therefore another necessary condition for a \(d_5\)-decomposition on \(D_v\) (and similarly for a \(d_6\)-decomposition of \(D_v\)) is that each vertex of \(D_v\) is of even in-degree — that is, \(v\) must be odd. Therefore \(v \equiv 1 \pmod{4}\) is necessary.

Blocks for such a \(d_5\)-decomposition of \(D_v\) can be constructed from the \(d_1\) system of Theorem 2.2 by replacing every block of the form \([j, a + j, b + j; c + j]_A\) with a block of the form \([b + j, a + j, j; b + c + j]_A\).

Since \(d_6\) is the converse of \(d_5\), the construction of a \(d_6\)-decomposition of \(D_v\) will similarly follow.
3 Packings

We now give necessary and sufficient conditions for the packing of D_v with each of the eight orientations of L.

Theorem 3.1 A maximum m_1-packing of D_v with leave L satisfies

(i) $|A(L)| = 0$ if $v \equiv 0$ or $1 \pmod{4}$,

(ii) $|A(L)| = 6$ if $v = 3$, and $|A(L)| = 2$ if $v \equiv 2$ or $3 \pmod{4}$.

Maximum m_2-packings of D_v satisfy the same conditions.

Proof. If $v \equiv 0$ or $1 \pmod{4}$, then there is a decomposition by Theorem 2.1 and the result follows. If $v \equiv 2$ or $3 \pmod{4}$, then $|A(D_v)| = 2 \pmod{4}$, and so a packing with leave L where $|A(L)| = 2$ would be maximum.

Case 1. Let $v \equiv 3 \pmod{4}$, say $v = 4k + 3$ where $k \geq 4$. We note that:

$$D_{4k+3} = W_{4k+1}(\infty_1 : 2k - 1) \cup W_{4k+1}(\infty_2 : 2k) \cup C_{4k+1}(1, 2, \ldots, 2k - 2) \cup \{(\infty_1, \infty_2), (\infty_2, \infty_1)\}.$$

As shown in the proof of Theorem 2.1, there exists an m_1-decomposition of W_{4k+1} and W_{k-1} for $k \geq 4$. Since W_{k-1} is graceful, there exists a W_{k-1}-decomposition of $C_{4k+1}(1, 2, \ldots, 2k - 2)$.

The result is trivial for $v = 3$.

For $v = 7$, we note that: $D_7 = W_5(\infty_1 : 1) \cup W_5(\infty_2 : 2) \cup \{ (\infty_1, \infty_2), (\infty_2, \infty_1) \}$.

For $v = 11$, the required packing is given by the set of blocks $\{ [j, j+1, \infty_1; j+7]_{m_1}, [j, j+5, \infty_2; j+3]_{m_1}, [j, j+3, j+1; j+5]_{m_1} | j = 0, 1, \ldots, 8 \}$ where numerical vertex labels are reduced modulo 9.

For $v = 15$, we note that: $D_{15} = W_9(\infty_1 : 5) \cup W_9(\infty_2 : 6) \cup C_{13}(1, 2, 3, 4) \cup \{ (\infty_1, \infty_2), (\infty_2, \infty_1) \}$. As above, there exists an m_1-decomposition of W_{13}. An m_1-decomposition of $C_{13}(1, 2, 3, 4)$ is given by the set of blocks $\{ [j, j+1, j+3; j+4]_{m_1}, [j, j+3, j+1; j+9]_{m_1} | j = 0, 1, \ldots, 12 \}$ where vertex labels are reduced modulo 13.

In each case above, the leave of the packing is $\{ (\infty_1, \infty_2), (\infty_2, \infty_1) \}$.

Case 2. Let $v \equiv 2 \pmod{4}$, say $v = 4k + 2$ where $k \geq 8$. We note that:

$$D_{4k+2} = D_7 \cup C_{4k-5}(1, 2, \ldots, 2k - 10) \cup \bigcup_{i=1}^{7} W_{4k-5}(\infty_1 : 2k - i - 2).$$

As above, there exists an m_1-decomposition of W_{4k-5} and $C_{4k-5}(1, 2, \ldots, 2k - 10)$ for $k \geq 8$. Further, there exists a maximum m_1-packing of D_7 with leave size two, as shown above.
For $v = 6$, the required packing is given by the set of blocks $\{[0, 1, 5; 2]_{m_1}, [0, 5, 1; 3]_{m_1}, [4, 0, 2; 1]_{m_1}, [4, 1, 3; 0]_{m_1}, [5, 3, 2; 4]_{m_1}, [2, 3, 1; 5]_{m_1}, [3, 5, 4; 0]_{m_1}\}$. This packing has leave $\{4, 2\}, (2, 1)$.

