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ABSTRACT. In this paper, we derive several conditional probabilities with
direct applications in population genetics. The probability that an n-degree
relative shares a trait with a given individual is calculated. An example of
the application of these probabilities to some previously published DNA fin-
gerprint data is given in which a x? test is performed to determine the degree
of relatedness between two individuals.

1. Introduction

The purpose of this paper is to present the derivation of certain conditional
probabilities which have applications in population genetics. We make
extensive use of Bayes’ Theorem and thereby avoid the use of transition
matrices (derivations using transition matrices of some of our results have
been performed by Li and Sacks 1954). We discuss the application of the
derived conditional probabilities to the problem of determining the degree
of relatedness between individuals based on their phenotypes and present
an analysis of such a case using previously presented DNA fingerprint
data.

A detailed account of the use of DNA fingerprinting in the estima-
tion of relatedness was described by Lynch (1988). He showed that the
proportion of shared bands is a poor estimate of relatedness unless the
frequencies of the bands are near zero (Lynch 1988, Figure 2). This is not
surprising since a band with a high relative frequency would be present
in significant numbers of unrelated individuals. To compensate for this
problem, it is necessary to make a correction in the probability of shared
bands for different band frequencies and degrees of relationship. Calcula-
tions relative to these corrections are presented here and the results are
applicable to any traits which undergo Mendelian inheritance.



An Application of Bayes’ Theorem to Population Genetics 137

2. Results

If a population is in Hardy-Weinberg equilibrium for a given trait, then
certain conditional probabilities concerning the presence or absence of
the trait in related individuals can be calculated. For example, if an
individual demonstrates a trait, the probability that his or her offspring,
sibling, cousin, etc. also shows this trait can be calculated.

Consider a dominant trait with allele frequency ». For an individual
X, denote the homozygous dominant state as X, the heterozygous state
as Xo and the homozygous recessive state as X, then the different states
of X have the following probabilities: P(X1) = p*, P(X3) = 2p — 2p?,
P(X3) = 1~ 2p+ p®>. However, with a dominant trait, it is unlikely
that a heterozygous and a homozygous dominant individual can be dis-
tinguished. If the presence of the trait is denoted as X —, then P(X~) =
P(X1) + P(X3) = 2p - p°.

Now, we can do calculations to determine the probabilities of a dom-
inant trait appearing in an offspring of an individual. Denote the known
individual as M and the offspring as D. For this calculation, we will need
to consider the other parent of D, say F'. First, we calculate the prob-
ability of the genotypes of the parents, given the genotype of parent M
(so when this is nonzero, it will depend only on F;). Next, we calculate
the probabilities for the different genotypes of D given M; and F;. Then
the probability of each genotype of D given the genotype of M can be
derived. With the values in Table 1, we can calculate the probability of
each possible genotype of D given any genotype of M as follows:

P(Di|My) = ZP P(Dy|M; and Fj) = p,
P(Dy|My) = ZP(F-)P(D1|M2 and F) = L
P(D1|Ms) = ZP ) P(D1|M; and F;) = 0,
P(Dy|My) = ZP D P(Dg| My and Fj) =1 —p,

1
P(Dg|My) = ZP ) P(Ds| M, and Fy) = =,

P(Dy|M3) = ZP )P (D3| Ms and Fj) = p,
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P(Ds|M;) = ZP ) P(D3| My and F3) =0,
P(Ds|M) = ZP P(Ds|M; and F}) = —% and
P(Ds|Ms) = ZP P(D3|Ms and Fj) =1 —p.

Mr; F; P(D1|Mm and F) P(D2|MI and FJ) P(D3|M.L and Fj)
J i

M, | Iy 1 0 0
My | F» 1/2 1/2 0
My | F3 0 1 0
My | B 1/2 1/2 0
My | Fa 1/4 1/2 1/4
My | Fs 0 1/2 1/2
My | Iy 0 1 0
Ms | Fy 0 - 1/2 1/2
My | F; 0 0 1

Table 1. Conditional Probability of Genotype of Offspring D) given the Genotypes
of the Parents M and I

Because we are only concerned with the presence or absence of the
trait, the following are obtained:

