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THESIS ABSTRACT
AUTOMORPHISMS OF STEINER TRIPLE SYSTEMS
Robert Bentley Gardner, II
Master of Science, August 28, 1987
(B.S., Auburn University at Montgomery, 1984)
95 Typed Pages

Directed by Dean G. Hoffman

Several types of automorphisms of Steiner triple systems are
investigated and necessary and sufficient conditions are presented in
each case. Cyclic Steiner triple systems, reverse Steiner triple

systems, k-rotational Steiner triple systems, and Steiner triple

systems with an involution are covered, with examples for each result.




"To the tree from which this book is made."
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I. INTRODUCTION
This thesis is a survey of the existing literature on the
automorphisms of Steiner triple systems. The major results are the

following:

“A cyclic Steiner triple system of order v exists if and only if v
l or 3 (mod 6), v # 9.
A reverse STS(v) exists if and only if v = 1, 3, 9 or 19 (mod 24).

3 or 9 (mod 24).

A l-rotational STS(v) exists if and only if v

A 2-rotational STS(v) exists if and only if v 1, 3, 7, 9, 15, or
19 (mod 24).

1 or 19 (mod 24).

A 3-rotational STS(v) exists if and only if v

1 or 9 (mod 12).

A 4-rotational STS(v) exists if and only if v

1, 7, or 19 (mod |

A 6-rotational STS(v) exists if and only if v

24).

There exists a STS(v) on {=, a, b, 0, 1, N-1} where v =N + ‘
3, admitting (=) (a, b) (0, 1, ..., N-1) as an automorphism if and
only if v=3 or v=1, 7, 9 or 15 (mod 24), v > 1.
There exists a STS(v) admitting an automorphism of type [f, (v-£)/2,
e |

0, ..., 0] if and only if v = 1 or 3 (mod 6), £ = 1 or 3 (mod 6),f?¢ ﬂ

and (v-f = 0 (mod 4) and v > 2f + 1) or (v-£f

2 (mod 4) and

v ¥ 3£).
/7




9 <
// And now for a few preliminary results and definitions. A
Steiner triple system of order v, denoted STS(v) is a v-element
set, X, of points, together with a set, B, of unordered triples of
elements of X, called blocks, such that any two points of X are

together in exactly one block of PB. An automorphism of a STS(v) is

a permutation w of X which fixes f. A permutation = -of a v
element set is said to be of type [m,, m,, ..., ﬂv] if the

disjoint cyclic decomposition of T contains n; cycles of length i,
and so Zini = v. The orbit of a block under an automorphism, m,

is the image of the block under the various powers of w. A set B

of blocks is said to be a set of base blocks for a STS(v) under the

permutation w if the orbits of the blocks of B produce the

STS(v) and exactly one block of B occurs in each orbit. A

difference triple (mod n) is a triple of distinct positive integers

where either two of the numbers sum to the third, or the sum of all

three is n. An obvious result is the following:

Theorem 1.1. The set of fixed points of an automorphism of STS(v) is
the point set of a subsystem of the STS(v).

Another result concerning subsystems is:

Theorem 1.2. (Doyen-Wilson Theorem) Let v,w = 1 or 3(mod 6) with

w > 2v + 1. Then any STS(v) can be embedded in a STS(w).




Also,
Theorem 1.3. Let 7 be a permutation on a set A. Then there is a
set B_;LA, and a permutation ¢ on B, so that ¢(a) = n(a) for all
a € A, and there is a Steiner triple system on B admitting ¢ as an

automorphism.

Proof: Let B = Zf - {0} and identify a ¢ A with the vector

whose a'th entry is one and all other entries are 0. Now to define
the permutation ¢ on B, permute the coordinates of the vectors by m.
Although A is not a subset of B, the structure of the permutation
on A is preserved, so this will do. Now declare (u,v,w) a triple
if and only if u + v + w = 0. Any pair of vectors u,v ¢ B are in

exactly one triple since u + v + w = 0 for exactly one vector

w of B (u+tv = 0 if and only if u = v).




II. CYCLIC STEINER TRIFLE SYSTEMS

A STS(v) 1is said to be cyclic if it admits an automofphism of
the type [0, ..., 0,1]. Such a system exists if and only if
v=1or3 (mod 6) and v # 9.

In 1897, Heffter [6] made the following observations:

i Heffter's first difference problem. The construction of a

cyclic STS(v) where v = 6n + 1 1is equivalent to partitioning the

set {1, 2, ..., 3n} into triples such that in each triple the sum

of two numbers is equal to the third or the sum of the three is

equal to wv. |

Heffter's second difference problem. The construction of a

cyclic STS(v) where v = 6n + 3 is equivalent to partitioning the {
set {1, ..., 2n, 2n+2, ..., 3n+l} into triples with the same
properties as above. These triples act as difference triples for
the desired systems under the cyclic automorphism.

These problems were first solved by R. Peltesohn [8].

Skolem [12] posed the following restricted version of Heffter's

|
first difference problem: partition the set {1, ..., 2n} into i
|
|

distinct pairs (a_,b_) such that b =a_ +r for r=1, ..., n.
r’'r r r

Such a partitioning is called an (A,n)-system. If such a partition-

ing exists, then the triples (r, ar + n, br +n), r=1, ..., n
represent a solution to Heffter's first difference problem. Skolem

proved the following.



Theorem 2.1. An (A,n)-system exists if and only if n = 0 or 1

(mod 4).

Proof: TIf there is such a partitioning, then br —a =r for

1
r=1, ..., n and } b - X a_=3n (n+l). Also n a_ + % b =

2n(2n+1) : Be b = nion+3) and n = 0 or 1 (mod 4).
2 r 4
Now suppose n = 0 (mod 4) and n = 4s. Consider the pairs:
(s + r -1, 8s -r+1) r=1, ..., 2s $
(r, 4s - r -1) r=1, , s -1
(s+r+1, 3sz = r) r =1, ., 8 - 2 (omit if s = 2)
(s, s + 1)
(28, 43 - 1)
(2s + 1, 6s)

If s =1, take the pairs (1,2), (5,7), (3,6), and (4,8).

Now suppose n = 1 (mod 4) and n = 4s + 1. Consider the pairs:

(s + r+1, 8s - r +3) r =1, , 28
(r, 4s = r + 1) r=1, ..., s
(s +r+2, 33.-1r+1) 5 = il , 5-2 (omit if s = 2)

(s +1, s + 2)

(2s + 1, 6s + 2)

(2s + 2, 45 + 1).




If s = 0, take the pair (1,2). If s =1, take the pairs (2,3),
(8,10), (4,7), (5,9), and (1,6).

These pairs satisfy the conditions of an (A,n)-system.

Example 2.l1. Theorem 2.1 produces an (A,l3)-system with the following
pairs: (4,5), (19,21), (6,9), (18,22), (8,13), (17,23), (3,10),
(16,24), (2,11), (15,25), (i,12), (14,26), and (7,20).

Skolem conjectured and O'Keefe [7] proved that the set

{1, ..., 2n-1, 2n+l} could be partitioned into distinct pairs
(ar,br) with br = a_ +r for r=1, ..., n 1if and only if
n =2 or 3 (mod 4). Such a partitioning is called a (B,n)-system.

Theorem 2.2. A (B,n)-system exists if and only if n = 2 or 3

(mod 4).
Proof: If there is such a partitioning then br —a =r for
r=1, ..., n and Zb_ - Za_ = in(n+l). Also Za + Tb = 2n? + n+l.
r r 2 r r
2
So Zbr = EE—EEBiE and n = 2 or 3 (mod 4).




Now suppose n = 2 (mod 4) and n = 4s + 2. Consider the pairs:
(r, 4s - r + 2) r=1, ..., 2s
(s + r +3, 8s - r+4) r=1, ..., s-1 (omit if s=1)

(5s + r +2, 7s - r +3) r

]
—
-
-

s-1 (omit if s=1)
(2s + 1, 6s + 2)
(4s + 2, 65 + 3)
(4s + 3, 8s + 5)
(7s + 3, 75 + 4)

If s =0 take the pairs (1,2) and (3,5).

Now suppose n = 3 (mod 4) and n = 4s - 1. Consider the pairs:
(4s +'r, 8s - r - 2) r=1, , 28 ~- 2
(r, 4s - r - 1) r=1, ..., s -1
(s +r+1, 3s - r) r =1, ., s - 2 (omit if s=2)
(s, 8 + 1)
(2s, 4s - 1)

(2s + 1, 6s - 1)
(4s, 8s - 1) . .
If s =1 take the pairs (1,2), (3,5) and (4,7). These pairs

satisfy the conditions of a (B,n)-system.

Example 2.2. Theorem 2.2 produces a (B,l4)-system with the following

pairs: (24,25), (6,8), (19,22), (5,9), (18,23), (4,10), (14,21),

(3,11), (17,26), (2,12), (16,27), (1,13), (7,20), and (15,29).




A

Example 2.3. Theorem 2.2 produces a (B,23)-system with the
following pairs: (6,7), (34,36), (11,14), (33,37), (10,15), (32,38),
(9,16), (31,39), (8,17), (30,40), (12,23), (29,41), (5,18), (28,42),
(4,19), (27,43), (3,20), (26,44), (2,21), (25,45), (1,22), (13,35),

and (24,47).
Theorem 2.3. There exists a cyclic STS(v) for all v = 1 (mod 6).

Proof: The triples (r, a + n, b +n) for r =1,

., n with
r r

the ar's and br's as described in theorems 2.1 and 2.2 are

disjoint over {1, ..., 3n} in Skolem's constructions and disjoint
over {l,...,3n-1, 3n+l} in O'Keefe's constructions. Hence the triples
(0, r, br +n) for r=1, ..., n can be considered as the base

blocks of a cyclic STS(v) with v = 6n + 1.

Example 2.4. Theorem 2.3 produces a cyclic STS(79) based on the
(A,13)-system from example 2.1 with the following base blocks:
(o,1,18), (0,2,34), (0,3,22), (0,4,35), (0,5,26), (0,6,39), (0,7,23),
(0,8,37), (0,9,24), (0,10,38), (0,11,25), (0,12,37), and (0,13,33).
The differences between the first two entries of each block cover the

set {l, 2, ..., 13}. The differences between the first and third

entries cover the set {br + 13 r =1, 2, ..., 13} and the




differences between the second and third entries cover the set
{ar + 13l r =1, 2, ..., 13} where the a and br's are as
described in theorem 2.1. Since the union of these three sets is the
set {1, 2, ..., 39}, all desired differences are covered. In
general, the (A,n)-system or (B,n)-system is used in a similar way.

For Heffter's second difference problem, Rosa [10] presented the

constructions.
|
Theorem 2.4. The set {1, ..., n, n+2, ..., 2n+l} can be partitioned
into pairs (a_,b ) with b_=a_ +r for r=1, ..., n 1if and
r''r r r
only if n = 0 or 3 (mod 4). Such a partitioning is called a

(C,n)-system. |

Proof: If there is such a partitioning, then br -a =r for

1 |
r=1, ..., n and Zbr - Zar = En(n+l). Also Zar + Ebr = 2n(n+l1).
So Zbr = Eﬂiﬁiil and n = 0 or 3 (mod 4).

Now suppose n = 0 (mod 4) and n = 4s. Consider the pairs:

(r, 4s - r + 1) r=1, ..., s-1 (omit if s = 1)
(s +r -1, 3s - r) r=1, ..., s-1 (omit if s = 1)
(4s + r +1, 8s ~r +1) r =1, , s-1 (omit if s = 1) |
(5s + r + 1, 7s - r + 1) r=1, ..., s-1 (omit if s = 1)
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(2s - 1, 2s)
(3s, 58 + 1)
(3s +1, 7s + 1)

(6s + 1, 8s + 1).

Now suppose n = 3(mod 4) and n = 4s - 1. Consider the pairs:
(r, 4s - r) r=1, ..., 2s-1
(4s + r + 1, 8s - r) r=1, ., s-2 (omit if s = 2)
(5s + r, 7s - r - 1) r=1, ..., s-2 (omit if s = 2)
(2s, 6s - 1)

(5s, 7s + 1)
(4s + 1, 6s3)
(7s - 1, 7s8).
If s =1 take the pairs (1,2), (5,7), and (3,6).

These pairs satisfy the conditions of a (C,n)-system.

Example 2.5. Theorem 2.4 produces a (C,l5)-system with the following
pairs: (27,28), (7,9), (22,25), (6,10), (21,26), (5,11), (17,24),

(4,12), (20,29), (3,13), (19,30), (2,14), (18,31), (1,15), and (8,23).

Theorem 2.5. The set {1, ., n, n+2, ..., 2n, 2n+2} can be

partitioned into pairs (ar,br) with br =a_ +r for r =1,
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if and only if n = 1 or 2 (mod 4), n # 1. Such a partitioning is

called a (D,n)-system.

Proof: If there is such a partitioning, then br —a =r for

r=1, ..., n and ZIb - Za_ = ln(n+1). Also Ta + Ib_ = 2n® + 2n+l.
r r 2 r r

2
So Ebr sl +45n L2 and n =1 or 2(mod 4).

Now suppose n = 1 (mod 4) and n = 4s + 1 where s > 2. Consider

the pairs:

(r, 4s - r + 2) r=1, ..., 2s
(58 + r, 7s ~ r + 3) r=1, , S
(4s + r + 2, 8s - r + 3) r=1, ., 8-2 (omit if s = 2)

(2s + 1, 63 + 2)
(6s + 1, 8s + 4)
(7s + 3, 75 + 4)
If naQ\S take the pairs (1,5), (2,7), (3,4), (8,10) and (9,12).

Now suppose n = 2 (mod 4) and n = 4s + 2 where s > 2. Consider

the pairs:

(r, 4s - r + 3) r=1, ..., 2s
(4s + r + 4, 8s - r + 4) r =1, , s-1
(5s + r+ 3, 7s - r + 3) r =1, , s-2 (omit if s = 2)
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+

(2s + 1, 6s 3)
(2s + 2, 65 + 2)

(4s + 4, 6s

+

4)

(7s + 3, 7s + 4)

(8s + 4, 8s + 6)
For n =’12 take the pairs (1,2) and (4,6). For n = 6 take the
pairs (1,6), (2,3), (4,10), (5,9), (8,11) and (12,14). These pairs

satisfy the conditions of a (D,n)-system.

Example 2.6. Theorem 2.5 produces a (D,18)-system with the following
pairs: (31,32), (36,38), (8,11), (25,29), (7,12), (24,30), (6,13),
(20,28), (5,14), (23,33), (4,15), (22,34), (3,16), (21,35), (2,17),

(10,26), (1,18), and (9,27).

Theorem 2.6. There exists a cyclic STS(v) for all v = 3 (mod 6),

v # 9.

Proof: The triples (r, a_+n, br + n) for r =1, ..., n with
the ar's and br's as described in theorems 2.4 and 2.5 are

disjoint over the sets {l, ..., 2n, 2n+2, ..., 3n+l} and

{1, ..., 2n, 2n + 2, ..., 3n, 3n + 2} (n # 1), respectively. Hence,

as in theorem 2.3, the triples (0, r, br + n) for r =1,

., N
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along with the block (0, %V, %v) can be considered as base blocks
for a cyclic STS(v) with v = 6n + 3, n # 1. There is not a cyclic
STS(9) since this would amount to partitioning the set {1,2,4]}

into a difference triple.

So there exists a cyclic STS(v) for all v = 3 (mod 6), v # 9.

Example 2.7. Theorem 2.6 produces a cyclic STS(93) based on the
(C,15)-system from example 2.5 with the following base blocks:
(0,1,43), (0,2,24), (0,3,40), (0,4,25), (0,5,41), (0,6,26), (0,7,39),
(0,8,27), (0,9,44), (0,10,28), (0,11,45), (0,12,29), (0,13,46),

(0,14,30), (0,15,38) and (0,31,62). As in example 2.4, the first 15

base blocks cover the differences in the set {1, 2, ..., 15}/
{ar+ 15| r =1, 2, ..., 15}U{br+ 17|r = 1, 2, ..., 15} =

{1, 2, ..., 46} - {31}. Now, the last block covers the difference
31. So all desired differences are covered.

A simple result that follows from this is the following:

Theorem 2.7. Given an automorphism of type [0, ., B, ..., 0] on a
set of size v, where B = v/L, that is an automorphism consisting of
B cycles of length L each, there is a STS(v) on this set

admitting this automorphism if and only if v = L¢B = 1 or 3 (mod 6)

and B # 1 when v = 9. Such a S8TS(v) is called semi-regular.

y Vi hd /7
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Proof: Clearly the condition is necessary. Now for v = 1 or 3 (mod
6) and v # 9, there exists a cyclic STS(v), that is a STS(v)
admitting a cycle a of length v as an automorphism. Now the
permutation aB consists of B disjoint cycles of length L, and
this is an automorphism of the STS(v). In the case L =3 and

B = 3, the blocks (0, 1, 2), (0, 5, 6), (0, 7, 8), and (1, 3, 7) are

base blocks for a STS(9) wunder the automorphism (0, 4, 2) (1, 3, 8)

(5, 7, 6).




ITI. REVERSE STEINER TRIPLE SYSTEMS
A STS(v) 1is said to be reverse if it admits an automorphism of
the type [1, (v-1)/2, 0, ..., 0]. It will be shown that a reverse
STS(v) exists if and only if v = 1, 3, 9 or 19(mod 24). The

following five theorems are due to Rosa [11].