For $v = 10$, the required packing is given by the set of blocks $\{[1 + j, \infty_1, j; 2 + j]_{m_1} \mid j = 0, 1, \ldots, 5\} \cup \{[2 + 3j, \infty_2, 5 + 3j; 6 + 3j]_{m_1} \mid j = 0, 1, 2, 3, 4\} \cup \{[2j, \infty_3, 2j + 2; 2j + 5]_{m_1} \mid i = 0, 1, \ldots, 6\} \cup \{[6, 0, 3; \infty_1]_{m_1}, [6, 3, \infty_2; 2]_{m_1}, [\infty_1, \infty_2, \infty_3; 0]_{m_1}, [\infty_2, \infty_1, \infty_3; 6]_{m_1}\}$, where all numerical vertex labels are reduced modulo 7. This packing has leave $\{(1, 0), (\infty_2, 2)\}$.

For $v = 14$, the required packing is given by the set of blocks $\{[3j + 3, \infty_1, 3j + 6]_{m_1} \mid j = 0, 1, \ldots, 9\} \cup \{[1 + 4j, \infty_2, 5 + 4j; 8 + 4j]_{m_1} \mid j = 0, 1, \ldots, 8\} \cup \{[2j, \infty_3, 2j + 2; 2j + 9]_{m_1}, [j, j + 1, j + 5; j + 10]_{m_1} \mid j = 0, 1, \ldots, 10\} \cup \{[8, 0, 4, \infty_1]_{m_1}, [8, 4, \infty_2; 1]_{m_1}, [\infty_1, \infty_2, \infty_3; 0]_{m_1}, [\infty_2, \infty_1, \infty_3; 8]_{m_1}\}$, where all numerical vertex labels are reduced modulo 11. The leave on this packing is $\{(3, 0), (\infty_2, 1)\}$.

For $v = 18$, the required packing is given by the set of blocks $\{[j + 1, \infty_1, j; 2 + 2j]_{m_1} \mid j = 0, 1, \ldots, 13\} \cup \{[6 + 7j, \infty_2, 13 + 7j; 14 + 7j]_{m_1} \mid j = 0, 1, \ldots, 12\} \cup \{[2j, \infty_3, 2j + 2; 2j + 13]_{m_1}, [j, j + 4, j + 9; j + 3]_{m_1}, [j, j + 9, j + 4; j + 12]_{m_1} \mid j = 0, 1, \ldots, 14\} \cup \{[14, 0, 7; \infty_1]_{m_1}, [14, 7, \infty_2; 6]_{m_1}, [\infty_1, \infty_2, \infty_3; 0]_{m_1}, [\infty_2, \infty_1, \infty_3; 14]_{m_1}\}$, where all numerical vertex labels are reduced modulo 15. The leave is $\{(1, 0), (\infty_2, 6)\}$.

For $v = 22$, we have $D_{22} = D_7 \cup_{i=1}^{5} W_{15}(\infty_1 : i)$. This has a maximum packing with leave size two by the above comments.

For $v = 26$, the required packing is given by the set of blocks $\{[j, j + 18, \infty_1; j + 4]_{m_1}, [j, j + 14, \infty_2; j + 6]_{m_1}, [j, j + 12, \infty_3; j + 8]_{m_1}, [j, j + 10, \infty_4; j + 11]_{m_1}, [j, j + 9, \infty_5; j + 12]_{m_1}, [j, j + 6, \infty_6; j + 14]_{m_1}, [j, j + 3, \infty_7; j + 15]_{m_1}, [j, j + 1, j + 3; j + 2]_{m_1} \mid j = 0, 1, \ldots, 18\}$, where all numerical vertex labels are reduced modulo 19. The remaining arcs are isomorphic to D_7, which has a maximum packing with leave size two by the above comments.

For $v = 30$, we have $D_{30} = D_7 \cup C_{23}(1, 2, 3, 4) \cup_{i=1}^{5} W_{23}(\infty_i : 4 + i)$. The required m_1-decomposition of $C_{23}(1, 2, 3, 4)$ is given by the set of blocks $\{[i, j + 1, j + 3; j + 4]_{m_1}, [j, j + 3, j + 1; j + 19]_{m_1} \mid j = 0, 1, \ldots, 22\}$, where all numerical labels on the vertices are reduced modulo 23. W_{23} has an m_1-decomposition by the above comments. D_7 has a maximum m_1-packing with leave size two.

Since m_2 is the converse of m_1, the construction of an m_2-packing of D_v will similarly follow.

\begin{theorem}
A maximum d_1-packing of D_v with leave L satisfies
\begin{itemize}
 \item [(i)] $|A(L)| = 0$ if $v \equiv 0 \text{ or } 1 \pmod{4}$,
 \item [(ii)] $|A(L)| = 6$ if $v \in \{3, 6\}$, and $|A(L)| = 2$ if $v \equiv 2 \text{ or } 3 \pmod{4}$, $v \notin \{3, 6\}$.
\end{itemize}
\end{theorem}
Maximum d_2-packings of D_v satisfy the same conditions.