P(D — |M#) = P((D1 or D2)|(M1 or Mz))
P((Dy or D3) and (M; or Ms))
P(M; or My)
= P((Dy and My) or (D and My) or (D3 and M) or
(D and Ms))/P(M; or M)
= {P(M1)[P(D1|M1) + P(Do|My)| + P(M2)[P(D1]Xs)
+P(Da| Ma)]} /(P(M1) + P(M>))
1+p—p?
2-p
P(D —|M3) = P(D;or Dy|Ms)) = P(D1|M3) + P(D2{M3) =p
P(My)P(D3|Mi) + P(Mp)P(Ds|Ma) _ 1—-2p + p?
P(My) + P(Ma) 2-p '

H

P(Ds|M—) =
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P(D3|M3) = 1-p.

Now, consider the probability of the presence of a trait in a parent
M given the presence of the trait in the offspring D. In this case, also,
we have to consider the other parent, F. The calculations are similar to
those above and the results are the same, establishing a parent/offspring
symmetry. The calculations require the entries of Table 2.

[ M,,, I Fj I P(Mz and FJ|D1) | P(Mz and FJIDQ) l P(Mz and F}]Dg) I

M1 Fl p2 0 0

M | Py p(1—p) p°/2

My | F3 0 p(1 —p)/2 0

My | Fy p(1 —p) p*/2 0

My | Fy (1—p)* p(1 —p) p?

M, | Fj 0 (1-—p)*/2 p(1 —p)

M; | Fy 0 p(1—p)/2 0

M, | Fy 0 (1—p)4/2 p(1 —p)

Ms | F3 0 0 (1 —p)*

Table 2. Conditional Probabilities of Parental Genotypes, M; and Fj, given the
Genotype of an Offspring, D.

For the calculation of the same types of probabilities for two individu-
als that are siblings, say S and 52, we use the values from Tables 1 and

2 to get:
142 2
P(SST) = 3 P(Mi and Fy|SHP(SHM; and Fy) = ——27
i,7
1| o2 2 1 p+p°
P(SllSQ) = ZP(M% and FJ|S2)P(31[MT, and Fj) = ) )
(%]
p2
P(S1153) = > P(M;: and Fy|S3)P(S}|M; and Fy) = =,
(%]
 m2
P(SYIS?) = S P(M; and Fy|S2)P(S}H|M; and Fy) = =P,
2%
1102 2 1 14+p—p?
P(S3}1S3) = ) P(M; and F;|S3)P(S3|M; and Fj) = R
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| 2 . o3
P(SYS3) = S P(M; and Fy|S3)P(S}|M; and Fy) = £ > i
i,
1-2 2
P(S}1S3) = Y P(M;and Fj|S3)P(S}IM; and Fy) = —= uat
1,9 ’
. 2
P(SYS3) = S P(M; and Fy|S2)P(SLM; and Fy) = 2 31:“” ,
(2%
102 2 1 4 — dp +p?
P(S513) = ) P(M; and Fy|SH)P(S5|M; and Fy) = ——
%,
And so for siblings:
P(ST —18%-) = {P(SHIP(S115T) + P(S3ISD) + P(SH)[P(S1]55)+

P(S3]S9)} /(P(ST) + P(53))
4 + 5p — 6p* + p°

42-p)
Lz . P(ST)P(S}|SF) + P(S3)P(S;]53)
P(55|5%-) =
’ P(S})+ P(S3)
_ 4—-9p+6p*—p?
42 -py
¢ ol 2y 1] a2 1) o2 _H4P%P2
P(S" —185) = P(S;|53) + P(5;]53) = i
4 — 4p + p?
P(S}IS3) = —— .

In fact, P(S' - |5$2) has already appeared in the literature (Jeffreys et al.
1985).

If two (non-inbreed) individuals are related, then they will be related
by a series of offspring to parent steps followed by a series of parent to
offspring steps. There may also be a sibling step at the apex of this path.
If the number of such steps is n, then these are called n-degree relatives.
We show that the calculations of the probabilities allow a commuting
of the sibling step with the parent/offspring steps by showing that the
numbers are the same for a niece/nephew as they are for an aunt/uncle.
So a combination of a parent/offspring step and a sibling step is needed.
This corresponds to comparing, for example, a niece, N, and an aunt, A.
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Again, comparisons between these two individuals are symmetric and one
gets

1+ 5p — bp? + p?