Theorem 3.1. If there exists a reverse STS(v) then v Z 1, 3, 9 or

19 (mod 24).

Proof: Suppose there is a reverse STS(v) on the set

{=, al, bl’ o a(v-l)/Z' b(v—l)/Z} admitting the automorphism

(“)(al,bl) ... (a The STS(v) must contain

(v-1)/2’ b(v—l)/Z)'

(v-1)/2 blocks of the form (=, a., bi) and no other blocks

containing <«. These blocks are fixed and the remaining % (v-1)(v-3)

blocks are interchanged in pairs. These blocks are of the forms:

(i) (ai, aj, ak) » (iii) (ai’ a., b )

j k

(ii) (bi, b., b) (iv) (ai, bJ., bk)

J k
where the number of blocks of forms (i) and (ii) is the same, say

X, and the number of blocks of forms (iii) and (iv) is the same, say

(v-1)/2

airs of
2]?

Y. So X +Y = l(lv(v—l) - i(v—l)]. There are [
26 2
a's, each block of form (i) containing three pairs of a's and each

(V"l)/2] )

block of form (iii) containing one pair of a's. So 3X + Y = ( 9

15

il e S i
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Solving these two equations, X = Z%(v-l)(v-3) and Y = I%(v-l)(v—3).

Since v = 1 or 3 (mod 6), it must be that v = 1, 3, 9 or 19 (mod 24).

Theorem 3.2. Let M = 6m and let the sets A, B, C be as follows:

(1) if m = 0 or !l (mod 4)
A=1{1, 2, ..., M}
B=1{1, 3,5, ..., M-1}
C=1{2, 4, ..., M}
Notice A =B UC.

(2) if m= 2 or 3(mod 4)
A={1, 2, ..., M-1, M+1}
B={1, 3, 5, ..., M-3, M}

’ C

{2, 4, 6, ..., M=2, M+2}

Then there exists a set of triples A(A,B) =
{(Pr, Qr’ Zr) Qr = Pr + Zr, r=1, ..., 3m} such that every element
of A appears exactly once in {Pr r=1, ..., 3m} L}{er r=1, ...,3m}
and every element of B appears exactly once in {Zrl r=1, ..., 3m}
and there exists a set of triples A(C) = {(ur, Vo wr)l wo=u + A\
r=1, ..., m} whose elements cover the whole of C exactly once.

CYx

Proof: Define the triples of the set A(A,B) as follows:
(1) (r, M -r +1, m - 2r + 1), r =1, ..., 3m if

0 or 1 (mod &)

m
(2) (1, m+ 1, 6m), (r, ém - r + 1, 6m - 2r + 1), r = 2, 3, ..., 3m

if m = 2 or 3 (mod 4).

Also define the triples of the set A(C) as (2r, 2pr + 2m, 2qr + 2m),
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r=1, 2, ..., m where (pr, qr) are pairs of an (A,m)-system or
(B,m)-system according to whether m = 0 or 1 (mod 4) or m = 2 or 3
(mod 4). These sets meet the requirements of the sets A(A,B) and

A(C).

Example 3.1. Suppose m =4, M =24 and A= {1, 2, ..., 24},

B={1, 3,5, ..., 21, 23}, and C = {2, 4, 6, ..., 22, 24}. Then .
theorem 3.2 yields the following collections of triples: A(A,B) =

(1, 24, 23), (2, 23, 21), (3, 22, 19), (4, 21, 17), (5, 20, 15), (6,
19, 13), (7, 18, 11), (8,7, 9), (9, 16, 7), (10, 15, 5), (11, 14, 3),
and (12, 13, 1); A(C) = (2, 10, 12), (4, 18, 22), (6, l4&4, 20), and (8,
16, 24). A(C) 1is based on the (A,4) - system listed in chapter 2.
Since this system covers the set {1, 2, 3, 4, 5, 6, 7, 8}, the triples
of A(C) cover the set C. Also, since qr =P, + r for the pairs in

the (A,4)-system, the third element of each triple will be the sum of

the other two.

Theorem 3.3. Let M = 6m + 2, and let the sets A, B, C, A= B{UC be

as follows:

| A={1,2, ..., 6m+ 2} - {3m + 1, 6m + 2}
' B={l,2, ..., 2m, 3m + 2, 3m + 4, ..., 5m - 2, 5m}
| .
C={2m+1, 2m+ 2, ..., 3m, 3m + 3, 3m + 5, ..., 5m -1, 5m + 1,

5Sm + 2, ..., 6m + 1}.
Then there exists a set of triples A(A,B) = {(Pr, Qr’ Zr) Qr= Pr + Zr,
r=1, ..., 3m} such that every element of A appears exactly

once in {Pr r=1, ..., 3m}y {Qr r=1, ..., 3m} and every element

cil s e e
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of B appears exactly once in {Zrl r=1, ..., 3m}, and there exists
a set of triples A(C) = {(ur, Vo wr)l u +V_+w = 2M, r = 1, ...,m}.
such that every element of C 1is covered exactly once by

{ur r=1, ..., m}y {vr| r=1, ..., m}U {wr r=1, ..., m}.

Proof:
Construct the set A(A,B) as follows:

(1) if m is even, say m = 2k, then take

(k +1 +r, 1tk +1-1r, 10k - 2r) r =20, 1, , 2k-1
(r +1, 4k - r, 4k - 1 - 2r) r=0,1, ..., k-1
| (4k + 1 + r, 6k - r, 2k - 1 - 2r) r=20,1, ..., k-1
(8 + 1 +r, 12k + 1 - r, 4k - 2r) r =0, 1, ..., k-1
(7k + 1, 9k + 1, 2k)
(6k + 2 + r, 8k - r, 2k - 2 - 2r) r=20,1, ..., k-2 (omit

if k = 1).

(2) if m is odd, say m = 2k + 1, then take

(k +2 +r, 11k +7 -1, 100k +5-2r) r=20, 1, ..., 2k
(r + 1, 4k + 3 - r, 4k + 2 - 2r) r=20,1, ..., k
: (6k + 5+ r, 8k +5-r, 2k - 2r) r =0, 1, ..., k-1 (omit
| if k = 0)
(bk + 4 + r, 6k + 3 - r, 2k -1 -2r) r =0, 1, ..., k-1

(omit if k = 0)
(8k + 6 +r, 12k + 7 - r, 4k + 1 - 2f)r =0, 1, ..., k-1
‘ (omit if k = 0)

(7k + 5, 9% + 6, 2k + 1)

il e . e
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Now for A(C) take
(2a +r, 5Sm + 3 - 2r, Sm + 1 + r) r=1, 2, ..., m.

These triples satisfy the necessary conditions.

Example 3.2. Supposem = 4, M = 26 and A = {1, 2, ..., 12, 14, 15,
., 25}, B = {1, 2, ..., 8, 14, 16, 18, 20}, and C = {9, 10, 11, 12,
15, 17, 19, 21, 22, 23, 24, 25}. Then theorem 3.3 yields the following
collections of triples: A(A,B) = (3, 23, 20), (4, 22, 18),
I (5, 21, 16), (6, 20, 14), (17, 25, 8); (18, 24, 6), (1, 8, 7),
(2, 7, 5), (9, 12, 3), (10, 11, 1), (15, 19, 4), and (l4, 16, 2);

A(C) = (9, 21, 22), (10, 19, 23), (11, 17, 24) and (12, 15, 25).

Theorem 3.4. Let M =6m - 1, m > 2 and let the sets A, B, C be as
follows:

A=1{1, 2, ..., 6m - 1} - {3m}

B=1{1,3 ..., 2m-1,2m+ 1, 2m + 2, ..., 3m -1, 3m + 1,

3m + 2, ..., 4m - 1, 5m}
C=1{2,4, ..., 2m -2, 4m+ 1, 4m + 2, ..., 5m -1, 5m + 1,
5m + 2, ..., 6m - 1}

|A| = 6m - 2, |B| = 3m-1, |C| = 3m - 3,

A=BUCU {2m, 4m}.
Then there exists a set of triples A(A,B) = {(Pr, Qr’ Zr) Qr = Pr + Zr,
r=1, ..., 3m-1} such that every element of A appears exactly once
in {Pr r=1, ..., 3m - 11 {err =1, ..., 3m-1} and every element

of B appears exactly once in {Zr | r=1, ..., 3m-1} and there

il . R
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exists a set of triples A(C) = {(ur, Vo wr)l wo=u + V., T = 1,

m-1} such that every element of C is covered exactly once by

{ur r=1, ..., m-1} U {vr r=1, ..., m-1}U {wrl r=1, ..., m-1}.

Proof: Construct the set A(A,B) as follows:
(1) if m is even, say m = 2k, then take
(1, 10k + 1, 10k)
(r+2, 6k-1-r, 6k-3-2r) r = 0, 1, ..., 2k-2
(2k+1l+r, 10k-r, 8k-1-2r) r =0, 1, ..., k

(7k+r, 9k-1-r, 2k-1-2r) r

]
o
—
d
—

(3k+2+r, 1llk-r, 8k-2-2r) r =0, 1, ..., k-2 (omit if k = 1)
| (6k+l+r, 12k-l-r, 6k-2-2r) r = 0, 1, ..., k-2 (omit if k = 1).
‘ (2) if m is odd, say m = 2k+l, k > 1, then take
| (1, 10k+6, 10k+5)

(8k+3, 8k+4,1)

(6k+4+r, 12k+5-r, 6k+1-2r) r =0, 1, ..., 2k-2

(k+l+r, 9k+4-r, 8k+3-2r) r

[]
o
—

-
=
|
—

(2k+3+r, 10k+5-r, 8k+2-2r) r =0, 1, ... k

(2k+1+r, 4k+4-r, 2k+3-2r) r

]
o
—

(2+4r, 6k+2-r, 6k-2r) r = 0,1, ..., k-2 (omit if k = 1)
(3k+4+r, 5k+3-r, 2k-1-2r) r = 0, 1, ...,k-2 (omit if k = 1).
Now for A(C) take

(2r, Sm~r, Sm+r) r =1, 2, ..., m - 1.

These triples satisfy the necessary conditions.
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Example 3.3. Suppose m =4, M = 23, and A = {1, 2, ..., 11, 13, 14,
., 23}, B = {1, 3, 5, 7, 9, 10, 11, 13, 14, 15, 20}, and C = {2, &,

6, 17, 18, 19, 21, 22, 23}. Then theorem 3.4 yields the following

collection of triples: (1, 21, 20), (2, 11, 9), (3, 10, 7), (4, 9, 5),

(5, 20, 15), (16, 19, 13), (7, 18, 11), (14, 17, 3), (15, 16, 1),

(8, 22, 14), and (13, 23, 10); A(C) = (2, 19, 21), (&, 18, 22), and

(6, 17, 23).

Theorem 3.5. Let v = 1, 3 or 9 (mod 24), v # 25. Then there exists a

reverse STS(v).

Proof:

Clearly the theorem is true for v = 3. For v = 9, consider the

STS(9) with blocks

(=, a,, b,) (a,, a,, a, (a,, a,, b,;)
(2, a,, b,) (b,, by, by) (b,, b,, a,)
(=, a,, by) (a,, a,, by) (ay, a,, b,)
(=, a,, b,) (b,, b,, a,) (by, b,, a,).

This admits (=) (a,,b,)(a,,b,)(a,,b,)(a,,b,) as an automorphism. So
the theorem holds ¥or v = 9.
Now let N = (v-1)/2 and let the elements of the system be =,

a,, ..., a b;, ..., b so that the automorphism will be

N
).

N!

(=)(a,,b;) ... (aN, bN

(1) Suppose v = 3 (mod 24), say v = 24m + 3 and so

N = 12m + 1. Consider blocks of the form (=, a, bi) i=1, ..., N.
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These are all the blocks containing <«. Now consider the blocks

(a,, ) 1o 1y 250 veis e N

a , b,
i i+Zr 1+Qr

(b,, b

i i+7 ai+Q ) i=1,2, ..., N
r

r

where the subscripts are reduced modulo N, except "N" is used instead
of "0", and (Pr, Qr’ Zr) run over all triples of A(A,B) as
described in theorem 3.2.

Now add the blocks

(ai, a0 3 i=1,2, ..., N

(byy By, » b ) i=1,2, ..., N
r r

where (ur, Vo wr) run over all triples of A(C) as described in

theorem 3.2.

(2) Suppose v = 9 (mod 24), say v = 24m + 9 and so N = 12m + 4.

As in case 1, take the blocks of the form (=, a, bi)

i=1, 2, ..., N, and also take
(ai, a;,z bi+Q ) i=1,2, ..., N
r r
(b,, b ) i=1,2, ..., N

. a,
i i+Z ' Ti+Q
r r

where (Pr, Qr’ Zr) run over all triples of A(A,B) as described in

theorem 3.3. Add the blocks

(a., a, y &,
i i+u i+u +v
| r r r

| (b <) b. ’ .
1 1+u 1+u +v
'3 r r

where (ur, Vo wr) run over all triples of A(C) as described in
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theorem 3.3. Now add the blocks:
(ag,
(
(8 vom+2’ 21+0me3’ Piedmel
(55 s yome3? 2iv6me2’

a.)

i+3m+l’ Pi+om+3’ 3%

35 9m+3’ Pivbme2’
25 3m+l’ 2i+ome3’ Pi)

)

(b

(b )

i+6m+2’ Ci+om+3’ 2i+3mel

)
)

(855 8530417 2i46me2

i (bi' bi+3m+1” bi+6m+2

where i ranges from 1 to 3m+l.

(3) Suppose v = 1 (mod 24), say v = 24m+l (m#l) and so N =
12m (m > 2).
Take the same blocks as described in case (1) but use the
A(A,B) and A(C) as described in theorem 3.4. Now add the

blocks

(350 25i0m* Piven’’ Pir Piron’ ivem’
(

25 +3m* 2i+om’ 2100 (Piysm Piiomr 33)
(

2;46m’ 21+0m’ Pissm’’ (P

)) (bi) bi"‘

)

. b, a,
i+6m’ "i+9m’ "i+3m

)

(a,,

a, a,
i i+3m’ “i+6m 4

3m bi+6m

for i=1, 2, ..., 3m and

(330 350 2iaam)® Pir Piion’ Piesn)’

(8 14m* 2i+6m’ 2ie8m)’ (P

(a i ai), (bi+8m.
(a

), (b

)

i+4m’ bi+6m’ bi+8m

b bi)

i+8m’ %i+10m i+10m’

)

i+2m’ 2i+6m’ 2i+10m i+2m’ bi+6m’ bi+10m

for i=1, 2, ..., 2m.
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These blocks satisfy the conditions for a STS(v) and clearly admit

the desired automorphism.

Example 3.4. Suppose v =99, m = 4 and N = 49. Then, by case 1 of
theorem 3.5, a reverse STS(99) can be constructed on the set
{=, a,, a,, ..., a9, b, by, ..., b,,} admitting the automorphism

a = (=)(a,,b,) (a,,b,) ... (a,,, byy). Define x as a pure difference

(mod N) if it is the difference (mod N) associated with the subscripts

of a pair of elements of type (ai, aj) or (bi, bj)' Define x as a

mixed difference (mod N) if it is the difference (mod N) associated

with the subscripts of a pair of elements of type (ai’bj)'
So the mixed differences should cover the set {0, 1, 2, ..., (N-1)/2}
and the pure differences should cover the set ({1, 2, ..., (N-1)/2}.

First, take the blocks (e, a, bi) for i =1, 2, ..., 52. This

takes care of all blocks containing « and all blocks containing a
pair of elements with mixed difference 0. Using A(A,B) as described
in example 3.1, we get the following blocks, along with their images

under a: (a;, a; .4, b;), (a5, a5, by o)y (a5, a; 100 by o0),

(855 25,170 Piyag)r (@ 25150 Do) (aps 2, 40 i1l (B30 gy

Pir1g)r (@5 85,90 Byyyg)s (g ay 00 b))y (a5, 2, 00 by i0),

(a,,

10 3543 bi+l4 b ) for i=1, 2, ..., 49.

), and (a;, a; 55 byyg
These cover all pure differences in the set B described in example
3.1, that is the set {1, 3, 5, ..., 23}. They also cover all mixed

differences in the set A = {1, 2, ..., 24}, from example 3.1. Now,

using A(C) as described in theorem 3.2, we get the blocks:
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(a3r 33490 3341300 (3 35,5 35,550y (a4, 2,60 a;,5), and
(ai, ai+8’ ai+24) for i=1, 2, ..., 49. These cover all pure

differences in the set C = {2, 4, 6, ..., 24} from example 3.1. So
all desired mixed and pure differences are covered, and these are the
blocks of a reverse STS(99). Similarly, in general, the mixed
differences in the set A {J {0} and the pure differences in the sets

B and C are covered, and these are all the desired differences.