Proof. The necessary conditions follow as in Theorem 3.1. If $v \equiv 0$ or $1 \pmod{4}$, then there is a decomposition by Theorem 2.2 and the result follows.

Case 1. Suppose $v \equiv 2 \pmod{4}$, say $v = 8k + 2$ where $k \geq 1$. Consider the sets $A = \{[j, 5k - i + j, 5k + 2 + i + j; 2k + 3 - i + j]_{d_1} | j = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 8k - 2\}$ and $B = \{[j, 1 + j, \infty_1; 4 + j]_{d_1}, [j, 2 + j, \infty_2; 3 + j]_{d_1}, [j, 5 + j, \infty_3; 5k + 1 + j]_{d_1} | j = 0, 1, \ldots, 8k - 2\}$. Then $A \cup B \cup \{[\infty_2, \infty_1, \infty_3; 2]_{d_1}, [\infty_1, \infty_2, \infty_3; 3]_{d_1}, [0, 3, 2; \infty_2]_{d_1} \} \setminus \{[2, 3, \infty_1; 6]_{d_1}, [0, 2, \infty_2; 3]_{d_1}\},$ where $V(D_v) = \{\infty_1, \infty_2, \infty_3, 0, 1, \ldots, v - 4\}$ and numerical vertex labels are reduced modulo $8k - 1$, is a maximum d_1-packing of D_v with leave L where $A(L) = \{\infty_1, 2\}.$

The result is trivial when $v = 2$.

Case 2. Suppose $v \equiv 3 \pmod{4}$, say $v = 4k + 3$ where $k \geq 1$. Consider the sets $A = \{[j, k + 3 - i + j, 4k - 2i + j; 2k + 3 + 2i + j]_{d_1} | j = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 4k\}$ and $B = \{[j, 1 + 2i + j, \infty_1; 2 + 2i + j]_{d_1} | i = 0, 1, j = 0, 1, \ldots, 4k\}$ where $V(D_v) = \{\infty_1, \infty_2, 0, 1, \ldots, v - 3\}$ and numerical vertex labels are reduced modulo $4k + 1$. Then $A \cup B$ is a maximum d_1-packing of D_v with leave L where $A(L) = \{\infty_1, \infty_2, \infty_1\}.$

The result is trivial when $v = 3$.

Case 3. Suppose $v \equiv 6 \pmod{8}$, say $v = 8k + 6$ where $k \geq 1$. Consider the sets $A = \{[j, 5k + 3 - i + j, 5k + 5 + i + j; 2k + 4 - i + j]_{d_1} | j = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 8k + 2\} \cup [j, 3k + 4 - i + j, 3k + 5 + i + j; 6 + i + j]_{d_1} | i = 0, 1, \ldots, k - 1, j = 0, 1, \ldots, 8k + 2\}$ and $B = \{[j, 1 + j, \infty_1; 4 + j]_{d_1}, [j, 2 + j, \infty_2; 3 + j]_{d_1}, [j, 5 + j, \infty_3; 5k + 4 + j]_{d_1} | j = 0, 1, \ldots, 8k + 2\}$. Then $A \cup B \cup \{[\infty_2, \infty_1, \infty_3; 2]_{d_1}, [\infty_1, \infty_2, \infty_3; 3]_{d_1}, [0, 3, 2; \infty_2]_{d_1} \} \setminus \{[2, 3, \infty_1; 6]_{d_1}, [0, 2, \infty_2; 3]_{d_1}\},$ where $V(D_v) = \{\infty_1, \infty_2, \infty_3, 0, 1, \ldots, v - 4\}$ and numerical vertex labels are reduced modulo $8k + 3$, is a maximum d_1-packing of D_v with leave L where $A(L) = \{\infty_1, 2\}.$

When $v = 6$, $|A(D_v)| = 30$ and a d_1-packing of D_6 could contain as many as seven copies of d_1. However, each vertex of D_6 is of in-degree 5 and d_1 contains a vertex of in-degree 3. Therefore the number of d_1s in a d_1-packing of D_6 cannot exceed the number of vertices in D_6—namely, six. So in a maximum d_1-packing of D_6 with leave L, we have $|A(L)| \geq 6$. A maximum packing is given by $\{[0, 2, 4; 3]_{d_1}, [1, 2, 3; 0]_{d_1}, [2, 4, 3; 1]_{d_1}, [3, 5, 1; 0]_{d_1}, [4, 5, 6; 3]_{d_1}, [5, 1, 0; 4]_{d_1}\}$ where $A(L) = \{(3, 5), (0, 2), (2, 5), (5, 2), (1, 4), (4, 1)\}$ and $|A(L)| = 6$.