P(A—-[N-) = P(N-|A-)=

2(2-p)
3 —7p+ 5p* — p°
P(As|N=) = P(Ns|A—)= ,
3Ip—p?
P(A~|Ns) = P(N—|As)= "5,
2 — 3p+p?
P(4g|Ny) = P(Naldg) = —="-.

Calculation of a grandparent/grandchild pair yields the same results.

Surprisingly, even though the probabilities for parents and offspring
were different from those of siblings, the grandparent/grandchild prob-
abilities are the same as the aunt/uncle and niece/nephew probabilities.
So, if we know the relationship between two individuals (provided they are
not siblings), then we can calculate the relevant probabilities by simply
using a series of parent/offspring steps, where the sibling step, if present,
counts the same as a parent/offspring step.

Now, consider an individual, G™, that is an n-degree relative of X
(e.g. if n =1 then G* is a parent, sibling or offspring; if n = 2 then G? is
a grandparent, a grandchild, an aunt, a niece, etc.). Then the following
probabilities are derived, which have been established for n = 1 (with
the relationship “sibling” being a special case) and can be established in
general by induction.

p+ (2"~ 1)p?

P(GTXy) = e |
pGox) = L2 335__1" (@ -2

P(G3lXy) = (271 -1) - (2n2;_21)p+ (2n=1 — 1)p2,
P(GR|X) = P+ (2;_ z)pz’

P(G31X2) = L+ @ - 4)1291: (27! — 4)192,
pGuxy) = EDo @ -3k (0 -2p

2'1’?.
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P(GT]X3)
P(G31Xs5)

P(G%|X3)
From which:

PG™ X)) =

P(G" —|X3) =

P(G3|X-) =

P(G31X3) =

Robert B. Gardner and Michael Wooten

!
by
3
[
—
3

znnl,__(2n __1)p_+_(2n—1 m-l)pg
2n—1 )

{P(X1)[P(GT1X1) + P(G3|X1)] + P(X3)[P(GT]X2)

+P(G3 | X2)|HP(X1) + P(Xz)]

1+ (27t - 3)p — (27t — 3)p? + (271 — 1)p®
2712 —-p) )

P(GY|X3) + P(G5|X3)

R 3 o)

P(X)P(G5]X1) + P(X2)p(G5| X2)
P(Xl) -+ P(Xz)
{@"—1) - (Bx2™ ' =3)p+ (2" - 3)p*-
2"t - 1P’} /(2" (2 - p)),
2*t (2" —Dp+ (2 — 1)p?
2n—1 )

Additional observations can be made about these formulae. Notice
that if a limit as n approaches infinity is taken, in each of the above
formulae, the probability of the presence or absence of the trait is:

PG®—|X-) = 2p-p?
P(G® —|X3) = 2p-—7p°
PGPIX-) = (1-p)

P(GP|X3) = (1-p)*.

This is expected since one assumes mating with random unrelated indi-
viduals. Notice that if we take p = 0, then P(G™ — |X—) = (3)" which
is simply the coefficient of relationship (Lynch 1988; Wright 1922).
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LSt | P(SEST) [ P(s?sh)y | P(SSH |
ST A+2p+p/4] (p+p°)/4 p’/4
Sy | (A-p)/2 | U+p-p))/2 | (2 -p%))2
S | (-2 /4| 2 -3p+p2)/4 | d—dp 1 p°)/4

Table 3. Conditional Probability of the Genotype of an Individual,
SJ?, given the Genotype of a sibling, S1.