Example 3.5. Suppose v = 105, m =4 and N = 52. Then, by case 2 of
theorem 3.5, a reverse STS(105) can be constructed on the set

{=, a,, a,, ..., ag,, b;, by, ..., b,,} admitting the automorphism

a = (»)(a,,b,) (a,,b,) ... (az,, bg,). First take the blocks

(=, a,, bi) for i=1, 2, ..., 52. This takes care of all blocks
containing <« and all blocks containing a pair of elements with mixed
difference 0. Using A(A,B) as described in example 3.2, we get the

following blocks, along with their images under a: (ai, ai+20, bi+24)’

b a

(330 351190 Piypg)r (350 235,060 Piaga)s (350 35,000 Piige) (350 3y e

Biras?s (25 35,60 Byion)y (ags ag g0 by o)y (85, a5 by o),
a3y a;,30 Pyypp)s (ago ag s byyy)y (ayy ag,, by o), and
(ai, a0 bi+16) for( i=1,2, ..., 52. These cover all pure

differences in the set B = {1, 2, ..., 8, 14, 16, 18, 20} from
example 3.2. They also cover all mixed differences in the set

A={1, 2, ..., 12, 14, 15, ..., 25} from example 3.2. Now using

A(C) ' as described in example 3.2, we get the following blocks, along
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with their images under a: (ai, a;.g ai+30), (ai, a0’ ai+29),

and (ai, ) for i=1, 2, ..., 52.

834127 %3427

These cover all pure differences in the set C = {9, 10, 11, 12, 15,

(a5, 25,11 3549807

17, 21, 22, 23, 24, 25} from example 3.2. So all pure and mixed
differences except 13 and 26 have been covered. Now, add the following

blocks, along with their images under a: (ai, 3,397 bi+26)’ (ai+13,

b.), (a,

354390 Py 1426 2i+397 P

and (ai, for i =

14137 34137 2i426)

l, 2, ..., 13. These cover the missing differences, and so these are
the blocks of a reverse STS(105). Similarly, in general, the blocks
based on A(A,B) and A(C) cover all mixed differences in the set

A U {0} and all pure differences in the sets B and C. These are
all the desired differences except 3m + 1 and 6m + 2 which are

covered by the addition of the other blocks.

Example 3.6. Suppose Vv =47, m =4 and N = 48. Then, by case 3 of
theorem 3.5, a reverse STS(97) can be constructed on the set

{=, a,, a,, ..., 8,4, b;, by, ..., b,,) admitting the automorphism

a = (=)(a,,b;)(a,,b,) ... (a,g, b,e). First, take the blocks

(=, a, bi) for i =1, 2, ..., 48. This takes care of all blocks

containing e and ‘411 blocks containing a pair of elements with mixed
difference 0. Using A(A,B) as described in example 3.3, we get the

following blocks, along with their images under a: (ai, a.,20’ bi+21)’

(330 25490 Pragr)y (350 85090 Piygo)r (250 35,50 Digeds (B 334

Piv20?r (850 35,090 Piig)s (a5 a5 000 Byig)y (a5, @y 4, By 00,
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b b ), and

(a;s 85,10 Biyye)r (50 35,040 Piiog (a;5 3;,107 Piya3)

for i =1, 2, ..., 48. These cover all pure differences in the set B
= {1, 3, 5, 7, 9, to, 11, 13, 14, 15, 20} from example 3.3. They also
cover all mixed differences in the set A = {1, 2, ..., 11, 13, 14, ...,
23} from example 3.3. Now using A(C) as described in example 3.3,
we get the following blocks, along with their images under a:

(a., a and for

it Bien B5409)0 (850 a5 s a5 00, (85: 85,60 25,93)

i=1,2, ..., 48. These cover all pure differences in the set C =
{2, 4, 6, 17, 18, 19, 21, 22, 23} from example 3.3. So all mixed
differences are covered except 12 and 24. All pure differences are
covered except 8, 12, 16, and 24, The following blocks cover these

(a,. a

differences: (ai, a:,36° bi+24)’ 1412’

i+367 Pi)r (85,040 35,340 By)

and (a.,

i 3i412? ai+24) for i=1, 2, ..., 12; and (ai, a

148’ 214167
(

(a,

3:,16° 21424’ 354320 (34,390 3,400 3;) and (a,

+8" 314247 23440
for i =1, 2, ..., 8. Similarly, in general, the blocks based on
A(A,B) and A(C) cover all mixed differences in the set A {J {0} and
all pure differences in sets B and C. These are all the desired
mixed differences except 3m and 6m and all the desired pure differences
except 2m, 3m, 4m and 6m. These differences are covered by the
addition of the other blocks.

In the same paper, Rosa also showed the existence of a reverse
STS(19). Consider:

(=, a;, bi) i=1,2, ..., 9

(31’ - 37)) (az; ay, aa), (aay Qg a,), (al’ gy a,),

(az’ ag, a7), (ag: a,, aa)p (ax) az, bs)’ (alr a4, bs)’




28

(a,, ag, b,), (a,, as, by), (a,, ag, by), (a,, ag, b,),
(a,, ag, by), (a,, a,, b;), (a,, a,, b)), (a,, ag, by),
(a;, ag, b,), (ag, ay, by), (a,, a,, b)), (a,, a,, by),
(a,, a4, bg), (a,, ag, b,), (a,, a,, by), (a,, a,, b,)
along with the images of these blocks under a = (=)(a,,b,)
(ag,b,). These are the blocks of a STS(19) admitting a as a
permutation.
Doyen presented a reverse STS(25) [4]. Unfortunétely\there were
typographical errors in the paper. It was similar to the following
reverse STS(25):
(=, a, bi) i=1, ..., 12
(a,, a,, b,), (a,, a,, a,), (a,, a,, by), (a,, b,, b,),
(ag, a,, by), (ag, a,, a,), (ag, ag, b,), (a,, ag, bg),
(ag, a;,, byz), (a0, ay,, a,,), (ag, a,4, b;,), (a,, a,,, b,4),
(a,, ag, ay), (a,, ag, a,,), (a;, ag, b,,), (a,, a,, by),
(a,, ag, a,,), (a,, ag, a,,), (as, ag, b,,), (a,, ag, a,4),
(a,, a,, a,,), (a,, a,, b,,), (ay, a,, a,,), (a,, a,, b;,),
(a,, ag, by), (a,, ay, b,;,), (a,, a,, a,), (a,, a,, a,,)
(a,, by, by,), (a,, by, b,,), (ay, by, a,,), (a,, by, b;;)
(a,, bg, a,,), (a,, bg, a,), (a,, bg, by), (a,, bg, b,;,)
(a,, b,, b,,), (a,, b,, by), (a,, b,, a,,), (a,, b,, a,)
(a,, bg, b,,), (a,, by, a,,), (ay, by, b,4), (a,, by, a,,)

along with the images of these blocks under a = («)(a,,b,)...(a,,,b;,).

These are the blocks of a STS(25) admitting a as a permutation.
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This system contains three subsystems of order 9, namely [@, 1, 2, 3,
4, 1+, 2*, 3", 4'}, {=-, 5,6, 7,8, 5, 6' 7', 8} and {=, 9, 10,
11, 12, 9', 10', 11°', 12'}. Teirlinck [l4] completed the problem with

the following two theorems.

Theorem 3.6. The set {2, 3, ..., 2n-1, 2n, 2n+2, 2n+4, 2n+5, i

8n+l, 8n+2, 8n+4} can be partitioned into 4n pairs (pr,qr) such

that Q. - pP_ =T for r =1, ..., 4n,.

Proof: For n > 1, consider the pairs:

(2+i, 4n+2-i) i =0, ..., 2n-2,
(4n+4+i, 8n+l-i) i =0, ..., n-2,
(5n+2+i, 7n+l-i) i =1, ..., n-2 (omit if n = 2),

(2n+2, 6n+l),
(4n+3, 6n+2),
(7n+1, 7n+2),
(8n+2, 8n+4).
For n =1 consider (2,6), (4,7), (10,12), (8,9).

These pairs satisfy the necessary conditions.

Example 3.7. Suppose n = 4, and consider the set {2, 3, 4, 5, 6, 8,
10, 11, ..., 25, 26, 28}. Then theorem 3.6 yields the following pairs:

(22,23), (26,28), (18, 21), (6,10), (15,20), (5,11), (17,24), (4,12),

(16,25), (3,13), (8,19) and (2,14).
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Theorem 3.7. There exists a reverse STS(v) for every v = 19 (mod

24), v > 19.

Proof: Let v = 24n + 19 (n > 0) and choose a reverse STS(9) on the
elements {«, a, a', b, b', ¢, ¢', d, d'} admitting the automorphism
(=)(a,a')(b,b')(c,c')(d,d'). Now consider the 12 blocks of this

STS(9) along with the images of the blocks (<, 0, 12n+5), (a, O,
4n+1), (b, 0, 6n+l), (¢, 0, 6n + 3),(d, 0, 12n + 3), and (0, r, 4n + P,
+r) for r =1, ..., 4n where pr is as described in theorem 3.6,

under the various powers of the permutation ® = («)(a,a') (b,b')
(c,c') (d,d') (0, 1, ..., 24n + 9). These are the blocks for a
STS(24n + 19) which admits ® as an automorphism. Now the permutation

a = w12n+5 is a permutation of type [1l, 12n + 9, 0, ..., 0] and the
STS (24n + 19) admits a as an automorphism. So, the theorem

follows.

Example 3.8. Suppose n =3 and v = 91. Consider the reverse STS(9)
with blocks: (=, a, a'), (=, b, b'), (=, ¢, c'), (=, d, d'),

(a, d, ¢'), (a', d', ¢), (b, d, a'), (b', 4', a), (c, d, b'), (c', d',
b), (a, b, ¢) and (a', b', c'). These blocks include all possible
pairs of the forms (x,y), (x',y) or (x',y') where x, y ¢ {a, b, c, d}.

Now add the triples («, 0, 41), (a, 0, 13), (b, 0, 19), (¢, 0, 1), and

(d, 0, 39) and their images under w = (=)(a,a') (b,b') (c,c') (d,d!')
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(0, 1, ..., 8l). These triples contain all pairs of type (=,x),
(a,x), (a',x), (b,x), (b',x), (c,x), (c¢',x), (d,x), and (d',x) where
X € Zg,, and all pairs of numbers with differences 13, 19, 21, 39, and
41. Now based on the number pairs in example 3.7, add the triples
(o, 1, 35), (o, 2, 40), (0, 3, 33), (0, &4, 22), (O, 5, 32), (0, 6, 23),
(o, 7, 36), (o, 8, 24), (0, 9, 37), (0, 10, 25), (0, 11, 31), and (O,
12, 26) and their images under w. These triples include all number
pairs with differences in the set {r, P+ 12, q. + 12|r=1,2, ...,12}
= {1, 2, ..., 12, 14, 15, 16, 17, 18, 20, 22, 23, ..., 37, 38, 40}. So
all desired pairs are present and this is a STS(91) on the set ({=, a,
a', b, b', ¢, ¢*, d, d', 0, 1, ..., 81}. Similarly, in general, the
blocks based on the pairs of theorem 3.6 cover all differences in the
set {1, 2, ..., 4n, 4n + 2, 4n + 3, ..., 6n-1, 6n, 6n+2, 6n+4, 6n+5,
., 12n+1, 12n+2, 12n+4}, and the other blocks cover the remaining
differences and desired pairs.

So, in conclusion a reverse STS(v) exists if and only if v = 1,

3, 9 or 19 (mod 24).




4 IV. k-ROTATIONAL STEINER TRIPLE SYSTEMS

A STS(v) 1is said to be k-rotational if it admits an

automorphism of type [1, O, ..., O, k, 0, ..., 0], that is, an
automorphism with one fixed point and k cycles of length (v-1)/k
each. Necessary and sufficient conditions exist for k =1, 2, 3, 4
and 6.

Phelps and Rosa [9] presented the results for k = 1, 2, and 6.

Theorem 4.1. If there exists a l-rotational STS(v) then v = 3 or ¢

(mod 24).

Proof: Let X =12 fe} and let o = («)(0, 1, ..., v-2) be an

v-1
automorphism of a l-rotational STS(v) with point set X. Now, there
are %(V—l) blocks containing «, each of the form (e, i, i + %(v—l)).
All blocks of the STS(v) not containing <« are partitioned into
orbits under « of length v-1 except possibly a short orbit Q, of
1 . . 1 2
length 3 (v-1) which contains the block (O, 3 (v-1), 3 (v-1)).

No l-rotational STS(v) contains blocks of Q, since this would

require v Z 1 (mod 6), and also, the remaining % (v-1)(v-5) blocks

] L. A= . 1 .
not in Q, or containing = must be partitioned into T (v-5) orbits

1

of length wv-1. But if v = 1 (mod 6) then 6 (v-5).

So the l(v—l)(v—3) blocks not containing = must be partitioned
6

into %(v—3) orbits of length wv-1. So v = 3 (mod 6).

32
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(v-1)/2

Since v-1 1is even, the automorphism a is a permutation
of type [1, % (v-1), 0, ..., 0]. So the l-rotational STS(v) is also

a reverse STS(v) and so v = 1, 3, 9 or 19 (mod 24). Combining these

conditions on v, we get v = 3 or 9 (mod 24).

Theorem 4.2. If v = 3 or 9 (mod 24) then there exists a l-rotational

STS(v).

Proof: Let v = 3 or 9 (mod 24) and let X = Zv_lLJ {=}.

Define a set B of blocks on X as follows: p = B, J B, where

B, = (= 1, 1+ 21| i =0, 1, ..., 2(v-3)}

B, = {(i, i+r, i + br+n)| i =>1, 2, «.., v-2; r=1, 2, ..., n}
where {(ar,br) r=1,2, ..., n} 1is any (A,n)-system with
n = (v-3)/6. Since v = 3 or 9 (mod 24), n = 0 or 1 (mod 4) such an
(A,n)-system exists. These blocks satisfy the conditions for a STS(v)
that admits the automorphism a = («)(0, 1, ..., v-2).

So a l-rotational STS(v) exists if and only if v =3 or 9

(mod 24).

Example 4.1. Suppose n = 13 and v = 8l1. Then theorem 4.2 produces
a l-rotational STS(8l) based on the (A,13)-system of example 2.1 with
blocks in B =8,{ B, where B, and B, are as follows:

B, = {(», 0, 40) and its images under a = (=) (0, i, ..., 79)}; B, =

{¢o, 1, 18), (o, 2, 34), (o, 3, 22), (0, 4, 35), (0, 5, 26), (O, 6,

i
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36), (o, 7, 23) (o, 8, 37), (o, 9, 24), (0, 10, 38), (0, 11, 25), (O,
12, 39), (0, 13, 33) and their images under a}. All blocks
containing <« or a pair with difference 40 are contained in B,. The
blocks in B, contain any pair whose difference is in the set

{r, a_ + 13, br + 13 r=1,2, ..., 13} = {1, 2, ..., 39}. So alil
desired differences are covered. Similarly, in general, B8, has all
blocks containing « and any pair with difference (v-1)/2 1is in a
block of B,. Any pair with difference in the set ({r, a_ + n, b +n

r

r=1,2, ..., n} = {1, 2, ..., (v-3)/2} is in a triple of B,.

Theorem 4.3. If there exists a 2-rotational STS(v) then v = 13 or

21 (mod 24).

1 1
Proof: Let X = {«=, 0,, 1,, ..., [E(V‘l)]1» 0,, 1,, ..., [E(v—l)]z}

1 1
and let o = («)(0,, 1,, ..., [E(V'l)]x) (0,, 1,, ..., [E(V'l)]z) be
an automorphism of a 2-rotational STS(v) with point set X. If

a(V—l)/4

%(v—l) = 0 (mod 2) then is a permutation of type

[l, %(v—l), 0, s 0] and the STS(v) 1is a reverse STS(v). But a

reverse STS(v) does not exist for v = 13 or 21 (mod 24).

Theorem 4.4. If there exists a cyclic STS(v) then there exists a

2-rotational STS(2v+1).

Proof: Let V = Zv and y = (0, 1, ..., v-1) be the point-set and
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automorphism, respectively, of a cyclic STS(v) with B as its set of
blocks. Now let W = {=, 0,, 1,, ..., (v-1),, 0,, L,, ..., (v-1),}.
Define C =C,y C,U C, where

C, = {(=, i,, i,) | i=0,1, veey v-1}

C, = [(i,, (i-3),, (i+j),) | i=0,1, ..., v-l3 5 =1,2, ...,

(v-1)/2}

Cy = {(iy, 3, k) | (1,3,K) ¢ B}
Now, the set W 1is a point-set and the set C is a set of blocks for

a 2-rotational STS(2v+l) with automorphism a = (=)(0,, 1,,

(V-l)l) (02) 12’ veey (V-l)z)-
Theorem 4.5. Any l-rotational STS(v) is also 2-rotational.

Proof: A l-rotational STS(v) exists if and only if v = 3 or 9 (mod

24), and so %(v—l) = 0 (mod 2). If a is a permutation of type [1,

0, ..., 0, 1, 0] of a l-rotational STS(v) then a® is a permutation
of type [1, 0, ..., 0, 2, 0,..., 0] and so the STS(v) 1is also

2-rotational.

Theorem 4.6. Let n be a natural number, and let

S(n) = {1, 2, ..., 2n-1, 2n+l, 2n+2, ..., 4n-1}
{2, 3, 4, ..., 2n} if n is odd
T(n) =
{1, 3, 4, ..., 2n} if n is even

A set of 2n-1 ordered pairs {(cr, dr) r ¢ T(n)} such that

L .



d - ¢ =r for all
r r

Proof: T(2) = {1, 3,

B
[

1l: (113))

o]
]

n = 4: (13,14),
n=5 (6,8), (
(4,13),
Now, suppose n 2 6.
Case 1. n-even, say
(r+l, 2n-r)
(2n+l+r, 4n-1-r)
(5s-1+r, 7s-1-r)
(1, 2n+l)
(n, 3n-2)
(n+l, 3n)
(3n-1, 4n-1)
(7s-1, 7s)

These pairs form an

an (F,n)-system. An

36

r e T(n) and U {cr,dr} = S(n) 1is called

reT(n)

(F,n)-system exists if and only if n = 2.