Since d_2 is the converse of d_1, the construction of a d_2-packing of D_v will similarly follow.

Corollary 3.3 A maximum d_3-packing of D_v with leave L satisfies
(i) $|A(L)| = 0$ if $v \equiv 0 \text{ or } 1 \pmod{4}$,

(ii) $|A(L)| = 6$ if $v = 3$, and $|A(L)| = 2$ if $v \equiv 2 \text{ or } 3 \pmod{4}$, $v \neq 3$.

Maximum d_4-packings of D_v satisfy the same conditions.

Proof. The necessary conditions follow as in Theorem 3.1.

For $v \neq 6$, the blocks for such a d_3-packing of D_v can be constructed from the d_1-packing D_v of Theorem 3.2 by replacing every block of the form $[j, a + j, b + j; c + j]_{d_1}$ with a block of the form $[a + j, b + j, j; a + c + j]_{d_3}$, replacing every block of the form $[a, b, c; d]_{d_3}$ with a block of the form $[-a, \infty_1, -b; c - 2a]_{d_3}$, and then (1) when $v \equiv 2 \pmod{8}$ by replacing the two blocks $[2, \infty_2, 0; 5]_{d_3}$ and $[5, \infty_3, 0; 5k + 6]_{d_3}$ with the three blocks $[\infty_2, \infty_1, \infty_3; 2]_{d_3}$, $[\infty_3, \infty_1, \infty_2; 5]_{d_3}$, and $[5, 2, 0; 5k + 6]_{d_3}$, and (2) when $v \equiv 6 \pmod{8}$ by replacing the two blocks $[2, \infty_2, 0; 5]_{d_3}$ and $[5, \infty_3, 0; 5k + 9]_{d_3}$ with the three blocks $[\infty_2, \infty_1, \infty_3; 2]_{d_3}$, $[\infty_3, \infty_1, \infty_2; 5]_{d_3}$, and $[5, 2, 0; 5k + 9]_{d_3}$. In the case $v = 2 \pmod{4}$, this is a d_3-packing of D_v, where $V(D_v) = \{\infty_1, \infty_2, \infty_3, 0, 1, \ldots, v-4\}$, with leave L where $A(L) = \{(\infty_2, 0), (\infty_3, 0)\}$. In the case $v \equiv 3 \pmod{4}$, this is a d_3-packing of D_v, where $V(D_v) = \{\infty_1, \infty_2, 0, 1, \ldots, v - 3\}$, with leave L where $A(L) = \{(\infty_1, \infty_2), (\infty_2, \infty_1)\}$.

For $v = 6$, consider the set of blocks $\{[4, 1, 3; 0]_{d_3}, [4, 5, 2; 3]_{d_3}, [5, 3, 0; 1]_{d_3}, [3, 1, 2; 0]_{d_3}, [0, 5, 1; 2]_{d_3}, [1, 4, 0; 2]_{d_3}, [2, 5, 4; 0]_{d_3}\}$. This is a maximum d_3-packing of D_6 with leave L where $A(L) = \{(2, 3), (3, 5)\}$.

Since d_4 is the converse of d_3, the construction of a d_4-packing of D_v will similarly follow.

Theorem 3.4 A maximum d_5-packing of D_v with leave L satisfies

(i) $|A(L)| = v$ if $v \equiv 0 \pmod{2}$,

(ii) $|A(L)| = 0$ if $v \equiv 1 \pmod{4}$, and

(iii) $|A(L)| = 6$ if $v = 3$, and $|A(L)| = 2$ if $v \equiv 3 \pmod{4}$, $v \geq 7$.

Maximum d_6-packings of D_v satisfy the same conditions.

Proof. When $v \equiv 1 \pmod{4}$, a decomposition exists by Corollary 2.4 and $|A(L)| = 0$ in this case. Notice that the vertices of d_5 are of in-degrees 0, 0, 2, and 2. So when v is even, a d_5-packing of D_v will have a leave L where the in-degree of each vertex of L is odd. So for v even, a d_5-packing of D_v with leave L where $|A(L)| = v$ would be maximum (and similarly for a d_6-packing of D_v). When $v \equiv 3 \pmod{4}$, $|A(D_v)| = 2 \pmod{4}$ and in this case a d_5-packing (and similarly for a d_6-packing) of D_v with leave...
L where $|A(L)| = 2$ would be maximum. In the following cases, we have $V(D_v) = \{0, 1, \ldots, v-1\}$.