Now consider certain special cases where inbreeding is present. If two
siblings S* and 52 have an offspring DD then by referring to Tables 1 and
3 (replacing M and F by S! and 5% in Table 1) we get:

POISY) = 3 P(SHSHP(Di|ST and 8)= 112,
J
2
P = 3 P(SHS)P(DLISE and 82) =~
J
P(D1|S3) = > P(S2|S})P(D,|S} and 82) =0,
J
1w
P(DIST) = 37 P(S}IS1)P(DalS] and §7) = ——2,
i
P(Dy|8}) = P(S2|S1)P(Dy)S2 and §2) = =
(D2|S; (J|2)(2|2an g) %
g
P(DslS5) = 37 P(S}IS3P(Da|S5 and §7) = £,
J
P(Ds|S7) = ) P(S3S1)P(D3}S} and 52) =0,
J
3—2p
P(D3]8)) = ;P(SJ?IS;%)P(DSI.% and S7) = g and
9
P(Ds|S5) = D P(S}IS3)P(DslS} and §7) = =L
J
From which:
P(D—(S8'=) = {P(SHIP(D:|S1) + P(Dy)SH)] + P(SHP(D11S%)+

{P(D21S)} /(P(S1) + P(53))
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_ 54 p— 2p?
42-p)
P(D |8} = P(DiIS})+P(DalS3) =5,
_ P(S})P(Ds|S}) + P(S3)P(Ds|S3) _ 3~ 5p+ 2
e GIEZC R e
P(Dyjs}) = L.

Now consider a similar case, where an individual X mates with an n-
degree relative G™ producing an offspring D. See Tables 1 and 4 (replacing

M and F by X and G™ in Table 1). These follow:

P(D:1|X3) = ZP(G?|X1)P(D1|X1 and G) =

3

1
P(D1|X2) = > P(G}|X2)P(D1|X5 and G}) =

P(Dh|X3) = ZP(G?]Xg)P(DllXS and G7)

J

P(Da|X1) = Y P(G}1X1)P(Ds| Xy and G}) =

P(Da2]X2) = Y P(G}1X2)P(Do} Xz and G}) =

7

P(Da|X3) = Y P(G}|Xs5)P(D2]Xs and G7) =

P(Ds|X1) = Y _ P(Gy|X1)P(Ds|X: and G})
i

P(Ds|X2) = Y P(G}|X2)P(Ds|X and G})
j .
(2n+1 - 1) L (2n+1 . 2)p

= : Y , and

P(Ds\Xs) = 3 P(G}lXs)P(Ds|Xy and GF) =

:0’

= Q,

1+ (2" —-1)p
an ’
+ (27— 2)p
2n+27 !
(2"~ 1) - (@ — p
AL ’
1
2’
(2" —1)p
2n ’
2" — (2" — 1)p

2‘11
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And hence:

P(D—|X—) = {PCO)PD:IXL) + P(Da]X0)] + P(Xa)[P(Dr|Xo)+
P(D31X2)]} /(POXL) + P(X2))
(21 4 1) 4 (21— B)p - (21 - 9)p?

- 3

2n+1(2 _ p)
P(D ~|X3) = P(D1|X3) + P(De2|X3) = Q%;li,

P(X1)P(D3]X1) - P(X2)P(D3]| X2)

P(DslX ) = P(X1) + P(X3)
_ (@M 1) - (272 = 3)p 4 (27 — 2)p?
- 2n+1(2 -~ p) ’
P(Dalxs) = 2= =Dp

2n

Notice that for n = 1, this also reduces to the case of mated siblings.
Also, for any particular type of inbreeding, say continued brother/sister
mating, it is possible to calculate these type probabilities. The calcula-
tions (although tedious) would employ the methods used here, that is, the
construction of tables of the nine possible genotypes of the parents with
the corresponding conditional probabilities.

3. An Application

Jeffreys et al. (1985) presented the following example of the use of DNA
fingerprints in determining relationships: “The case concerned a Ghana-
ian boy born in the United Kingdom who emigrated to Ghana to join
his father and subsequently returned alone to the United Kingdom to be
reunited with his mother, brother and two sisters. However, there was
evidence to suggest that a substitution might have occurred, either for an
unrelated boy, or a son of a sister of the mother... As a result, the return-
ing boy was not granted residence in the United Kingdom.” Conventional
genetic markers indicated that the woman and boy were related (with
99% probability), but could not determine whether the woman was the
boy’s mother or aunt. DNA fingerprints were produced from blood DNA
samples taken from the boy, the mother, her three other children, and an
unrelated individual. The father was unavailable. Based on the probabil-
ity of unrelated individuals sharing a band, the allele frequency for a band
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was calculated to be p = 0.14 (all bands were assumed to have the same
frequency). The mother and boy were found to share 25 maternal specific
bands. Based on this, it was calculated that the probability of these two
being unrelated was (0.26)?° = 2x 10715 (an allele with frequency 0.14 will
appear in an individual with probability 2(0.14) — (0.14)2 = 0.26). The
corresponding probability of the mother actually being the aunt of the
boy was said to be 6 x 1076, This latter calculation, however, was found
to be erroneous and declared irrelevant by Hill (1986) who approached
this same problem from a maximum likelihood viewpoint, and reached
the same conclusion. The boy was granted residence in the United King-
dom. The method used by Jeffreys et al. (1985) is very restricted and not
suitable for general use in testing specified relationships.