4}, but the set S(2) = {1, 2, 3, 5, 6, 7}

cannot be partitioned into three pairs having differences 1, 3, and 4,
so an (F,2)-system does not exist.

For n=1, 3, 4, and 5, an (F,n)-system is:

3: (1)3)) (8:11)’ (5’9)’ (2)7)p (4,10),

(3,6), (11,15), (2,7), (4,10), (5,12), (1,9),
16,19), (14,18), (12,17), (1,7) (2,9), (3,11),

(5,15).

n = 28, n > 6. Consider the pairs:

r=1, ..., n-2
r =1, , s-2
r =1, , S-2

(F,n)-systemn.

Case 2. n = 3 (mod 4), say n = 4s+3, n > 7.

3

R



37
Consider the pairs:
(r+l, 2n-r) r=1,2, ..., n-2
(2n+2r, 4n-2-2r) r=1, 2, ..., 28
(2n+1+42r, 4n+l-2r) r=1, 2, ..., s

(2n+2s+1+2r, 3n+2s-2r) r =1, 2, ..., s-1 (omit if s = 1)
(1, 2n+l)

(n, 3n-2)

(n+1,3n)

(3n-1, 4n-2)

(3n+2s, 3n+2s+2)

These pairs form an (F,n)-system.

Case 3. n =1 (mod 4), say n = 4s+l, n > 9.
Consider the pairs:

(r, 2n-1-r) r=1, 2, ..., n-2

(n-1, 3n-2)

(n, 3n)

(2n-1, 4n-3)
along with

a) if s = 2, the pairs

(19,29), (20,32), (21,35), (22,24), (23,31), (26,30), (28,34);
b) if s 2> 3, the pairs

(2n-1+2r, 4n-3-2r) r =1, 2, ..., s

(2n+2r, 4n-2r) r =1, 2, ..., s

i e e i
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(2n+2s+3+2r, 3n+2s-2-2r) r = 1, 2,

(omit if s = 2 or 3)
(2n+2s+2+4r, 3n+2s+3-4r) r =1, 2, ..., %(s—l)

(2n+2s+4r, 3n+2s-3-4r) r =1, 2, ..., %(5—2)
(omit if s = 2 or 3)

(3n+2, 4n-1)

(2n+2s+l, 2n+2s+3)

(3n-3, 3n+l) if s 1is odd

(3n-1, 3n+3) if s 1is even.

These pairs form an (F,n)-system.

Example 4.2. Suppose n = 8. Then theorem 4.6 yields the following
sets: S(8) = {1, 2, ..., 15, 17, 18, ..., 31}; T(8) = {1, 3, 4,
16}; and the following pairs: (27,28), (7,10), (21,25), (6,11),
(20,26), (5,12), (23,31), (4,13), (19,29); (3,14), (18,30), (2,15),

(8,22), (9,24), and (1,17).
Theorem 4.7. If v = 1 (mod 24), there exists a 2-rotational STS(v).

Proof: Let v = 24t + 1, let X = {», 0,, 1,, ..., (12t-1),, O0,, 1,,
L)

.y (12t-1),), and let a = (=)(0,, 1,, ..., (12t-1),) (0,, 1,,

(12t-1),). Define a set of blocks B = B,(UB,UB,UB/UB,UB,, where

Bi is defined as follows:
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-4}
-
[ ]

{(=, 0,, (6t),), (=, 0,, (6t),}

{(0,, (4t),, (8t),)}

=4}
»
n

=
“
n

{e,, r,, (br—l)z) | r=1, 2, ..., 6t-1; r # 4t}
where {(ar,br)l r=1,2, ..., 6t-1} is an (A,6t-1)-system
or a (B,6t-1)-system depending on whether t 1is odd or even,

34 = {(01) (all-t_l) ) (b4t_l) }

2
{(0,, 1,, 2,)} if t is odd

{(0,, 2,, 3,)} if t 1is even
{(02, 12, 102)’ (02) 53) llz)) (03) 32) 72)} if t =2

{(0;, (e +2t),, (d_+2t),)[ r e T(t)} if t =2

where {(cr,dr) r e T(t)} is an (F,t)-system.

The set B of blocks is a set of base blocks for a 2-rotational

STS(v) under the automorphism a.

Example 4.3. Suppose v = 97 and t = 4. Then according to theorem
4,7, a 2-rotational STS(97) can be constructed on the set
{e®, 0,, 1,, ..., 47, 0,, 1,, ..., 47,}. Define x as a pure

difference of type i (mod N) if it is the difference (mod N)

associated with the elements (y,z) of a subscripted pair of type

(yi, Zi)' In this example, the difference associated with the pair

(y,,2,) will be (y-z) mod (%(v-l)) and will be called a mixed

difference. Theorem 4.7 yields the following collections of

blocks: B1 = {(°,01;241)’ (°:02724‘z)}) Bz = {(01,161D321)}D Bs =
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{¢(0,,1,,6,), (0,,2,,35,), (0,,3,,13,), (0,,4,,36,), (0,,5,,14,),
(0,,6,,37,), (0,,7,,15,>, (0,,8,,38,), (0,,9,,16,), (0,,10,,39,),
(0,,11,,22,), (0,,12,,40,), (0,,13,,17,), (0,,14,,41,), (0,, 15,, 18,),
(0,, 17,, 19,5, (0,, 18,, 43,), (0,,19,,20,), (0,,20,,44,),
(0,,21,,21,), (0,,22,,34,), (0,,23,,46,)}, B, = {(0,,26,,42,)}, B, =
{(0,,2,,3,)}, and By = {(0,,21,,22,), (0,,11,,14,), (0,,19,,23,),
(0,,10,,15,), (0,,12,,18,), (0,,13,,20,), (0,,9,,17,)}. All blocks
containing <« are generated by the blocks of B,. Also, the blocks of
B, cover the pure difference of 24. The block of B, covers the pure

difference of type 1 equal to 16. The blocks of B, cover the pure

differences of type 1 in the set {1, 2, ..., 15, 17, 18, ..., 23}
and the mixed differences in the set {ar—l, br-l r=1,2, ..., 15,
17, 18, ..., 23} = {0, ..., 44, 46} - {26,422} where the ar's and br's

are from the (B,23)-system from example 2.3. The block in B,
covers the mixed differences 26 and 42 and the pure difference of type
2 equal to 16. The block in B, covers the pure difference of type 2
equal to 2 and the mixed differences 45 and 47. The blocks in By
cover the pure differences of type 2 in the sets T(4) and

{x + 8|x £ S(4)}. So all desired differences are covered. In general,

all blocks containing = are generated by the blocks of B, and these

blocks cover the pure differences of 6t. The block of B, covers the

pure difference of type 1 equal to 4t. The blocks of B, cover the
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pure differences of type 1 in the set {1, 2, ..., 4t-1, 4t+l, 4t+2,
., 6t-1} and the mixed differences in the set {ar—l, br_l r=1, 2,

., 4t-1, 4t+l, 4t+2, ..., 6t-1} = {0, 1, ..., 12t - 4} U A - { 1,

A
b4t_1} where A = {12t - 3} if t 1is odd or A = [12t - 2} if t

is even. The block in B, covers the mixed differences a4t—l and

b4t_l and the pure difference of type 2 equal to 4t. The block in B,
covers the pure difference of type 2 equal to 1 if t is odd or equal to
2 if t 1is even. This block also covers the mixed differences equal
tol and 2 if t 1is odd or equal to 1 or 3 if t 1is even. The
blocks in By cover the pure differences of type 2 in the sets T(t)

and f{x + 2t| x € S(t)}, where T(t) and 8S(t) are as described in

theorem 4.6. So all desired differences are covered.

Theorem 4.8. A 2-rotational STS(v) exists if and only if v = 1, 3,

7, 9, 15 or 19 (mod 24).

Proof: The condition on v is shown to be necessary in theorem 4.3.
The sufficiency for v = 3 or 9 (mod 24) follows from theorem 4.2 and
theorem 4.5. Since a cyclic STS(v) exists for all v = 1 or 3(mod 6)
except v = 9, by EEeorem 4.4, there exists a 2-rotational STS(v) for

all v = 3 or 7 (mod 12), except possibly for v = 19. Theorem 4.7

demonstrates the existence for v = 1 (mod 24).
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Finally, the blocks:
(», 0,, 0,), (0,, 3,, 6,), (0,, 1,, 3,),
(5,, 0,, 4,), (3,, 4,, 0;), (6,, 8,, 0,;),
(2,, 7,, 0,;)
are base blocks for a 2-rotational STS(19) under the automorphism a

= (=)(0,, Ly, vvvr 9,) (0,, 1,y ..., 9,).

Theorem 4.9. A 6-rotational STS(v) exists if and only if v = 1, 7,

or 19 (mod 24).

Proof: If there exists a 6-rotational STS(v), then it admits an
automorphism a« of type [l, O, ..., O, 6, O, ..., 0], that is, an
automorphism consisting of a fixed point and 6 cycles of length
(v-1)/6 each. So v = 1(mod 6) and v = 1, 7, 13, or 19 (mod 24). 1If
v = 13 (mod 24) then v-1 = O(mod 12) and the STS(v) admits
a(v-l)/12 which is an automorphism of type [1l, (v-1)/2, 0, ..., 0] and
so the STS(v) is also reverse. But there are no reverse STS(v) for v
= 13(mod 24).

However, if v = 1, 7 or 19 (mod 24) then v-1 = 0 (mod 6) and
there exists a 2-rotational STS(v) admitting an automorphism B of

type [1, O, ..., 0, 2, 0, ..., 0]. Now B° is an automorphism of

this STS(v) and of type [l, O, ..., 0, 6, O, ..., 0]. So the

STS(v) 1is also 6-rotational.
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Cho [2] presented the results for 3-rotational and 4-rotational

systems.
Theorem 4.10. The set {1, 3, 4, ..., 2n+l} can be partitioned into
pairs (ar’br)’ br =a +r, r= 1, 2, ..., n if and only if n = 2 or

3 (mod 4). Such a partitioning is called a (-B,n)-system.

Proof: If there is such a partitioning, then br -a_ =r for

r=1,2, ..., n and b - Za = in(n+l). Since the a 's and b 's
r r 2 r r
partition the set {1, 3, 4, ..., 2n+l}, zar'+ Zb_ = 2n® + 3n - 1. So

2
Zbr = EB——iZZB—E and n = 2 or 3 (mod 4) is a necessary condition.

So suppose n = 2 (mod 4), say n = 4s + 2, s > 1. Consider the
pairs:

(s +3+r,33+4-r)r=1,2, ..., s-1 (omit if s = 1)

(2 +r,4s +3 ~-r)r=1, 2, ..., s-1 (omit if s = 1)

(4s + 4 + r, 8 +6-r)r=1, 2, ., 2s

(s + 2, s + 3)

(1, 4s + 3)

(2s + 3, 4s + &)

(2s + 4, 6s + 5).
For n = 2, take the pairs (1,3) and (4,5).

Now suppose n = 3 (mod 4), say n = 4s - 1, s > 2.

Consider the pairs:

(5s +r, 7s -1 -r)r=1, 2, ..., s-2 (omit if s = 2)

(2 +r, 4s - r)r=1, 2, ..., 28-2
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(bs +1 +r,8-r)r=1, ..., s~1

(7s - 1, 7s)

(1, 4s)

(28 + 1, 6s - 1)

(4s + 1, 68).

For n =3 take the pairs (6,7), (3,5), and (1,4). These pairs

satisfy the conditions of a (-B,n)-system.

Example 4.4. Theorem 4.10 produces a (-B,18)-system with the
following pairs: (6,7), (28,30), (10,13), (27,31), (9,14), (26,32),
(8,15), (25,33), (11, 20), (24,34), (5, 16), (23, 35), (4, 17),

(22,36), (3,18), (21,37), (12,29), and (1,19).

Theorem 4.11. If a 3-rotational STS(v) exists, thenm v = 1 or 19

(mod 24).

Proof: Let a be an automorphism of a 3-rotational STS(v), where «
is of type [1, O, ..., 0, 3, O, ..., O]. Now, (v-1)/3 is an integer,

so v = 1 (mod 3). Combining this with the condition that v = 1 or 3

(mod 6), it follows that v = 1, 7, 13 or 19 (mod 24). If v = 7 or

13 (mod 24), then v - 1 = 0 (mod 6). So a(v-l)/é is a permutation of

type [1, % (v-1), 0, ...,0]. So the 3-rotational STS(v) is also a

reverse STS(v). But a reverse STS(v) does not exist for v = 7 or 13

(mod 24). So w =1 or 19 (mod 24).
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Theorem 4.12. The set {1, 2, ..., % (n+l)-1, %(n+l) +1, ..., 2n + 1}
can be partitioned into pairs (ar’br) for r =1, 2, ..., n if and
only if n Z 1 or 3 (mod 4). Such a partitioning is called an
(E,n)-system.
Proof: Since %(n+l) is an integer, n = 1 or 3 (mod 4).

So suppose n = 1 (mod 4), say n = 4s + 1.
Consider the pairs:

(s + 1 +r, 83 + 4 - r) r = 1, 2, ..., 2s+1

(r, 4s + r - r) r =1, 2, cee, 28.

Now suppose n = 3 (mod 4), say n = 4s - 1.
Consider the pairs;

(4s - 1 +r, 8 -r)r =1, 2, ..., 2s

(ry 4s - r) r=1, 2, ..., 2s - 1.

These pairs satisfy the conditions of an (E,n)-system.

Example 4.5. Theorem 4.12 produces an (E,15)-system with the
following pairs: (23,24), (7,9), (22,25), (6,10), (21,26), (5,11),
(20,27), (4,12), (19,28), (3,13), (18,29), (2,14), (17,30), (1,15) and

(16,31).

Theorem 4.13. If v = 1 (mod 24) then there exists a 3-rotational

STS(v).
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Proof: Let v =243 + 1, s> 1, let X = {=, 0,, 1,, ..., (88 - 1),,
0., 1, ..., (88 - 1),, 0,, 1,, ..., (8s - 1),} and let a = (=)(0,,
Ly, «o.y (8s - 1)) (0,, L1,, ..., (8s - 1),) (0,, lyy ooy (8s = 1))
be a permutation of X. Consider the set of blocks B = B, UB,U B,

B, where:

By = {(=, 0,, (4s5),) | i =1, 2, 3}

B, = {(0,, 0,, 04), (0,, (2s),, (6s)4)}

B, = {(0,, r,, (br)z)’ (0,, r,, (br)l) r=1, 2, ..., 4s-1}
where (ar, br)’ r=1, 2, ..., 4s - 1 is an (E, 4s - 1)-
system.

B, = {(0,, r,, (br)’) r=1, 2, ..., 4s - 1} where (ar’br)’

r=1, 2, ..., 4s-1 is a (C, 4s - 1)-system.

These blocks are the base blocks for a 3-rotational STS(v) under a.

Example 4.6. Suppose v =97 and s = 4. Then according to theorem
4.13, a 3-rotational STS(97) can be constructed on the set

=2 Qg Uy el Bl 0, l,, «.., 31,, 04, 1, ..., 31,}. Theorem
4.13 yields the following collections of base blocks: B, = {(=, 0,,
16,), (=, 0,, 16,),, (=, 0y, 164)}; B, = {(0,, 0,, 0,), (0,, 8,, 24,)};
By = {(0,, 1,, 24,), (0,, 2,, 9,), (0,, 3,, 25;), (0,, 4,, 10,), (0,,

510 263), (04, 6,, 11,), (0,, 7,, 27,), (0,, 8,, 12,), (0,, 9,, 28,),

(0,, 10y, 13,), (0,, 11,, 29,), (0,, 12,, 14,), (0,, 13,, 30,), (0,,
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14,, 15;), (0,, 15,, 31,), (0,, 1,, 24,), (04, 24, 9,), (0,, 34, 25,),
(04, 44, 10,), (04, 54, 26,), (O,, 6y, 11,), (04, 74, 27,), (0,, 8,,
12,), (04, 9,, 28,), (0,, 10,, 13,), (04, 114, 29,), (04, 12,, 14,),

(04, 134, 30,), (0, 1l4,, 15)), (04, 154, 31,)}; B, = {(0,, 1,, 28,),

(05, 2,, 94), (0,, 3,, 25,), (0,, 4;, 104), (0,, 5,, 264), (0,, 6,,

114, (0,, 7,, 24,), (0,, 8,, 12,), (02, 9,, 29,) (0,, 10,, 13,), (0,,

11,, 304), (0,, 12,, 14,), (0,, 13,, 31,), (0,, 14,, 15,), (0,, 15,,

23,)}. All blocks containing « are generated by the blocks of B,.