Case 1. Suppose $v \equiv 0 \pmod{4}$. Consider $A \cup B$ where $A = \{[2j, 4k - 1 + 2j, 1 + 2j; 4k - 2 + 2j]_{4d} | j = 0, 1, \ldots, 2k - 1\}$ and $B = \{[j, 3k - 3 + j, 4k - 2 + j; 3k - 2 + j]_{4d}\} \cup \{[j, 2k - 1 + i + j, 2k + 2 + 2i + j; 2k - 3 - 2i + j]_{4d} | i = 0, 1, \ldots, k - 3, j = 0, 1, \ldots 4k - 1\}$ where vertex labels are reduced modulo $4k$. Then $A \cup B$ is a maximum d_5-packing of D_v with leave L where $A(L) = \{(j, j-1) | j = 0, 1, \ldots, 4k - 1\}$.

Case 2. Suppose $v \equiv 2 \pmod{4}$, say $v = 4k + 2$. Consider $\{[j, k + 2 + i + j, 1 + 2i + j; 2k + 2 + 2i]_{4d} | i = 0, 1, \ldots, k - 1, j = 0, 1, \ldots, 4k + 1\}$ where vertex labels are reduced modulo $4k + 2$. This is a maximum d_5-packing of D_v with leave L where $A(L) = \{(j, j-1) | j = 0, 1, \ldots, 4k + 1\}$.

Case 3. Suppose $v \equiv 3 \pmod{4}$. Consider $A \cup B$ where $A = \{[2i, 4k + 2 + 2i, 1 + 2i; 4k + 1 + 2i]_{4d} | i = 0, 1, \ldots, 2k\} B = \{[j, 3k - 1 + j, 4k - 2 + j; 4k + j]_{4d} | j = 0, 1, \ldots, 4k - 2\} \cup \{[j, 2k + i + j, 2k + 4 + 2i + j; 2 + 2i + j]_{4d} | i = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 4k - 2\}$ where vertex labels are reduced modulo $4k + 3$. Then $A \cup B$ is a maximum d_5-packing of D_v with leave L where $A(L) = \{(4k, 4k + 2), (4k + 1, 4k + 2\}$.

Since d_6 is the converse of d_5, the construction of a d_6-packing of D_v will similarly follow.

4 Covering

We now give necessary and sufficient conditions for the covering of D_v with each of the eight orientations of L.

Theorem 4.1 A minimum m_1-covering of D_v, $v \geq 4$, with padding P satisfies

1. $|A(P)| = 0$ if $v \equiv 0 \text{ or } 1 \pmod{4}$, and
2. $|A(P)| = 2$ if $v \equiv 2 \text{ or } 3 \pmod{4}$.

Minimum m_2-coverings of D_v satisfy the same conditions.

Proof. If $v \equiv 0 \text{ or } 1 \pmod{4}$, then there is a decomposition by Theorem 2.1 and the result follows. If $v \equiv 2 \text{ or } 3 \pmod{4}$, then $|A(D_v)| \equiv 2 \pmod{4}$, and so a covering with padding P where $|A(P)| = 2$ would be minimum.

Case 1. Let $v \equiv 2 \pmod{4}$, say $v = 4k + 2$ where $k \geq 5$. We note that:

$$D_{4k+2} = D_3 \cup C_{4k-1}(1, 2, \ldots, 2k-4) \cup \bigcup_{i=1}^3 W_{4k-1}((\infty_i : 2k - i)) .$$

As above, there exists an m_1-decomposition of W_{4k-1} and $C_{4k-1}(1, 2, \ldots, 2k-4)$ for $k \geq 5$. The remaining arcs are covered by the set $\{[\infty_1, \infty_2, \infty_3; 0]_{m_1}, [\infty_3, \infty_2, \infty_1; 1]_{m_1}\}$. This covering has padding $\{(0, \infty_1), (1, \infty_3)\}$.

For \(v = 6 \), the required covering is obtained from the packing in Theorem 3.1 along with the set \([2, 1, 4; 3]_{m_1}\). This covering has padding \((1, 4), (3, 2)\).

For \(v = 10 \), the required covering is obtained from the packing in Theorem 3.1 along with the set \([2, 1, 0; \infty]_{m_1}\). This covering has padding \((2, 1), (0, 2)\).

For \(v = 14 \), the required covering is obtained from the packing in Theorem 3.1 along with the set \([1, 3, 0; \infty]_{m_1}\). This covering has padding \((1, 3), (0, 1)\).

For \(v = 18 \), the required covering is obtained from the packing in Theorem 3.1 along with the set \([6, 1, 0; \infty]_{m_1}\). This covering has padding \((6, 1), (0, 6)\).