We can re-analyze this case using the established probabilities. It was
remarked that there are two relationships to be tested, that of aunt/ne-
phew (n = 2) and mother/son (n = 1). Using equations (1) and (2) with
p = 0.14 for all bands, as in the paper, we can generate expected numbers
of shared bands and do a x? test on these two relationships and on the
possibility of no relation between the mother and boy. We get the results
of Table 5 and find that, of these three possibilities, we fail to reject only
the option of a mother/son relationship.

[ Null Hypothesis | x* | Conclusion |
M and X are unrelated 49.4 reject
M and X are aunt/nephew | 12.5 reject;
M and X are mother/son | .75 | fail to reject

Table 5. x* Values for the Three Plausible Null Hypotheses
for the Information of Jeffreys et al. (1985). A is the Alleged
Mother and X the Alleged Son.

4. Conclusion

In conclusion, we have presented conditional probabilities on individuals
sharing traits which undergo Mendelian inheritance given that the degree
of relatedness of the individuals is known. An application of these condi-
tional probabilities to the estimation of degree of relatedness using a 2
test has been given. An alternative approach to estimating relatedness
would be to calculate likelihoods of certain degrees of relationships, given
data sets. It is our belief that these methods would be valid and unam-
biguous in establishing close degrees of relatedness (n = 1 or n = 2) and
when average allele frequencies are low (say 15% or less). However, these
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procedures may become inaccurate when applied to more distant rela-
tionships or when average allele frequencies are high (Lewin 1989; Lynch
1988). If the phenotypic data of several individuals chosen from & sin-
gle population are available, this problem could possibly be overcome by
piecing together a pedigree using only the close relationships. There can
be a high degree of confidence in these close relationships, and therefore
a fairly high degree of confidence in the derived pedigree.

The accurate derivation of pedigrees would be especially important in
selective breeding programs in small populations or endangered species.
Also, inbreeding could be controlled in such a situation if relatedness
between individuals were known.
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Commentary by Lynne Seymour

Bayes’ Theoremn is an elementary probabilistic mechanism with such broad
implications that an entire branch of statistical inference has arisen from
it. The authors have used this mechanism to simplify some basic prob-
ability calculations in population genetics. Why wasn’t this done in the
first place? Almost surely because the scientist who first derived those
probabilities was unaware of the tools which could simplify his work.

This is a common occurrence at the interface of mathematics with the
sciences. In particular, it happens in statistics, albeit to a slightly lesser
‘extent since scientists tend to use statistics in their everyday research.
Even so, few scientists truly understand the statistical procedures they
use — procedures on which they base the conclusions of their livelihoods!
The ¥ test that the authors used will be employed here to highlight the
logic inherent in a test of hypotheses, and to underscore how probability
can be invaluable in interpreting the hypothesis test.

First, what is a statistical test of hypotheses? In general, it is a logical
procedure which is derived under stated conditions. Null and alterna-
tive hypotheses are clearly stated. A random variable - a function of
data called the test statistic — is developed and its distribution is derived
and/or approximated assuming that the null hypothesis is true. A value
for the test statistic is calculated using the actual data, and the-likeli-
hood of seeing this value from the test statistic’s distribution under the
null hypothesis is evaluated. If this value is judged to be unlikely under
the null hypothesis, then the null hypothesis is rejected at an explicitly
stated significance level. This significance level, usually taken to be 5%,
is interpreted as the largest chance one is willing to tolerate of wrongly
rejecting the null hypothesis. If any of the assumptions under which the
test is derived are violated, the results of the test cannot be trusted.