Also the blocks of B, cover all pure differences equal to 16. The

blocks of B, cover all mixed differences of 0 and contains a pair

(x,,y,) where x -y = 8 (mod 32), a pair (x,,y,) where x -y = 16

8(mod 32). The blocks

(mod 32), and a pair (x,,¥,) where x -y
of B, cover all pure differences of types 1 and 3 in the set

{1, 2, ..., 15} and contains pairs (x,,y,) and (x,,y,) where
(x-y) (mod 32) is the set {ar, br r=1, 2, ..., 15} =

{1, 2, ..., 7, 9, 10, ..., 31} where the a_ and br are from the
(E,15)-system of example 4.5. The blocks of B, cover all pure
differences of type 2 in the set {1, 2, ..., 15} and contains pairs
(X4, ¥,) where (x - y)(mod 32) is in the set {ar, br r=1, 2,

15y = {1, 2, ..., 15, 17, 18, ..., 31} where the a and br are

from the (C,15)-system of example 2.5. So all desired differences are

covered and the collections of blocks actually form a set of base
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blocks. 1In general, all blocks containing « are generated by the
blocks of B,. Also the blocks of B, cover all pure differences of
4s. The blocks of B, cover all mixed differences equal to 0, and
contains a pair (x,, y,) where (x-y) = 2s (mod 8s), a pair (x4, ¥5)
where (x - y) = 4s (mod 8s), and a pair (x,,¥s) where (x-1y) =

2s (mod 8s). The blocks of B, cover all pure differences of type 1
in the set {1, 2, ..., 4s - 1} and all pairs (x,, ¥,) where (x - y)
(mod 8s) 1is in the set {ar, br r=1,2, ..., 4s - 1} =

{1, 2, ..., 2s -1, 2s +1, 28 + 2, ..., 85 = 1} where the a_ and br
are from an (E, 4s - l)-system . The blocks of B, also contain all
pure differences of type 3 in the set {1, 2, ..., 4s - 1} and contains
pairs (x,, y,) where (x - y)(mod 8s) is in the set

{ar, br r=1,2, ..., 4s -1} =1{1, 2, ..., 2s - 1, 2s + 1,

28 + 2, ..., 8s - 1} where the ar and b are from an (E, 4s - 1)
system from theorem 4.12. The blocks of B, cover all pure
differences of type 2 in the set {l, 2, ..., 4s - 1} and contains
pairs (x,, y,) where (X - y) (mod 8s) is in the set {ar, br
r=1,2, ..., 4s - 1} = {1, 2, ..., 4s -1, 4s + 1, 4s + 2, ...., 8s -

1} where the ar and br are from a (C, 4s - 1)-system.

Theorem 4.14. If v = 19 (mod 24) then there exists a 3-rotational

STS(v).
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Proof. Let v = 24s + 19, s 20, let X = {=, 0,, 1,, ..., (88 + 5),,
0, 1, ..., (88 + 5),, 04, 1, ..., (8s + 5),} and let a = (=)(0,,
lyy «ooy (88 +5),) (0,, 1,, ..., (83 + 5),)(0,, lg, ..., (8s + 5),)

be a permutation of X. Consider the set of blocks B = B, U B, U B,U

B, where

Bl = {(w’ Oi’ (4s + 3)1) i=1, 2, 3}

=~}
)
n

{(0,, (4s + 3),, (4s + 3),), (0,, (8s + 5),, 1)}
B; = {(01, rs (br)z)’ (03; Ly, (br)1) r = l’ 2, ves, bs + 2}
where (ar, br)’ r=1,2, ..., 4s + 2 is a (D, 4s + 2)-

system.

B, = {(0,, r,, (br)a) r=1, 2, ..., 4s+2} where (ar, br)'

r=1,2, ..., 4s + 2 is a (-B, 4s + 2)-systen.

These blocks are the base blocks for a 3-rotational STS(v) under a.

So a 3-rotational STS(v) exists if and only if v = 1 or 19 (mod 24).

Example 4.7. Suppose v = 115 and s = 4. Then according to theorem
4.14, a 3-rotational STS(115) can be constructed on the set {=, 0,,
1yy vevy 37, 0,, 1,, ..., 37,, 04, ly, ..., 37,}. Theorem 4.14 yields
the following collections of base blocks: B, = {(=, 0,, 19,), (=, O,,

lgz)l (m’ 03) 193>}; Bz = {(01) 192) 193)) (01, 373) 13)}; Bg - {(01,

11) 322), (01) 21' 382)’ (01, 31) 112)) (01) 41, 29:)) (01) 51, 122)’
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(0,, 6,, 30;), (0,, 7,, 13,), (0,, 8,, 28,), (0,, 9,, l4,), (o,, 10,,
33;), (0,, 11,, 15,), (0,, 12,, 34,), (0,, 13,, 16,), (0,, 14, 35,),
(0,, 15,, 17,), (o,, 16,, 26,), (0,, 17,, 18,), (0,, 18,, 27,), (0,,
1y, 32,), (04, 24, 38)), (04, 3,, 11,), (04, 44, 29,), (O0,, 5,, 12),
(04, 64, 30,), (04, 7,, 13,), (0,, 8,, 28,), (O,, 9,, 14,), (0,, 10,,
33,), (04, 11,, 15,), (04, 124, 34,), (0,, 13,, 16,), (0,, 1l4,, 35,),
(0y, 154, 17,), (0,, 164, 26,), (0, 17,, 18)), (04, 184, 27)};

B, = {(0,, 1,, 74), (0,, 2,, 30,), (0,, 3,, 13,), (0,, 4,, 31,), (0,,
5., 1l44), (0,, 6,, 32,), (0,, 7,, 15,), (0,, 8,, 33,), (0,, 9,, 204),
(0,, 10,, 344), (0,, 11,, 16,), (0,, 12,, 35,), (0,, 13,, 17,), (0,,
l 14,, 54), (0,, 15,, 18,), (0,, 16,, 37,), (0,, 17,, 29,), (0,, 18,,
19,)}. All blocks containing =« are generated by the blocks of B,.

Also, the blocks of B, cover all pure differences equal to 19. The

blocks of B, contain pairs (x,, y,) with x -y 19 (mod 38) and
x -y = 37 (mod 38), pairs (x,, y,) with x - y = 37 (mod 38) and x

19 (mod 38), and pairs (x4, ¥y,) with X - y = 0 (mod 38) and x

4

-y 2 (mod 38). The blocks of By, cover all pure differences of
types 1 and 3 in the set {1, 2, ..., 18} and contains pairs (x,,5,)
and (x,, y,) where (x - y)(mod 38) is in the set

{ar,br r=1,2, ..., 18} = {1, 2, ..., 18, 20, 21, ..., 36, 38}

where the a and br are from the (D,18)-system of example 2.6.

The blocks of B, cover all pure differences of type 2 in the set

{1, 2, ..., 18} and contains pairs (x4, y,) where (x - y) (mod 38)
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is in the set {ar, br r=1,2, ..., 18} = {1, 3, 4, ceees 37} where
the a_ and br are from the (-B,18)-system of example 4.4. 1In
general, all blocks containing = are generated by the blocks of

B,. Also the blocks of B, cover all pure differences equal to 4s + 3.
The blocks of B, contain pairs (x,, y,) with x -y = 4s + 3 (mod
8s + 6) and x -y = 8s + 5 (mod 8s + 6), pairs (x,, y,) with x -y

= 8s + 5 (mod 8s + 6) and x - y

4s + 3 (mod 8s + 6), and pairs

(xy, ¥,) with x -y = 0 (mod 8s + 6), and x -y = 2 (mod 8s + 6).

The blocks of B, cover all pure differences of types 1 and 3 in the

set {1, 2, ..., 4s + 2} and contains pairs (x,,y,) and (x,,y,) where
(x - y) (mod 85 + 6) is in the set {ar,br r=1,2, ..., 4s + 2}
={l, 2, ..., 43 + 2, 4s + 4, 45 + 5, ..., 85 + 4, 8s + 6} where the

ar and br are from a (D, 4s + 2)-system. The blocks of B, cover
all pure differences of type 2 in the set {1, 2, ..., 4s + 2} and
contains pairs (x,, y,) where (x - y) (mod 8s + 6) is in the set
{ar, br r=1,2, ..., 4s + 2} = {1, 3, 4, ..., 8s + 5} where the a

and br are from a (-B, 4s + 2) - system.

Theorem 4.15. If a 4-rotational STS(v) exists, then v Z 1 or 9 (mod

o

12).

Proof. Since v =1 or 3 (mod 6) and v -— 1 = 0 (mod 4), that is v =

l(mod 4), it follows that v = 1 or 9 (mod 12).
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Theorem 4.16. If v

1l or 9 (mod 24), then there exists a

4-rotational STS(v).

Proof. If v =1 or 19 (mod 24), then there exists a 2-rotational
STS(v) with an automorphism a of type [1, 0, ..., 0, 2, 0, ..., 0]
and a® is an automorphism of type [1, 0, ..., 0, 4, 0, ..., 0]. So

the STS(v) 1is also 4-rotational.

Theorem 4.17. If v

13 (mod 24), then there exists a 4-rotational

STS(v).

Eroof. Let v = 24s + 13, s > 2, let X = {=, 0,, 1y ooy, (68 + 2),,
0., 1, ..., (6s + 2),, 0,, 1y, ..., (6s + 2)sy 04y 1, un, (63 + 2),}
and let a = (=)(0,, 1,, ..., (6s + 2),) (0,, 1,, ..., (6s + 2),)(0,,
lyy <. (68 + 2),) (04, 1., ..., (6s + 2),) be a permutation of X.
Consider the set of blocks B = B,UB,UB,UB,UB,U B U B, where
Bi is as defined below.
Case 1: 8 Z 0 or 1 (mod 4). Let (ar, br), r=1,2, ..., 33+ 1 be
an (A,3s + l)-system.
By = (= 0y, (25 4+ 1 - by )0, (=, 0,, (b, 1))}
B, = the set of all base blocks of a cyclic STS(6s + 3) with point
set {0,, 1., ..., (6s + 3),1

B, = {(0,, (2s + ., (4s + 2),}

B, = {(0,, r,, (br)z) r=1,2, ..., 2s, 2s + 2, 2s + 3, ..., 3s + 1}
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r=1,2, ..., 3s + 1}

By = {(01, r,, (br)z)p (03» P br);)

B; = {(01) 03) (2s+1 - b2$+l)‘)’ (oz’ 03) 04)}

B, = {((b -28-1-1),,0,, r)|r =1, 2, ..., 6s + 2}

2s+1

Case 2. s = 2 or 3 (mod 4). Let (ar,br), r=1,2, ..., 33 +1 be a

(B, 3s+l)-system.

B, = {(», O0,, (25 - 2 - b25+10,), (=,0,, (—b25+1)‘)}

B, = the set of all base blocks of a cyclic STS(6s + 3) with point
set {0y, ly, ..., (65 + 3),}

By = {(0,, (25 + 1),, (45 + 2) )}

B, = {(0,, r,, (br)z) r=1,2, ..., 25, 2s + 2, ..., 3s + 1}

B; = {(01, I (br)z)’ (02’ P (br)g) r=1, 2, <..y 38 + l}

Bs = {(01) (6s + 2)23 (2s - b25+1)4), (Oz: (6s + 2)3) 14)}

B, = {((b = 2s + 2-r),, 04, (2 + 1)) =1, 2, ..., 6s + 2}

2s+1

In either case, the blocks of B are the base blocks for a
4~rotational STS(v) under a.

Now, for v = 13, consider the blocks (=, 0,, 0,), (=, 0,, 0.,
(0,, 0,, 2,), (0,, 1,, 1,), (1,, 04, 0,), (0,, O,, 2,), (04, 2,, 1,),
(04, 1,, 2,), (0,, 1,, 2,) and (24, 1,, 0,). These are the base
blocks for a 4-rotational STS(13) wunder a = («)(0,, 1,, 2,)
(O%s diom Ra)00%s A 122).

For v = 37, consider the blocks (=, 0,, 7,), (=, 0,, 0,),

(03) 33: 6;)’ (04’ 34’ 64)) (03’ 1;) 41): (0;) 23) 04)7 (03’ 43) 52))

(02) 03: 84)’ (04) 14) 51)) (04) 24: 73)’ (04’ 44’ 83)1 (01’ oz: 64))
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(0,, 1,, 2,), (0,, 2,, 7,), (0,, 3,, 6,), (0,, &4,, 8,), (0,, 1,, 2,),
(02, 2,, 74), (0,, 3,, 64), (0,, &4,, 7,), (0,, O, 1,), (0,, 1,, 3,.),
(0,, 8,, 2,), (0,, 34, 7,), (0,, 4,, 0,), and (0,, 2,, 8,).

These are the base blocks for a 4-rotational STS(37) under a =
(=)(0,, 1,y «o., 8,)(0,, 1,, .., 8,)(04, 1y, ..., 84)(0,, 1,y «..,
8,).

Example 4.8. Suppose v = 109 and s = 4. Then according to Theorem
4.17, a 4-rotational STS(109) can be constructed on the set

{=, 0,, 1,, ..., 26,, 0,, 1,, .um, 26,, Oy, 1y, @s&., 26,, 0., 1,, ...,
26,}. Theorem 4.17 yields the following collections of base blocks:
B, = {(=, 0,, 25;), (=, 0,, 16,)}; B, = {(0,, 1,, 6,), (0,, 24, 13,),
(05, 345, 104), (04, 44, 12,), (0,, 9,, 18,)}; B, = {(0,, 9,, 18,)};
B, = {(0,, 1,, 5,), (0,, 2,, 21,), (O,, 3,, 9,), (0,, 4,, 22,),

(04, 5., 13;), (04, 6,, 23,), (0,, 7,, l0,), (O,, 8,, 24,),

(o,, 10,, 25,), (0,, 11,, 12,), (0,, 12,, 26,), (o,, 13, 202)};

B, = {(0,, 1,, 5,), (0,, 2,, 21,), (O0,, 3,, 9,), (0,, 4,, 22,),

(0,, 5,, 13;), (0,, 6,, 23,), (0,, 7,, 10,), (0,, 8,, 24,),

(0,, 9,, 11,), (0,, 10,, 25,), (0,, 11,, 12,), (0,, 12,, 26,),

(0,, 13,, 20,), (0,, 1,, 5,), (0,, 2,, 21,), (0,, 3,, 9,),

(0., 3,, 93), (0,, 4,, 22,), (0,, 5,, 13,), (0,, 6,, 23,),

(0, 7,, 104), (0,, 8,, 24,), (0,, 9,, l1,), (0,, 10,, 25,),

(05, 11,, 124), (0,, 12,, 26,), (0,, 13,, 20,)}; B, = {(0,, 0,, 25,),

(Oz’ og) 04)}; B7 = {(11) 03’ 14), (01’ 03, 24)) (271) 03: 34)’
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(26,, 04, 4,), (25,, 04, 5,), (24,, 0,, 6,), (23,, 0,, 7,),

(22,, 0y, 8y, (21,, 0,, 9,), (20,, O,, 10,), (l19,, O,, 11,),

(18,, 0,, 12,), (17,, 04, 13,), (16,, O,, l4,), (15,, O,, 15,),
(14,, 04, 16,), (13,, 0,, 17,), (12,, O,, 18,), (11,, 04, 19,),
(10,, 04, 20,), (9,, 0,4, 21,), (8,, O,, 22.), (7,, 04, 23,),

(6,, 04, 24,), (5,, 0y, 25,), (4,, O,, 26,)}%.