Case 2. Let \(v \equiv 3 \pmod{4} \), say \(v = 4k + 3 \) where \(k \geq 7 \). We note that:

\[
D_{4k+3} = \bigcup_{i=1}^{6} W_{4k-3}((\infty_i : 2k - 1 - i) \cup C_{4k-3}(1, 2, \ldots, 2k - 8)) \cup D_6.
\]

As shown in the proof of Theorem 2.1, there exists an \(m_1 \)-decomposition of \(W_{4k-3} \) and \(W_{k-5} \) for \(k \geq 7 \). Since \(W_{k-4} \) is graceful, there exists a \(W_{k-4} \)-decomposition of \(C_{4k-3}(1, 2, \ldots, 2k - 8) \). Further, there exists a minimum covering of \(D_6 \) as given above. Thus there exists a minimum covering of \(D_{4k+3} \) for \(k \geq 8 \) with padding \((\infty_1, \infty_4), (\infty_3, \infty_2)\).

For \(v = 7 \), the covering is given by the set of blocks \([0, 6, 1; 4]_{m_1}, [0, 1, 6; 2]_{m_1}, [5, 1, 3; 0]_{m_1}, [5, 0, 2; 1]_{m_1}, [4, 3, 0; 6]_{m_1}, [3, 4, 6; 0]_{m_1}, [3, 6, 2; 5]_{m_1}, [5, 2, 4; 6]_{m_1}, [4, 2, 1; 5]_{m_1}, [6, 3, 2; 5]_{m_1}, [1, 5, 2; 4]_{m_1}\). The padding is \((6, 3), (5, 3)\).

For \(v = 11 \), the covering is given by the set of blocks \([1 + 3i, \infty_1, 7 + 3i; 3 + 3i]_{m_1}, [2 + 3i, \infty_1, 8 + 3i; 4 + 3i]_{m_1} | i = 0, 1, 2] \cup \{|4 + 4i, \infty_2, 4i%; 5 + 4i|_{m_1} | i = 0, 1, \ldots, 7\} \cup \{|i, i+1, i+3; i+4|_{m_1} | i = 0, 1, \ldots, 8\} \cup \{|\infty_1, 6, 0; \infty_2]_{m_1}, [\infty_2, 5, 0; \infty_1]_{m_1}, [3, \infty_1, 0; 5]_{m_1}, [6, \infty_1, 3; 8]_{m_1}, [0, 3, 1; 2]_{m_1}\}, \) where all numerical vertex labels are reduced modulo 9. The padding is \((0, 3), (3, 1)\).

For \(v = 15 \), the covering is given by the set of blocks \([5i, \infty_1, 5i+5; 5i+8]_{m_1}, [6i, \infty_2, 6i+6; 6i+7]_{m_1} | i = 0, 1, \ldots, 11\} \cup \{|i, i+1, i+3; i+4|_{m_1}, [i, i+3, i+1; i+9]_{m_1} | i = 0, 1, \ldots, 12\} \cup \{|\infty_1, 0, 8; \infty_2]_{m_1}, [\infty_2, 0, 7; \infty_1]_{m_1}, [7, 3, 8; 1]_{m_1}\}, \) where all numerical vertex labels are reduced modulo 13. The padding is \((7, 3), (8, 7)\).

For \(v = 19 \), we note that: \(D_{19} = \bigcup_{i=1}^{6} W_{13}(\infty_i : i) \cup D_6. \) There exists an \(m_1 \)-decomposition of \(W_{13} \) by the above comments. Further, there exists a minimum \(m_1 \)-covering of \(D_6 \) by above.

For \(v = 23 \), the covering is given by the set of blocks \([10i, \infty_1, 10i+10; 10i+11]_{m_1}, [9i, \infty_2, 9i+9; 9i+12]_{m_1} | i = 0, 1, \ldots, 19\} \cup \{|\infty_1, 0, 11; \infty_2]_{m_1}, [\infty_2, 0, 12; \infty_1]_{m_1}, [11, 3, 12; 1]_{m_1}\}, \) where all numerical vertex labels are reduced modulo 21. The remaining arcs are isomorphic to \(C_{21}(1, 2, \ldots, 8) \), which has an \(m_1 \)-decomposition by the above comments. The padding is \((11, 3), (12, 11)\).
For \(v = 27 \), the covering is given by the set of blocks \(\{[12i, \infty_1, 12i + 12; 12i + 13]_{m_1}, [11i, \infty_2, 11i + 11; 11i + 14]_{m_1} \mid i = 0, 1, \ldots, 23\} \cup \{[\infty_1, 0, 13; \infty_2]_{m_1}, [\infty_2, 0, 14; \infty_1]_{m_1}, [13, 3, 14; 1]_{m_1}\} \), where all numerical vertex labels are reduced modulo 25. The remaining arcs are isomorphic to \(C_{25}(1, 2, \ldots, 10) \), which has an \(m_1 \)-decomposition by the above comments. The padding is \(\{(13, 3), (14, 13)\} \).