Many common statistical tests have “shorthand” names by which they
are invoked. The authors, in applying their newly-derived probabilities
to an already-published example, state that they “do a x? test” to draw
a conclusion. Which x? test would that be? A statistician knows that
there are a great many of them. An elementary text which assumes only
a modest knowledge of high school algebra (Anderson et al. 1994) lists
three x* tests in the index. One is for the variance of a single population
(which the reader can rule out fairly quickly); another is for independence
(which, upon close inspection of the author’s Table 9, may be ruled out);
and yet another is for goodness of fit, (which is the one used).

Consider the first of the x? goodness-of-fit tests which the authors used.
The null hypothesis is Hy : M and X are unrelated, and the alternative
is Hy : M and X are related. The data indicates whether a matched pair
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of bands is the same or different. The test statistic requires that there
be k categories into which each observation falls exactly once. Hence the
k = 2 categories may be labeled same bands and different bands. The test
tatistic is given b i (0s —By)”
8 8 y - i
_ bands in the ith category, computed assuming Hp is true. Under Hy, this
“test statistic has a x? distribution with & — 1 = 1 degree(s) of freedom,
denoted x2(1). (Note that Table 5 does not specify the degrees of freedom
for the ¥? distribution.) From the x2(1) table, it becomes apparent that
the conclusions given in Table 5 are not only at the 5% significance level,
but certainly at any reasonable significance level.

Most statistical hypothesis tests today cite a p-value rather than a
significance level (in fact, statistical analysis packages such as SAS report
only p-values when performing statistical tests of hypotheses). The p-
value is the tail probability associated with the test statistic: i.e., it is the
conditional probability of obtaining a test statistic more in line with the
alternative hypothesis than the one observed, given that Hp is true. The
traditional significance level is the largest such probability one is willing
to tolerate when rejecting Hy.

The p-values associated with the x?(1) statistics given in Table 5 are
summarized below (they were calculated using the function CHIDIST in
Fxcel). These p-values add an exclamation point to the example which
cannot be communicated by the raw x? statistics. Roughly, based on the
evidence presented, they say: If one rejects that M and X are unrelated,
the chance of being wrong is negligible; if one rejects that M and X are
aunt /nephew, there is a .04% chance of being wrong; and if one rejects
that M and X are mother/son, there is a 38.64% chance of being wrong.

, where O; is the observed number of

| Null Hypothesis [ x*(1) [ pvalue |
M and X are unrelated | 49.40 | 2.09 x 10~'*

M and X are aunt/nephew | 12.50 0.000407

M and X are mother/son | 0.75 0.386476

REFERENCES

Anderson, D., D. Sweeney, and T. Williams (1994). Introduction to Statistics: Con-
cepts and Applications 3rd ed. St. Paul: West Publishing.




An Application of Bayes’ Theorem to Population Genetics 151

Lynne Seymour

Department of Statistics
University of Georgia

Athens, GA 30602-1952
e-magl: seymour@stat.uga.edu

Gardner and Wooten’s Reply to Seymour

We wish to thank Dr. Seymour for her commentary. One of us (Gardner)
is a pure mathematician, while the other (Wooten) is a population geneti-
cist. Our grasp of the subtleties of statistics is, no doubt, not optimal.
We do enthusiastically agree, however, that probability is “invaluable” in
any statistical process.

We also agree that the assumptions of a statistical test must not be
violated (of course). We should probably emphasize that our x? test of
Section 3 assumes that the relevant bands are inherited independently
(that is, there is no linkage between the bands). We think this a reason-
able assumption and note that the two previous analyzes of this case (by
Jeffreys et al. and Hill) have also (implicitly) assumed no linkage between
the bands.

The use of p-values, as mentioned by Dr. Seymour, is certainly prefer-
able to our “significance level” approach (we chose our approach due to
our limited access to the appropriate software). We thank her for the
“exclamation point”!

In conclusion, we mention that an additional problem with our par-
ticular approach to the application of the derived probabilities lies in the
area of variance. If there is a large amount of variance within a popula-
tion, then the recognition of distant relatives will be difficult due to the
“noise” produced by the variance. This is addressed in the Lynch paper
referenced in our article.