All blocks containing <« are generated by the blocks of B,. Also,

the blocks of B, contain a pair (x,, y,) where x - y = 2 (mod 27)

and a pair (x,, y,) where x -y 11 (mod 27). The blocks of B,
cover all pure differences of type 3. The block of By covers the
pure difference of type 4 equal to 9. The blocks of B, cover all
pure differences of type 4 in the set {1, 2, ..., 8, 10, 11, 12, 13}
and contain pairs (x,, y,) where (x-y)(mod 27) is in the set

{ar, br r=1,2, ..., 8, 10, 11, ..., 13} = {1, 3, 4, ..., 10, 12, 13}
where the a and br are from the (A,13)-system of example 2.1.
The blocks of B, cover all pure differences of types 1 and 2 in
the set {1, 2, ..., 13} and contain pairs (x,, y,) and (x,, y,)
where (x - y)(mod 27) is in the set {ar, br r=1, 2, ..., 13} =
{1, 2, ..., 26} where the a and br are from the (A,13)-system

of example 2.1. The blocks of B, contain a pair (x,, y,) with

X -y =2 (mod 27), a pair (x,, y,) with x -y = 0 (mod 27), a pair

(x5, ¥y,) with x - y = 0 (mod 27), a pair (X, ¥4) with x -y =0

T
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(mod 27), and pairs (x,, y,) with x - y = 2 (mod 27) and x - y=0

| (mod 27). The blocks of B, contain pairs (x,, y4) with (x - y) (mod

27) in the set {1, 2, ..., 26}, pairs (x,, y,) with (x - y)
| (mod 27) in the set {b2s+1 - 2s -1 - rlr =1, 2, ..., 26} = {0, 1,
3, 4, ..., 26} where b25+1 is from the (A,13)-system of example

2.1 (by = 11 in this case), and pairs (x,, y,) where (x - y)(mod 27)

is in the set | - 2s -1 - 2rl r=1,2, ..., 26} = {0, 1, 3, 4,

bZs+l

.» 26}. So all desired differences are covered. 1In general, all
blocks containing <« are generated by the blocks of B,. Also, the
blocks of B, contain a pair (x,, ¥5) where x - y = bzs+l - 2s-1

(mod 6s + 3) if s =0 or 1 (mod 4) or x - y = bs+1 - 2s+2 if

S =2 or 3 (mod 4) and a pair (x,, y,) where x - y = b2s+1
(6s + 3). The blocks of B, cover all pure differences of type 3.
The block of By covers the pure differnence of type 4 equal to 2s+l.
The blocks of B, cover all pure differences of type 4 in the set

{1, 2, ..., 2s, 2s + 2, 2s + 3, ..., 3s + 1} and contain pairs
(x,,y,) where (x - y) (mod 6s + 3) is in the set

{ar, br r=1, 2, ..., 2s, 2s+2, 2s+3, ..., 3s+1} where the a and

br are from an (A,3s + l)-system if s = 0 or 1 (mod 4) or from a

(B, 3s + l)-system if s = 2 or 3 (mod 4). The blocks of B, cover

all pure differences of types 1 and 2 in the set {1, 2, ..., 3s+l1}

and contain pairs (x,, y,) and (x4, y,) where (x - y)(mod 6s + 3)

is in the set {a_, b _|r = 1, 2, ..., 33 + 1} where the a and b
r’ r r r
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are from an (A, 3s + l)-system if s Z 0 or 1 (mod 4) or from a

(B, 33 + l)-system if s = 2 or 3 (mod 4). If s =0 or 1 (mod 4) then
the blocks of B, contain pairs (x,, y,), (%,, v,), (x,, ¥.) and

(x,, y4) where x -y = 0 (mod 6s + 3) and contain pairs (%,, ¥)

and (x,, y,) where x -y = - 2s -1 (mod 6s + 3) = a

bZs+l 2s+1°

If s =2 or 3 (mod 4) then the blocks of B, contain a pair (x,,y,)

where x - y 6s + 2 (mod 6s + 3), a pair (x,, y,) where x -y

b2s+l - 2s (mod 6s + 3), a pair (x4, y,) where x -y = 63 + 2
(mod 6s + 3), a pair (%X,, ¥s) where x -y = 2 (mod 6s + 3), and

pairs (x,, y,) where X -y Z 4s + 2 + b (mod 6s + 3) = a

2s+1 2s+1
6s + 2 (mod 6s + 3). If s =0 or 1 (mod 4) then

and where x - y
the blocks of B, contain pairs (x,,¥,) where (x - y) (mod 6s + 3)
is in the set {1, 2, ...,6s + 2}, pairs (x,, y4) where (x - y)(mod

6s + 3) 1is in the set {b -2s -1-rjr=1, 2, ..., 6s + 2} =

2s+1

{o, 1, - 2s, b2$+l -2s -2, ..., 6s + 2}, and pairs

o b23+1

(x,, y,) where (x -y) (mod 6s + 3) is in the set

{bzs+1 - 2s -1 - 2r|r =1, 2, ..., 6s+2}, = {0, 1, 2, ..., b2S+l - 2s,

b2s+l - 28 -2, ..., 6s +2}. If s =2 or 3 (mod 4) then the blocks
of B, contain pairs (x,, y,) where (x - y)(mod 6s + 3) is in the
set {2 + r'r =1,2, ..., 6s + 2} ={0, 1, 3, 4, ..., §s + 2}, pairs
(x,, y4) where (x - y)(mod 6s + 3) is in the set

{b2$+l - 2s + 2 -r r=1, 2, ..., 6s + 2} =

{fo, 1, . b25+1 ~ 2s+l, bzs+1 - 2s+3, ..., 6s + 2}, and pairs

(x,, y,) where (x - y) (mod 6s + 3) 1is in the set { - 2s - 2r

bZs+1
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r=1, 2, ..., 6s + 2} = {0, 1, - 2s-1, b -2s +1, ...,

e b23+1 2s+1

6s + 2}.

Theorem 4.18. If v

21 (mod 24) then there exists a 4-rotational

STS(v).

Proof: Let v = 24s + 21, s > 0, let X = {=, 0,, 1,, ..., (6s + 4),,
02, 1, vov, (6s + 4),, 0, 14, ..., (65 + 4&4),, O¢s 1gy ..., (65 + 4),}
and let a = (<)(0,, 1,, ..., (6s + 4),)(0,, 1,, ..., (6s +.4)2) (0,,
ly, ..., (68 + 4),)(0,, 1,, ..., (6s+4),) be a permutation of X.
Consider the set of blocks B = B, B,U ByU B,(U B,U B, where Bi

is as defined below.

/4 Case 1. s = 0 (mod 4).

B, = {(», 0,, (6s+2),),(=, 0,, (6s + 4),}

B, = {(0,, 1y, (b);), (0,, r,, (b )s)y (O, ryy (B £ =1, 2, ...,
3s + 2} where (ar’br)’ r=1,2, ..., 33+2 is a (B,3s + 2)-
system,

By = {(0,, (6s + 4),, 0,)}

B, = {(0,, r,, (br + 8),|lr=1, 2, ..., s} where (ar’br)’ r=1, 2,

., 8 1is an (A,s)-system,
By = {(0,, (3s +1),, 0,), (0,, (3s + 2),, (6s + 4),)}

Be = {(0,, (3s + 2),, (6s + 3),), (0,, (65 + &)y, (6s + 4),),

(0,, ry, (2r) ) r =1, 2, ..., 3s, 3s + 3, ..., 6s + 3}.
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Case 2. s = 1 (mod 4).

B, = {(=, 0,, (65 + 2),), (=, 0,, 0,)1}

B, = {(0,, r,, (br)’)’ (0,, r,, (br),), (0,, ry, (br)z) r=1, 2,
3s + 2} where (ar, br)’ r=1, 2, ..., 33 + 2 is an (A,3s + 2)-
system,

By, = {(0,, 0,, 0,)}

B,, By, and B, are as in case 1.

Case 3. s = 2 or 3 (mod 4).

B, = {(», 0,, (6s),), (=, 0,, (3s + 3),)}

B, = {(0,, r;, (b)3), (0,, ry, (b)), (0, r,, (b)2),

r=1,2, ..., 3s + 2} where (ar, br),

r=1,2, ..., 338+ 2 is a (C, 3s + 2)-system.

By, = {(0,, (3s + 3),, 0,)}

By = {0y, ryy (b +8))|r=1,2, ..., s} where (a,b), r=1, 2,

., s is a (B,s)-system.

By = {(0,4, (3s),, (3s + 1),), (0,, (3s + 2),, (6s + 2),)1}

Bg = {(0,, 0,, (6s + 3),), (0,, 1l,, (6s + 2)), (0,, (3s + 3),,
(6s + 4),), (0,, (r +1),, (2r - D)|r =1, 2, ..., 3s + 1,
3s + 4, ..., 65 + 2}.

In each case, the blocks of B are the base blocks for a 4-rotational

STS(v) wunder a.
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Example 4.9. Suppose v = 117 and s = 4. Then according to Theorem
4.18, a 4-rotational STS(117) can be constructed on the set

{=, 0,, 1,, ..., 28,, 0,, 1,, ..., 28,, 04, 1,, ..., 28,, 0,, 1,, ...,
28,}. Theorem 4.18 yields the following collections of base blocks:
B, = {(=, 0,, 26,), (=, 0,, 28,)}; B, = {(0,, 1,, 25,), (0,, 2,, 8,),
(0,, 3,, 22,), (0,, 4,, 9,), (0,, 5,, 23,), (0,, 6,, 10,),

0y, 7y, 21,), (0,, 8,, 11,), (0,, 9,, 26,), (0,, 10,, 12,),

(0,, 11,, 27,), (0,, 12,, 13,), (0,, 13,, 20,), (0,, 14,, 29,),

(0,, 1,, 25,), (0,, 2,, 8,), (0., 3;, 224), (0,, 4,, 9,),

(0,, 5;, 234), (0,, 6,, 10,), (0,, 7,, 21,), (0,, 8,, 11,),

(02, 9., 264), (0,, 10,, 12,), (0., 11,, 27,), (0,, 12,, 13,),

(0,, 13,, 20,), (0,, l4,, 29,), (0,, 1,, 25,), (0,, 2,, 8,),

(04, 34, 22,), (O, 4,, 9,), (0,, 5,, 23;), (0,, 6,, 10,),

(0., 74, 21,), (o0,, 8,, 11,), (04, 9,, 26,), (0,, l0,, 12,),

(0,, 11,, 27,), (o,, 12,, 13,), (0,, 13,, 20,), (0,, l4,, 29,)};

By, = {(0,, 28,, 0,)}; B, = {(0,, 1y, 64), (04, 2,, 114), (0,, 3,, 10,),
(05, 45, 124)}; By = {(0,, 134, 0,), (0,, l4,, 28,)}; B, =

{o,, la4,, 27,), (0,, 28,, 28,), (0., 15, 2,), (0,, 2., 4,),

(0,, 34, 6,), (0,, 4,, 8,), (0,, 55, 104), (0., 64, 12,), (0,, 7,,14,),
(0,, 84, 16,), (0,, 9,, 18,), (0,, 104, 204); (0,, 11,, 22,),

(0,, 12,, 24,), (0,, 15,, 1,), (0,, 164, 3,), (0,, 174, 5,),

(0,, 185, 7,), (0,4, 194, 9,), (0,, 204, 11,), (0,, 21,, 13,),

(0,, 224, 15,), (0,, 23,, 17,), (0,, 244, 19,), (0,, 25,4, 21,),
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(0,, 264, 23,), (0,, 27,, 25,)}.

All blocks containing <« are generated by the blocks of B,. Also the
blocks of B, contain a pair (x,, y,) where x - y = 26 (mod 29) and
a pair (x,,y,) where x - y = 28 (mod 29). The blocks of B, cover
all pure differences of types 1, 2, and 4 in the set {1, 2, cee, 143
and contain pairs (x,,y,), (X,,y,), and (x,,y,) where (x - y)(mod 29)
is in the set {ar, br r=1,2, ..., 14} = {0, 1, ..., 27} where

the a_ and br are from the (B,l4)-system of example 2.2. The
block of B, contains a pair (x,, y,) where x - y = 28 (mod 29), a
pair (x,, y,) where x -y = 0 (mod 29), and a pair (x,, y,) where
X -y = 28 (mod 29). The blocks of B, cover all pure differences of
type 3 in the set ({1, 2, 3, 4} k){ar + 4, br + 4 r =1, 2, 3, 4} =
{1, 2, ..., 12} where the a and br are based on an (A,4)-system.
The blocks of B, cover the pure differences of type 3 equal to 13 and
14, contain pairs (x,,y,) where X-y= 0 (mod 29) and x - y = 13
(mod 29), and contain pairs (x,,75) where x -y = 14 (mod 29) and x
-y = 28 (mod 29). The blocks of B¢ contain pairs (x,,y,) where

(x - y) (mod 29) is in the set {1, 2, ..., 12, 14, 15, ..., 28}, pairs

(x,, y,) where (g - y)(mod 29) is in the set {1, 2, ..., 25, 27,

28}, and pairs (x,, y,) where (x - y)(mod 29) is in the set {o, 1,

., 13, 15, 16, ..., 27}.
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If s = 0 (mod 4) then, in general, all blocks containing « are

generated by the blocks of B,. Also, the blocks of B, contain a

pair (x,, y,) where x -y 6s + 2 (mod 6s + 5) and a pair (x,,y,)
where x - y = 6s + 4 (mod 6s + 5). The blocks of B, cover all pure
differences of types 1, 2, and 4 in the set {1, 2, ..., 3s +

2} and contain pairs (x,,y,), (%,,¥,), and (x,,y,) where (x -
y)(mod 6s + 5) is in the set {ar, br r=1, 2, ..., 3s + 2} =

{0, 1, ..., 6s + 3} where the a_ and br are from a (B,3s + 2)-
system. The block of B, contains pairs (x,,y,) and (x,,y,) where x -
y = 6s - 4 (mod 6s + 5), and a pair (x,,y,) where x - ¥y = 0 (mod 6s +
5). The blocks of B, cover all pure differences of type 3 in the set
{1, 2, ..., s} k}{ar + s, br +s|lr=1, 2, ..., s}y = {1, 2, ..., 3s}

where the a_ and br are based on an (A,s)-system. The blocks of

B, cover the pure differences of type 3 equal to 3s + 1 and 3s + 2,

contain pairs (x,,y,) where x -y = 0 (mod 6s + 5) and x - y = 3s

1
w
/]
+
N

+ 1 (mod 6s + 5) and contain pairs (x,, y,) where x - y =
(mod 6s + 5) and x - y = 6s + 4 (mod 6s + 5). The blocks of B,

contain pairs (x4, y,) where (x - y)(mod 6s + 5) is in the set {I,

2, ..., 3s, 3s + 2, ..., 6s + 4}, pairs (x,, y,) where (x - y)(mod
6s + 5) is in the set {1, 2, ..., 6s + 1, 6s + 3, 6s + 4}, and pairs
(X4, ¥3) where (x - y)(mod 6s + 5) is in the set {0, 1, 2, ..., 3s
+1, 3s + 3, 3s + 4, ..., 6s + 3}. So all desired differences are

covered.
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If s =1 (mod 4) then, in general, all blocks containing « are
generated by the blocks of B,. Also the blocks of B, contain a pair
(x4, y,) where x -y = 6s + 2 (mod 6s + 5) and a pair (x,, y,)
where x - y = 0 (mod 6s + 5). The blocks of B, cover all pure
differences of types l, 2, and 4 in the set {1, 2, ..., 3s + 2}
and contains pairs (x,,y,), (%;,y,), and (x,,y,) where (x - y)

(mod 6s + 5) 1is in the set {ar, br r=1, 2, ..., 3s + 2} =

{1, 2, ..., 6s + 4} where the a and br are from an (A, 3s + 2)-
system. The block of B, contains pairs (x,, y,), (x,, y,), and
(X,, ¥,) where x -y = 0 (mod 6s + 5). The blocks in B,, By, and
B¢ cover the same differences as in the case where s = 0 (mod 4) and
so again, all desired differences are covered.

If s = 2 or 3 (mod 4) then, in general, all blocks containing =
are generated by the blocks of B,. Also, the blocks of B, contain a
pair (x,, y,) where x -y = 6s (mod 6s + 5) and a pair (xy, ¥,)
where x -~y = 3s + 3 (mod 6s + 5). The blocks of B, cover all pure
differences of types 1, 2, and 4 in the set {1, 2, ..., 3s + 2} and
contain pairs (x,, y,), (x,, y,), and (x,, y,) where (x - y)(mod 6s +
5) is in the set {ar, br r=1,2, ..., 38 + 2} = {0, 1, 2, ., 3s
+ 2, 33 +4, 353 +5, ..., 6s + 4} where the ar and br are from a

(C, 3s + 2)-system. The block of B, contains pairs (x,, y,) and

(x;, y,) where x -y = 3s + 3 (mod 6s + 5), and a pair (x,, y,)
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where x - y = 0 (mod 6s + 5). The blocks of B, cover all pure
differences of type 3 in the set {1, 2, cee, 8} L}{ar, br r=1, 2,

.» s} = {1, 2, ..., 3s -1, 3s + 1} where the a and br are
based on a (B,s)-system. The blocks of B, cover the pure differences
of type 3 equal to 3s and 3s + 2, contain pairs (x4, y,) where x - y
= 6s + 4 (mod 6s + 5) and x - y =2 6s + 4 (mod 6s + 5), and contain

3s (mod 6s + 5) and x - ¥y = 6s + 2 (mod

pairs (x,, y,) where x - y
6s + 5). The blocks of B¢ contain pairs (x,, y,) where (x - y)(mod
6s + 5) is in the set {0, 1, ..., 6s + 3}, pairs (x4, ¥,) where (x
- y) (mod 6s + 5) is in the set {1, 2, ..., 6s - 1, 6s + 1, 6s + 2, 6s
+ 3, 6s + 4}, and pairs (x,, y5) where (x - y) (mod 6s + 5) is
in the set {0, 1, ..., 3s - 1, 3s + 1, 3s +2, ..., 6s + 1, 6s + 3,
6s + 4}. So all desired differences are covered.

So there exists a 4-rotational SIS(v) if and only if v = 1, 9,
13 or 21 (mod 24), that is, v =1 or 9 (mod 12).

Another result, pertaining to automorphisms of type [1, 1, O, ...,
o, I, 0, 0, 0], that is, automorphisms with a fixed point, a

transposition, and a cycle of length v - 3, is the following:

Theorem 4.19. There exists a STS(v) on {=, a, b, 0, 1, ..., N-11}

where v = N + 3, admitting a = (=)(a,b)(0, 1, .«+y; N-1) as an auto-

morphism if and only if v =3 or v

1, 7, 9 or 15 (mod 24), v > 1.
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Proof: v =1 or 3 (mod 6) so N = 0 or 4 (mod 6) and N = 0, 4, 6,
10, 12, 16, 18 or 22 (mod 24). One of the blocks of the desired STS(v)
will be (0, N/2, =). Another will be (a, 0, x) where x = 1 (mod 2).
So now, the set {0, 1, ..., N/2} - {x, N/2} must be partitioned into
difference triples. So in this set, there must be an even number of
odd numbers since each difference triple includes either 0 or 2 odd
numbers. From this condition, it follows that N';/O, 10, 16, or 18
(mod 24), N > 0.

Clearly, there is such a STS(3).

In each of the constructions below, add the blocks (0, N/2, «),

(a, 0, x) and (=, a, b):

Case 1. If N=4 let x=1. If N = 4 (mod 24), N > 4, say N =
24s + 4, s > 1, then take the blocks
A: (0, 4s + 1 +r, 88 ~r) r =0, 1,
B: (0, 8s + 1 +r, 12s + 1 - r) r =0, 1,

and let x = 10s + 1.