Since \(m_2 \) is the converse of \(m_1 \), the construction of an \(m_2 \)-covering of \(D_v \) will similarly follow.

Theorem 4.2 A minimum \(d_1 \)-covering of \(D_v \) where \(v \geq 4 \) with padding \(P \) satisfies

(i) \(|A(P)| = 0 \) if \(v \equiv 0 \) or \(1 \pmod{4} \), and

(ii) \(|A(P)| = 2 \) if \(v \equiv 2 \) or \(3 \pmod{4} \).

Minimum \(d_2 \)-coverings of \(D_v \) satisfy the same conditions.

Proof. The necessary conditions follow as in Theorem 4.1. If \(v \equiv 0 \) or \(1 \pmod{4} \), then there is a decomposition by Theorem 2.2 and the result follows. In the following cases, we have \(V(D_0) = \{\infty_1, \infty_2, 0, 1, \ldots, v - 3\} \).

Case 1. Suppose \(v \equiv 2 \pmod{4} \), say \(v = 4k + 2 \) where \(k \geq 2 \). Take the \(d_1 \)-packing of \(D_v \) given in Theorem 3.2 and replace the block \([0, 3, 2; \infty_2]_{d_1}\) with the two blocks \([0, 2, \infty_2; 3]_{d_1}\) and \([2, 3, \infty_1; 6]_{d_1}\). This is a minimum covering of \(D_v \) with padding \(P \) where \(A(P) = \{(2, \infty_2), (3, \infty_1)\} \).

For \(v = 6 \), consider the set of blocks \(\{[5, 0, 1; 4]_{d_1}, [1, 5, 4; 2]_{d_1}, [3, 1, 0; 5]_{d_1}, [2, 4, 3; 1]_{d_1}, [4, 3, 1; 0]_{d_1}, [0, 2, 4; 3]_{d_1}, [5, 2, 3; 4]_{d_1}, [2, 5, 0; 3]_{d_1}\} \). This is a minimum \(d_1 \)-covering of \(D_v \) with padding \(P \) where \(A(P) = \{(3, 2), (4, 5)\} \).

Case 2. Suppose \(v \equiv 3 \pmod{4} \), say \(v = 4k + 3 \). Consider the blocks in \(A \cup B \setminus \{[0, 3, \infty_2; 4]_{d_1}\} \cup \{[0, \infty_2, \infty_1; 4]_{d_1}, [\infty_2, 3, 0; \infty_1]_{d_1}\} \) where sets \(A \) and \(B \) are defined in Theorem 3.2 Case 2. This is a minimum covering of \(D_v \) with padding \(P \) where \(A(P) = \{(0, \infty_2), (\infty_1, 0)\} \).

Since \(d_2 \) is the converse of \(d_1 \), the construction of a \(d_2 \)-covering of \(D_v \) will similarly follow.

Theorem 4.3 A minimum \(d_3 \)-covering of \(D_v \) where \(v \geq 4 \) with padding \(P \) satisfies

(i) \(|A(P)| = 0 \) if \(v \equiv 0 \) or \(1 \pmod{4} \), and

(ii) \(|A(P)| = 2 \) if \(v \equiv 2 \) or \(3 \pmod{4} \).

Minimum \(d_4 \)-coverings of \(D_v \) satisfy the same conditions.
Proof. The necessary conditions follow as in Theorem 4.2. When $v \equiv 0$ or $1 \pmod{4}$, a decomposition exists by Corollary 2.3 and $|A(P)| = 0$ in this case.

Case 1. Suppose $v \equiv 2 \pmod{8}$, $v \neq 6$. Take the d_3-packing of D_v given in Corollary 3.3 and replace the block $[5, 2, 0; 5k + 6]_{d_3}$ with the two blocks $[2, \infty, 0; 5]_{d_3}$ and $[5, \infty, 0; 5k + 6]_{d_3}$. This is a minimum covering of D_v with padding P where $A(P) = \{(2, \infty_2), (5, \infty_3)\}$.

For $v = 6$, take the d_3-packing of D_6 given in Corollary 3.3, along with the block $[2, 3, 5; 1]_{d_3}$. This yields a minimum covering of D_6 with padding P where $A(P) = \{(1, 2), (2, 5)\}$.

Case 2. Suppose $v \equiv 3 \pmod{4}$. Take the d_3-packing of D_v given in Corollary 3.3 and replace the block $[0, \infty_1, 4k; 2]_{d_1}$ with the two blocks $[\infty_1, 0, 4k; \infty_2]_{d_3}$ and $[0, \infty_1, \infty_2; 2]_{d_3}$. This is a minimum covering of D_v with padding P where $A(P) = \{(\infty_1, 0), (0, \infty_2)\}$.