Case 2. If N =6, let x =1 and take the block (0, 2, 4). If
N = 6 (mod 24), N > 6, say N = 24s + 6, s > 1 then take the blocks
A: (0, 4s +1 +r, 8 +1l-r)r=20,1, ..., 2s - 1
B: (0, 4s - 1 - 2r, 12s + 2 - r) r =20, 1, ..., 2s - 1

C: (0, 8s + 2, 16s + 4)

and let x = 6s + 1.
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Case 3. If N =12, let x =5 and take the blocks (0, 1, 3) and
(0, 4, 8). If N Z 12 (mod 24), N > 12, say N = 24s + 12, s > 1, then
take the blocks

A: (0, 4s + 2 + r, 8s + 3 - r)r =20, 1, ..., 2s

B: (0, 4s = 2r, 12s + 5 -r) r =0, 1, ..., 28 - 1

C: (0, 8s + 4, 16s + 8)

and let x = 10s + 5.

Case 4. If N = 22, let x =9 and take the blocks (0, 5, 6),

(0, 8, 10), and (0, 4, 7). If N = 22 (mod 24), N > 22 say N =

| 24s + 22, s > 1, then take the blocks
‘ A: (0, 4s + 4 +r, 85+ 7 -1r) r=20,1, ..., 25 + 1
‘ B: (0, 4s + 2 - 2r, 12s + 10 - r) r =0, 1, ..., 2s
and let x = 10s + 9.
In each case, the blocks are the base blocks for a STS(v) under the

automorphism a.

‘ Example 4.10. Suppose N = 76 and s = 3. Then according to Theorem

4.19, a STS(79) can be constructed on the set {=, a, b, 0, 1,

75} admitting the automorphism a = («)(a,b)(0, 1, ..., 75). Theorem
4.19 yields the following collections of base blocks: A = (0, 13, 24),
(0, 14, 23), (0, 15, 22), (0, 16, 21), (0, 17, 20), (0, 18, 19) which
contain the differences in the set {1, 3, 5, 7, 9, 11, 13, 14,

A

23, 24}; B = (0, 25, 37), (0, 26, 36), (0, 27, 35), (0, 28, 34), (o,

B
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29, 33), (0, 30 32) which contain the differences in the set {2, 4,
6, 8, 10, 12, 25, 26, ..., 30 32, 33, ..., 36, 37}; along with the
block (0, 38, «) which covers the difference 38 and generates all
blocks that contain <« except («, a, b), the block (a, 0, 31) which
contains the difference 31 and generates all blocks that contain either
a or b except («, a, b), and finally the block (=, a, b). So
these are the base blocks for a STS(79) wunder a. Similarly, in
general, the blocks of A contain the differences in the set
{1, 3, 5, ... 4s -1, 4s + 1, 4s + 2, ..., 8s}, the blocks of B
contain the differences in the set {2, 4, 6, ..., 4s, 8s + 1, 8s + 2,
., 10s, 10s + 2, 10s + 3, ..., 12s + 1}, the block (0, 12s + 2, =)
contains the difference 12s + 2 and generates all blocks containing
< except (=, a, b), the block (a, 10s + 1, 0) contains the
difference 10s + 1 and generates all blocks containing a or b
except (<, a, b), and finally the block (=, a, b) is added. Sé
these are the base blocks for a STS(24s + 7) under a = («)(a,b)

(0, 1, ..., 24s + 3).

Example 4.11. Suppose N = 54 and s = 2. Then according to Theorem

4.19, a STS(57) can be constructed on the set f{«, a, b, 0, 1, ..., 53}
admitting the automorphism a = («)(a,b)(0, 1, ..., 53). Theorem 4.19
yields the following collections of base blocks: A = (0, 9, 17),

(o, 10, 16), (0, 11, 15), (0, 12, 14) which contain the differences in

the set {2, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17}; B = (0, 7, 26),
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(o, 5, 25), (0, 3, 24), (0, 1, 23) which contain the differences in
the set {1, 3, 5, 7, 19, 20, ..., 26}; C = (0O, 18,, 36) which
contains the difference 18; along with the block (0, 27, =) which |
covers the difference 27 and generates all blocks that contain =
except («, a, b), the block (a, 0, 13) which contains the difference
13 and generates all blocks that contain either a or b except
(», a, b), and finally the block (=, a, b). So these are the base
blocks for a STS(57) under a. Similarly, in general, the blocks of
A contain the differences in the set {2, 4, ..., 4s, 4s + 1, 48 + 2,
., 6s, 6s + 2, 63 + 3, ..., 8s + 1}, the biocks of B contain the
differences in the set {1, 3, ..., 4s -1, 8s + 3, 8s + 4, ..., 12s +
2}, the block of C contains the difference 8s + 2, the biock (0,
12s + 3, =) contains the difference 12s + 2 and generates all blocks
containing <« except (=, a, b), the block (a, 0, 6s + 1) contains
the difference 6s + 1 and generates all_blocks containing a
or b except (=, a, b), and finally the block (=, a, b) is added.
So these are the base blocks for a STS(24s + 9)

under a = (=)(a,b)(0,1,..., 24s + 5).

Example 4.12. Suppose N = 60 and s = 2. Then according to Theorem
4.19, a STS(63) can be constructed on the set {«, a, b, 0, 1, ..., 62}
admitting the automorphism a = (=«)(a,b)(0, 1, ..., 62). Theorem 4.19
yields the following collections of base blocks: A = (0, 10, 19), (0,

11, 18), (0, 12, 17), (0, 13, 16), (0, 14, 15) which contain the

differences in the set {1, 3, 5, 7, 9, 10, ..., 19}; B = (0, 8, 29),
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(0, 6, 28), (0, 4, 27) which contain the differences in the set {2,
4, 6, 8, 21, 22, 23, 24, 26, 27, 28, 29}; C = (0, 20, 40) which
contains the difference 20; along with the block (0, 30, =) which
covers the difference 30 and generates all blocks that contain =
except (<, a, b), the block (a, 0, 25) which contains the difference
25 and generates all blocks that contain either a or b except (e,
a, b), and finally the block (=, a, b). So these are the base blocks
for a STS(63) under a. Similarly, in general, the blocks of A
contain the differences in the set {1, 3, ..., 4s + 1, 4s + 2, -
8s + 3}, the blocks of B contain the differences in the set {2, 4,
-» 4s, 8s +5, 8s + 6, ..., 10s + 4, 10s + 5, 10s + 6, ..., 12s + 5},
the block of C contains the difference 8s + 4, the block (0, 12s +
6, =) contains the difference 12s + 6 and generates all blocks
ccontaining <« except (-, a, b), the block (a, 0, 10s + 5) contains
the difference 10s + 5 and generates all blocks containing a or b
except (=, a, b), and finally the block (=, a, b) is added. So
these are the base blocks for a STS(24s + 15) under a = («)(a,b)

(0, 1, ..., 24s + 11).

Example 4.13. Suppose N = 70 and s = 2. Then according to theorem
4.19, a STS(73) can be constructed on the set {=, a, b, 0, 1, ...,
69} admitting the automorphism a = («)(a,b)(0, 1, «v., 69). Theorem
4.19 yields the following collections of base blocks: A = (0, 12, 23),

(o, 13, 22), (0, 14, 21), (o0, 15, 20), (0, 16, 19), (0, 17, 18) which

contain the differences in the set {1, 3, 5, 7, 9, 11, 12, ..., 23}; B
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= (0, 10, 34), (0, 8, 33), (0, 6, 32), (0, &, 31), (0, 2, 30) which
contain the differences in the set {2, 4, 6, 8, 10, 24, 25, 26, 27,
28, 30, 31, 32, 33, 34}; along with the block (0, 35, «») which covers
the difference 35 and generates all blocks that contain = except (=,
a, b), the block (a, 0, 29) which contains the difference 29 and
generates all blocks that contain either a or b except (=, a, b),
and finally the block (=, a, b). So these are the base blscks for a

STS(73) under a. Similarly, in general, the blocks of A contain

the differences in the set {1, 3, ..., 4s + 3, 4s + 4, ..., 8s + 7},
the blocks of B contain the differences in the set {2, 4, ..., 4s
+2,8s +8, 88+9, ..., 10s + 8, 10s + 10, 10s + 11, ..., 12s + 10},

the block (0, 12s + 11, «) contains the difference 12s + 11 and
generates all blocks containing = except (=, a, b), the block (O,
a, 10s + 9) contains the difference 10s + 9 and generates all blocks
containing a or b except (=, a, b), and finally the block (=, a,
b) is added. So these are the blocks for a STS(24s + 25) under a =
(=)(a,b)(0,1, ..., 24s + 21).

Now, with the existence of l-rotational STS(v) and the STS(v)
as described in theorem 4.19, it is easier to establish the existence

of a reverse STS(v) for v

1, 3, or 9 (mod 24). 1If a l-rotational
STS(v) with v = 3 or 9 (mod 24) exists admitting an automorphism a
of type [1, O, ..., 0, 1, 0], then this same STS(v)

(v-1)/2

is reverse since the automorphism a is of type [1,(v-1)/2,

0, ..., 0]. Also, if a STS(v) with v = 1 or 9 (mod 24), satisfying

theorem 4.19, with the automorphism a of type [1, 1, O, ..., O, 1, O,
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0, 0] exists, then this STS(v) is also reverse since a(v-3)/2

type [1, (v-1)/2, 0, ..., O].

of

€on




V. STEINER TRIPLE SYSTEMS WITH AN INVOLUTION

In this chapter, the necessary and sufficient conditions for a
STS(v) admitting an automorphism w of type [£, (v-f)/2, 0, ..., O]
are investigated. This problem can be restricted to 1 < f < v, since
when f = 1, this is the reverse STS(v) problem, and when f =v, =
is the identity automorphism. Throughout, m will be a permutation of
Zn x ZZL) Zf and will be equal to m = (1)(2) ... (£)(0,, 0,)(1,, 1,)

((n-1),, (n-1),), where (x,i) is abbreviated x, . All results,

unless otherwise noted, are due to Hartman and Hoffman [5].

Theorem 5.1. If there exists a STS(v) admitting an automorphism
of type [f, (v-£)/2, 0, ..., 0] then v = 1or 3 (mod 6), £ =1 or 3

(mod 6), and (v - f 0 (mod 4) and v > 2f + 1) or (v - f = 2

(mod 4) and v > 3f).

Proof: Certainly, it must be that v

1l or 3 (mod 6). Also, from
theorem 1.1, it follows that £ = 1 or 3 (mod 6). If a STS(f) is a
subsystem of a STS(v) then it must be that v > 2f + 1 if v = f.

Now suppose the STS(v) has point set X = ZflJ (Zn x Z and

9)
automorphism m as described above. So v = 2n + f. Now consider the

set S = {(x, Yo zj) X € Zf}. S contains n blocks. When = acts
on S, the blocks are permuted in pairs. So if n is odd, there must

be at least one block in S that is mapped onto itself by m, say (x,

Yo» ¥.). Since there are n pairs (y,, y,), it follows that n > f

72
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and v > 3f when n is odd. So if n is even, v - £ = 2n = 0 (mod
4) and v > 2f + 1. If n is odd, v - £ = 2n = 2 (mod 4) and
v > 3f.

Now for some definitions from graph theory (for undefined terms,

see [1]). A l-factor, or perfect matching, of a graph G = (V,E) 1is a

subset of E which partitions V. A l-factorization F of G is a

partitioning {F,, F,, ..., Fr} of E into l-factors. An f-auto-

morphism of a l-factorization is a permutation o of V which fixes

each l-factor, i.e. o(Fi) = Fi for all 1 i {r. A l-factorization
which admits o as an f-automorphism will be called a
o-factorization. For x ¢ Zm, define le by

X

-X otherwise.

if 0 < x < m/2

Let m > 2 be an integer and let L be a non-empty subset of
{1, 2, ..., ﬁnﬂ21]}. The cyclic graph G(m,L) is defined to be the
graph with vertex set Zm and edge set E defined by {x,y} ¢ E
if and only if Iy - xI e L. Given a graph G = (V,E), we say that the
graph H = (V x Z,, E,) if a doubling of G if for every edge
{x,y} € E precisely one of the following holds:

(i) {xy, y,} € E, and {x,, y,} ¢ E,

(ii) {x,, y,} € E, and ({x,, Yo} € E,.

The following theorem is due to Stern and Lenz [13].
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Theorem 5.2. A cyclic graph G(m,L) has a l-factorization if and only

if m/ged(i,m) is even for some i ¢ L.

Theorem 5.3. If a graph has a l-factorization, then any doubling H

of G has a n-factorization.

Proof: For each l-factor of G, construct a l-factor of H by
replacing each edge {x,y} by the two edges ({x,,y,} and {x,, v,
or ({x,,y,} and {x,,y,}) whichever is appropriate.

The proof of the following theorem is based on ideas of Stern and

Lenz.

J
Theorem 5.4. Let G be a simple regular graph and let H be a graph
formed by taking a doubling of G and adding all edges of the form

{x0,%x,}. Then H has a n-factorization.

Proof: If G is regular of degree r, then by Vizing's theorem [1],

G has a proper edge coloring in either r or r + 1 colofs. Let Ci
0 {i<r be the set of edges receiving color i. Each vertex x in
G is incident with edges of r different colors, so there is a color
f(x) such that cf(x) contains no edge incident with x. Form the
l-factor Fi of H by replacing each edge {x,y} ¢ Ci by the two
edges ({x,,y,} and {x,,y,}) or ({x4,y,} and {x,,y,}) whichever
is appropriate, and all edges {z,,z,} where Ci contains no edge

incident with =z in G, i.e. £(z) = i. Then this l-factorization of

H 1is a m~-factorization.
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Theorem 5.5. If v > f > 1, v=1or 3 (mod 6), £f =1 or 3 (mod 6),'(1/
and (v - £ =20 (mod 4) and v > 2f + 1) or (v - £ = 2 (mod &) and
v 2 3f) then there exists a STS(v) admitting an automorphism = of

type [£, (v-£)/2, 0, ..., O].

Proof: Suppose B, is a set of triples of Zn x Z,. Associate with

B, the graph TI(B,) with vertex set Zn x Z, and let {xi,yj} be

an edge of/ I' if and only if {xi, yj} is contained in no triple of

Bo. Now, if TI(B,) has a m-factorization with £ l-factors, F,, F,,
. Ff, then the set B = 8,U B, U B, 1is the block set for a STS(v)

with point set Zn x Z,UJ Zf admitting m as an automorphism where

B, and B, are defined as follows. Let By, be the block set of

a STS(f) with point set 2Z_. Let B, = {(k, X5 yj) {xi,yj} e F

£ k’

k e Zf}. Notice that a block is in Bi if and only if it contains i
elements of Zf.

In each of the following cases the set B, is presented and,
unless otherwise stated, TI(B,) has a n-factorization for the
following reasons. If n is odd, r'(B,) satisfies the conditions of
Theorem 5.4. If n is even then I'(B,) can be expressed as the

disjoint union of a graph satisfying the conditions of theorem 5.4 and

a second graph which is a doubling of G(n,L) with n/2 ¢ L since in

each of the following constructions, B8, will not contain pairs
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(x4, ¥,) or (x,,y,) Wwhere the difference associated with x and y
is n/2 (and so the graph I'(B,) will contain a doubling of the cyclic
graph G(n,n/2) as a subgraph). This second graph has a
n-factor{;ation by Theorem 5.2 and Theorem 5.3. In each of the cases,

o denotes the permutation of Zn x Z, defined by

o(xi) = g(x + l)i'

Construction 1. Consider the following families of base blocks:

Aj: (0, (2k + 1 + i), (4k -1 -4),) i=0,1, ..., k - 2 |
B,: (0,, (4k + i),, (6k - i),) i =0, 1, ..., k-1

C,: (0,, (3K),, (5k),)

D,: (0,, (2k + 1 + i),, (4k - i),) i =0, 1, ..., k-1

E,(8): (O,, (4k + 1 + & + 1),, (6k + 6 - 1)) i =0, 1, ..., k-1

F,: (0,, (4s + 1),, (8k+2),)

Case 1.1. n=12k +1, k>0, £f =6t +1, 0 <t < 2k.
Let B, be the <o,m> orbits of the blocks in B,, C,, D, and any

2k - 1 -t of the blocks in A, and E,(0).

Case 1.2. n =12k +2, k>0, £f =6t +3, 0<t < 4k.

Let B, be the <o,m> orbits of any 4k - t of the blocks in A, B

Con

C,, D,, and E,(0).

1?2

Case 1.3. n =12k + 3, k>0, £ =6t +3, 0<t < 2K.
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Let B, be the<o,n> orbits of the blocks in E, (1), A,, C,, F, and
(0, (2k + 1),, (4k),) € D, and any other 2k -~ 1 - t of the blocks

in B, and D,.
Case 1.4. n = 12k + 3, k>0, £ =6t + 1, 0 <t < 2k.

Case 1.4.1. 1<t <2k -1.

Let B, be the <o,m> orbits of the blocks in B,, C,, D,, F, and
the block (0,, (4k + 2),, (6k + 1),) € E,(1) along with any 2k - 2
- t other of the blocks in A, and E,(l) omitting the block Af =
(0, (3k - 1),, (3k + 1),) from A,. Now add the <o’,n> orbit of

AY.

Case 1.4.2. t = 2k - 1.

If k=1, let B, be the <o,m> orbits of the blocks (04, 5., 10,),
(0g, 64, 7,), (0, 4,, 6,), (04, 1,, 4,) and the <o®,n> orbit of the
(0,, 5,, 7,).

If k> 2, let B, be the <o,m> orbits of the blocks in E, (1),
A, C,, F; and (0,, (2k.+ 1),, (4k),) € D,. Also add the <o*,m>
orbit of (0,,7,,11,) if k = 2, of (04, 2,5, 16,) if k = 3, of

(0o, 2o, (3k + &4),) if k > 3.

Case 1.5. n =12k + 4, k>0, f=6t+1, 0<t £ 4k + 1.

If k=20, let B, =@. If k >0, let B, be the <o,m> orbits of

any 4k + 1 -t of the blocks in A,, B,, C,, D,, and E,(l).
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Construction 2. Consider the following families of base blocks:

A, (8): (0,, (2k + 1 + 8 + i),, (4k + 1 + & + i),)i=0,1, ..., k-1
B,(6(: (0,, (4k + 2 + § + i),, (6k + 2 + § - i)))yi=0,1, ..., k-1
C,: (0,, (3k + 1),, (5k + 2,)

D, (05, (2k + 2 + i),, (4k + 1 - i),) i =0, 1, ..., k-1

E;: (0g, (4k + 3 + i), (6k + 2 -14i),)i=0,1, ..., k-1

Fo: (04, (4k + 2),, (8k + 4),)

G, (0,, (4k + 2),, (6k + 3),)

Case 2.1. n=12k +5, k20, £f=26t+3, 0<t<2k.
Let B, be the <o,m> orbits of the blocks in B,(0), C,, D, and

any 2k - t of the blocks in A,(0) and E,.

Case 2.2. n = 12k + 6, k2 0, £ =6t + 3, 0t < 4k + 1,
Let B, be the <o,m> orbits of F, and any 4k + 1 - t of the

blocks in 4,(0), B,(0), C,, D,, and E,.

Case 2.3. n =12k + 6, k>0, £f =6t +1, 0 <t 4k + 1.
If k =0, let B, be the <o,n> orbit of F, and the <o®,n> orbit
of C,. The graph TI(B,) has a n-factorization using the l-factors

F1 = {{01)11}, {21’31}: {41)50}, {51’40]) {ooylo}) {20,30}})

b
»
[l

{{01’51}) {11:20}, {21,10}) {31)41}’ {00,50}, {30140}}’

tz
“
[]

{{01:50}’ {11’30}’ {21’40}’ {31’10}) {41)20}) {51)00}}3

&
'y
[

{{01’4°}p {11’50}’ {21’30}’ {31320}’ {41’00}, {51’101})
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and theorem 5.4.
If 'k >0, let B, be the <o,m> orbit of F,, the <o®,m> orbit of
(0, (3k + 1)y, (3k + 2),) € D, and any 4k + 1 - t of the o,m>

orbits of the remaining blocks in A,(0), B,(0), C,, D, and E,.

Case 2.4. n =12k +7, k> 0, £ =6t +1, 0 <t £ 2k.
Let B, be the <o,m> orbits of B,(l), D,, G,, (0, (5k + 2),, (5k +

3),) e E, and any 2k - t of the remaining blocks in A,(l) and E,.

Case 2.5. n = 12k +8, k>0, £f=6t+ 3, 0<t £ 4k + 2.
Let B, be the <o,m> orbits of any 4k + 2 - t of the blocks in

A,(1), B,(1), D,, E, and G,.

Construction 3. Consider the following families of base blocks:

Ag(8): (0y, (2k + 2 + 6§ + g, (4k +2+8-1))i=0,1, ..., kel
By(8): (0o, (4k + &4 + & + i)s, (6k + 4 + § - i)l—s) i=0,1, ..., k-1
Cs(8): (05, (4k + 3 + 8),, (8k + 6 + 28),)

Dy(8): (0,, (3k + 2 + 8)8’ (5k + 4 + 8)1—8)

Eq(8): (0,, (2k + 3 + 1) (4k + 2 - i)l_s) i=0,1, ..., k-1

1-§°
Fe(8): (0,, (4k + 3 + 8 + i)

jogr Bk + 4 + 8- 1)) i=8, 8+1, ..., k

Gy: (0,, (2k + 2),, (4k + 3),).

Case 3.1. n =12k +9, k>0, £ =6t +3, 0 <t < 2k.

Let B, be the <o,m> orbits of A (0), C,(0), Dy(0), F,(0) and any

2k-t of the blocks in B,(0) and E,(0).
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Case 3.2. n =12k + 9, k > 0, f = 6t + 1, 0 <t £ 2k.

Case 3.2.1. k = 1 (mod 3).
Let B, be the <o’,n> orbit of (0,, (5k + 3)o, (5k + 5),) € B,(0)
and the <o,n> orbits of the blocks in A,(0), C,(0), D,(0), F,(0)

and any 2k - t of the remaining blocks in B,(0) and E,(0).

Case 3.2.2. k = 2 (mod 3).

Let B, be the <o®,n> orbit of (0,, (5k + 3),, (5k + 4),) € F,(0)
and the <o,n> orbits of (0,4, (4k + 3),, (6k + 4),) e Fy(0), the
blocks in B,(0), C,(0), D,(0), E,(0) and any 2k - t of the

remaining blocks in A,(0) and F,(0).

Case 3.2.3. k = 0 (mod 3).
Let B, be the <o®,n> orbit of D,(0) and the <o,n> orbits of
(0,, (3k + 2),, (3k + 3),) € E,(0) the blocks in A,(0), c,(0), F,(0)

and any 2k - t of the remaining blocks in B,(0) and E,(0).

Case 3.3. n =12k + 10, k>0, £ =6t + 1, 0 <t <4k + 3.

Let B, be the <o,n> orbits of any 4k + 3 t of the blocks in

A,(0), B,(0), D,(0), E,(0) and F,(0).

Case 3.4. n =12k + 11, k>0, £=6t+3, 0t 2k+1.
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Let B, be the <o,m> orbits of (0,, (4k + 4),, (6k + 5),), the
blocks in A (l), Dy(l), F4(l) and any 2k + 1 - t of the blocks in

By(l), E,(l), and G,.

Case 3.5. n =12k + 12, k>0, £ =6t +3, 0 <t < 4k + 3.
Let B, be the <o,n> orbits of C,(l) and any 4k + 3 - t of the

blocks in A (l), B4(l), D,(1), Ey(l), F4(l), and G,.

Case 3.6. n =12k + 12, k> 0, £f =6t + 1, 1 < t £ 4k + 3.

If k=0, let B, be the <o’,n> orbits of (0,, 4,, 8,), (0,, 1,,
5,) and the <o,n> orbit of (05,34,5,) (omit if t = 1).. If k > 0,
let B, be the <o®,n> orbit of (0,,(3k + 2),, (3k +4),) € A,(1),
and the <o,n> orbits of C,(l) and any 4k + 3 - t of the remaining

blocks in A (1), B4(1l), D,(1), Ey(l), F4(l), and G,.

Case 4. n =1 or 3 (mod 6), f = n.
Let B, be the <n> orbits of the blocks of a STS(n) with point set
Zn x {0}.

The constructions for Case 5 are adaptations of Rosa's

constructions [10] for cyclic STS(v).

o

Case 5. n = 3 (mod 6), £f =n - 2.

Case 5.1. n =24k + 3, £ = 24k + 1, k > 0.
Let B, be the <o,m> orbits of the following blocks:

(0, (4k + 1 + i),, (8k - i),) i = 0,1, ..., k - 2

(0, (8k + 2 + i)y, (12k - i),) i = 0,1, ..., k - 2
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(0, (5k + i)g, ( 7k = 1 -= i)y) i = 0,1, ..., k - 2
(0, (9k +2 + i),, (1lk - i),) i = 0,1, ..., k - 2
(05, (7K)y, (9k + 1),)
(05, (Tk + 1),, (llk + 1),)

' (04, (10k + 1),, (12k + 1),)

| (0, (8k + 1),, (16k + 2),)
(0,, (6k - 1),, (6k),)

and the <o¢®,n> orbit of (06,4,,5,).

Case 5.2. n = 24k - 3, £ = 24k - 5, k >0.

Let B, be the <o,m> orbits of the following blocks:
(0g, (4k + i)y, (8k - 2 - i),) i = 0,1, ..., 2k - 2
(0, (8k + 1 + i)y, (12k -~ 2 - i),) i =0,1, ..., k - 3
(0o, (9% + i),, (llk - 3 - i),) i =0,1, ..., k - 3
(0o, (6k - 1),, (10k - 2),)

(0,, (llk - 2),, (1lk - 1),)

(0,, (8k - 1),, (16k - 2),)

(0,, (8k),, (10k - 1),) (omit if k = 1)

(05, (9k - 1),, (11k),) (omit if k = 1)

and the <o®,n> orbit of (04,4,,5,).

Case 5.3. n =24k + 9, £ = 24k + 7, k > 0.
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If k=20, let B, be the <o,n> orbit of (0,5, 34, 6,) and the <o, n>
orbits of (0,5, l,, 2,), (0o, 5o, 7o), (04, 4,, 8,) and (0,, 1,, 5,).
If k=1 let B, be the <o,m> orbits of (0,, 6o, 104), (0,, 7,,
12,), (04, 134, 15,), (0,, 14,,17,), (0, 11,, 22,), (0o, 85, 9,), and
the <o®,n> orbit of (0o, 4,, 5,).

If k> 1, let B, be the <o,n> orbits of the following blocks:
(0g, (4k + 2 + i),, (8k + 2 - i)g) i =0,1, ..., 2k - 1

(0g, (8k + &4 + i),, (12k + 3 - i),) i =0, 1, ..., k - 3

(0g, (9% + 2 + i)y, (1lk + 3 - i))) i =0, 1, ..., k - 1

(0, (6k + 2),, (10k + 3),)

(0p, (10k + 2),, (12k + 5),)

(0,, (8k + 3),) (l6k + 6),)

(0o, (l1k + 4),, (llk + 5),)

and the <o,m> orbit of (0,, 4,,5,).

Case 5.4. n = 24k + 15, f = 24k + 13, k 20

If k =0, let B, be the <o,m> orbits of (0o, 2,,8,),

(0o, 50, 105), (0y, 1,,4,), and the <o°,n> orbit of (0,, 4,, 5,). If
k >0, let B, be the <o,n> orbits of the following blocks:

(0y, (4k + 3 + i),, (8k + 4 - i)g) i =0,1, ..., 2k - 1

(0,, (8k + 7 + i),, (l2k + 5 - i)o) i=0,1, ..., k -2

(0,, (9% + 6 + i), (llk + & - i)e) i

]
o
—

-
-
=
|
w

(05, (6k + 3 + i),, (10k + 5 - i),) i

N
o
—

R —
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(05, (8k + 6),, (10k = 6),) (omit if k = 1)
(0,, (12k + 6),, (12k + 8),)
(0,, (8k + 5),, (16k + 10),)
(0,, (11k + 5),, (1lk + 6),)

and the <o®,m> orbit of (0,, 4,, 5,).

Case 6. n =12k + 8, £ =3, k > 0.
Consider the following blocks:
(0o, (4k + 3 + i)s,(6k + 4 - i)s) i=0,1, ..., k

(0, (4k + 3 + i)i _ (6k + 3 - i)l _

8’
(0, Bk +2+1) |, Bk+1-1))i=0,1, ..., k-1

(0o, (3k + 3 + 1), (3k + 1 - 1) _ ) =0, 1, o, k-1

1
(0,, (3k -+ 2)8’ (5k + 3)1 _ 8)'

j

Let B' be the images of these blocks under the transformations ¢
where § = 0 when 0 < j < 6k +4 and § = 1 when

6k + 4 < j < 12k + 8. Now let B, be the <m> images of the blocks
in B'. the graph TI(B,) has the following edges: the <o) orbit of
{0,,0,}] and the <n> orbits of the images of {0,, (4k - 2)l _ 8}
under the transformations oj defined above. This graph has a

n-factorization by theorem 5.4.

Case 7. n =12k, £f =3 0or 7, k > 0.
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Consider the following blocks:

(0,, (4k + 1 + 1)8, (6k - i), §) =01, ..., k-1

1
(0,, (4k + 1 + i)1 -5 (6k - 1 - i)S) i=20,1, ..., k-2

(05, (2K), (50), _ )

- &’ )

Let B' be the images of these blocks under the transformations

oj where 8§ =0 when 0 { j < 6k + 4 and § = 1 when

6k + 4 < j < 12 k + 8. Now let Bo be the <m> images of the blocks
in B' and the <o,m> orbits of the following blocks

(O, (2k + 1 + i)y, (4k = 1 - i),) i =0, 1, ..., k - 2

(0p, (2k + 1 + i), (4k -~ 1i),) i=0,1, ..., k -1

(05, (4k),, (8k),).

The graph TI(B,) contains the images of {0,,0,} and {Oo,(Zk)s} and
the existence of m-factorization follows from theorem 5.4. This covers
the case when f =3 . When £ =7 and k > 1, take the <o®,n> orbit
of (0,, (3k - 1),, (3k + 1),) instead of the <o,n> orbit of it.
When £ =7 and k = 1, let B, be the <o,n> orbit of (04, 44, 7,),
(0o, 34, 5,), and the <m> orbits of the o3 images of (0,, 1,, 2,)
with j =0, 1, 3, 4, 6, 7, 9, 10. So, there exists a STS (v)
admitting an automorphism m of type [f, (v - £)/2, 0, ..., 0] if

and only if v Z 1 or 3(mod 6), f = 1 or 3(mod 6), and (v - £ = 0(mod4)

and v 2 2 £ + 1) or (v ~ £ = 2(mod4) and v 2 3f).
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Example 5.1. Suppose n =6 and f = 7. Then according to theorem
5.5, a STS(19) can be constructed on the set Z¢ x 2,|J 2, admitting
the automorphism = = (1) (2) (3) (4) (5) (6) (7) (05,0,) (15,1,) oo
(6,,6,). Case 2.3 produces the following collection of blocks:

Bo = {(04, 25, 40), (Lo, 34, 5,0, (0,, 1,, 2,), (0,, 2,, 4,),

(1,, 3,, 5,), (0,, 1,, 20)}. These blocks produce a graph I'(B,) with
edges as listed in the sets F,, F,, F, and F, in case 2.3 along
with the edges in the sets F, = {{0,, 0,1, {l,, 1,} {2,, 2,}, {3,, 3,}
{4os 413, {50, 5,1}, Fo = {{0,, 3,3}, {L,, 4,3, {2,, 5,}, {3,, 0,}

{40, 1,1, {5,, 2,1}, and F, = {{0,, 3,3, {1,, 4,} {2,, 5.}, {0,, 3,},
{1,, 4,1, {2,, 5,}}. The sets F,, F,, F,, F,, F,, F,, and F, are
l-factors for the graph T(B,). Also, these l-factors are fixed under
m, so they form a n-factorization of T'(B,). The blocks of B, are as _ I
follows: B, = {(1, 0,, 1,), (1, 2,, 3,), (1, 4, 5,), (1, 5,, 4,),
(L, 0q, 1g), (1, 24, 3,), (2, 0,, 5,), (2, 1,, 24), (2, 2 4, 1,),

(2, 3,, 4,), (2, 04, 54), (2, 3,, 4,), (3, 0,, 5,), (3, 1,, 3,

(3, 2,, 45), (3, 3,, 1), (3, 4,, 2,), (3, 5;5 05), (4, 0,, 4,),

(4, 1,, 54), (4, 2., 3,), (4, 3,, 2,), (4, 4y, 04), (4, 5,, 1),

(5, 0,5, 0,), (5, 1y, 1), (5, 24, 2,), (5, 305 31), (5, 44, 4)),

(5, 54, 5,), (6, 0o, 3,), (6, 1,, 4,), (6, 2,, 5,), (6, 3,, 0,),

(6, 4,, 1,), (6, 5,, 2,), (7, 04, 3,), (7, 1,, 4o), (7,24, 54),

(7, 0y, 3)), (7, 1,, 4,), (7, 2,, 5,)}. Now, the blocks of B, are as
follows:

Bs = {(1, 3, 4), (2, 4, 5), (3, 5, 6), (4, 6, 7), (5, 7, 0), (6, 0, 1)

(7, 1, 2)]. The blocks of B, contain certain pairs of the form
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(x ) and miss others. The missing pairs are contained by blocks of

i’ Yj

B, and, since these blocks are constructed using 1- factors of TI(B,),

every pair of type (xi, y) where y ¢ Zf is also contained here.

The blocks of B4 contain all pairs (x, y) where x ¢ Z_ and y ¢ Z

f £

So all desired pairs are present and the blocks of B, B,U B, are
the blocks of a STS(19) and, due to construction, this system admits
the automorphism m. Similarly, in general the blocks of B, contain
certain pairs of the form (xi, xj) and miss others. The missing pairs
are contained in the blocks of B, and, since these blocks are
constructed using l-factors of T(B,), every pair of type (xi,y) where

y € Zf is also contained here. The blocks of B, contain all pairs

(x, y) where x ¢ Zf and y ¢ Zf. So the blocks of B, B,U B, are

the blocks of a STS (2n + f) admitting the desired automorphism.
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