Case 3. Suppose $v \equiv 6 \pmod{8}$. Take the d_3-packing of D_v given in Corollary 3.3 and replace the block $[5, 2, 0; 5k + 9]_{d_3}$ with the two blocks $[2, \infty_2, 0; 5]_{d_3}$ and $[5, \infty_3, 0; 5k + 9]_{d_3}$. This is a minimum covering of D_v with padding P where $A(P) = \{(2, \infty_2), (5, \infty_3)\}$.

Since d_4 is the converse of d_3, the construction of a d_4-covering of D_v will similarly follow. □

Theorem 4.4 A minimum d_5-covering of D_v where $v \geq 4$ with padding P satisfies

(i) $|A(L)| = v$ if $v \equiv 0 \pmod{2}$,

(ii) $|A(L)| = 0$ if $v \equiv 1 \pmod{4}$, and

(iii) $|A(L)| = 2$ if $v \equiv 3 \pmod{4}$.

Minimum d_v-coverings of D_v satisfy the same conditions.

Proof. When $v \equiv 1 \pmod{4}$, a decomposition exists by Corollary 2.4 and the result follows. Notice that the vertices of d_5 are of in-degrees 0, 0, 2, and 2. So when v is even, a d_5-covering of D_v will have a padding P where the in-degree of each vertex of P is odd. So for v even, a d_5-covering of D_v with padding P where $|A(P)| = v$ would be minimum (and similarly for a d_0-covering of D_v). When $v \equiv 3 \pmod{4}$, $|A(D_v)| \equiv 2 \pmod{4}$ and in this case a d_5-covering (and similarly for a d_6-covering) of D_v with padding P where $|A(P)| = 2$ would be minimum. In the following cases, we have $V(D_v) = \{0, 1, \ldots, v - 1\}$.

Case 1. Suppose $v \equiv 0 \pmod{4}$, say $v = 4k$. Consider the blocks in $A \cup B$ where $A = \{[j, 2k + j, 2k - 1 + j; 4k - 1 + j]_{d_5} | j = 0, 1, \ldots, 4k - 1\}$ and $B = \{[j, k + 1 + i + j, 1 + 2i + j; 4k - 2 - 2i + j]_{d_5} | i = 0, 1, \ldots, k - 2, j =
$0, 1, \ldots, 4k - 1 \}$ where vertex labels are reduced modulo $4k$. Then $A \cup B$ is a minimum d_5-covering of D_v with padding P where $A(P) = \{(j, j + 1) \mid j = 0, 1, \ldots, 4k - 1\}$.

Case 2. Suppose $v \equiv 2 \pmod{4}$, say $v = 4k + 2$. Consider the blocks in $A \cup B$ where $A = \{[2j, 4k + 1 + 2j, 1 + 2j; 4k + 2j]_{d_5} \mid j = 0, 1, \ldots, 2k\}$ and $B = \{[j, k + 1 + j, 1 + j; 2k + 1 + j]_{d_5} \mid j = 0, 1, \ldots, 4k + 1\} \cup \{[j, k + 2 + i + j, 3 + 2i + j; 4k - 2 - 2i + j]_{d_5} \mid i = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 4k + 1\}$ where vertex labels are reduced modulo $4k + 2$. Then $A \cup B$ is a minimum d_5-covering of D_v with padding P where $A(P) = \{(j, j + 1) \mid j = 0, 1, \ldots, 4k - 1\}$.

Case 3. Suppose $v \equiv 3 \pmod{4}$, say $v = 4k + 3$. Consider the blocks in $A \cup B$ where $A = \{[2j, 4k + 2 + 2j, 1 + 2j; 4k + 1 + 2j]_{d_5} \mid j = 0, 1, \ldots, 2k + 1\}$ and $B = \{[j, 3k - 1 + j, 4k + 2 + j; 4k + j]_{d_5} \mid j = 0, 1, \ldots, 4k + 2\} \cup \{[j, 2k + i + j, 2k + 4 + 2i + j; 2 + 2i + j]_{d_5} \mid i = 0, 1, \ldots, k - 2, j = 0, 1, \ldots, 4k - 1\}$ where vertex labels are reduced modulo $4k + 3$. Then $A \cup B$ is a minimum d_5-covering of D_v with padding P where $A(P) = \{(4k + 1, 0), (4k + 2, 0)\}$.

Since d_6 is the converse of d_5, the construction of a d_6-covering of D_v will similarly follow.

Acknowledgements

The authors gratefully acknowledge the referee’s useful comments and thorough review of the original manuscript.

References

