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INTRODUCTION AND MOTIVATION

The average high school senior or college freshman when initially
introduced to applications of derivatives, is confronted with a barrage of
“Max/Min” problems. Unfortunately, few of them are very realistic. (I
grew up in a rather rural setting - “cow country” you might call it - and I
never met a farmer who owned land on a river and had a fixed amount of
fencing.) This is somewhat understandable, since a meaningful problem
(from an area of science, for example) might require a significant amount
of background, and therefore demand that too much class time be spent on
nonmathematical ideas. The purpose of this article is to present a realistic
problem from biology which requires very little background. We take our
example from population genetics and will need nothing more than the
first and second derivative tests for a complete analysis. Calculus will lead
to a biological property and, in turn, interpretation of the biological
situation will lead to the mathematical topic of stability.

VOCABULARY AND BACKGROUND

By the time they are exposed to calculus, most students are
somewhat familiar with the idea of dominant and recessive genes. This is
sufficient to understand our problem, but we include some further
vocabulary for completeness (see [1] for an excellent introduction to
population genetics). A locus is a position in genetic material where a
gene resides. An ailele is a particular form of a gene. We consider the
case of diploid organisms in which each locus contains two (not
necessarily distinct) alleles. Most of the organisms with which we are
familiar are diploid, including humans. We inherit one allele from each
parent. Bacteria are monoploid, having only one allele at each locus, and
several groups of plants are polyploid, having three or more alleles at each

locus.
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We will concentrate on a single locus and -assume this locus can
contain the alleles A and/or a, but no others. This is called the “one locus-
two alleles model”. This leads to three distinct genotypes: A4, Aa, and
aa. Genotype Aa is said to be heterozygous and genotypes A4 and aa are
homozygous. We represent the frequency of the 4 allele as p (that is,
(px 100) % of the alleles at the given locus in the population are the A

allele). Therefore, the frequency of the a allele is 1-p. We assume
random mating (or the so called Hardy-Weinberg equilibrium) and
therefore the frequencies of the three possible genotypes are as given in
Table 1. In the case that 4 determines a dominant trait and a a recessive
trait, the genotypes A4 and Aa are indistinguishable to the “naked eye”
(they are said to yield the same phenotype) - they both determine the
dominant trait. We do not make such a restrictive assumption. We assume
that all three genotypes are distinguishable.

With each genotype, we associate a fitness, as given in Table 1.
Fitness represents, in a sense, a genotype’s reproductive contribution to
future generations. We need not concern ourselves with the details of the
meaning of fitness; we only consider it as a relative measure of
reproductive success. In a population in which the frequency of allele A4 is

p, define the average fitness of this population as

w = prw, +2p(1—p)w, +(1 ~p)w,
=(w, —2w, +w;)p? + (2w, —2w,)p + W,

where w,, w,, and w, are as given in Table 1. Notice that W is a second
degree polynomial in p. Natural selection will act in such a way as to
force W to increase with time (“survival of the fittest”). Therefore, we
can determine the frequency that allele 4 will approach as time increases,
since it will simply be the value of p that maximizes w . The result, of

course, will depend on w;, w,, and w; .

Genotype frequency fitness
AA p? W
Aa 2P(1 - p) W,

aa (1- p)2 W,

Table 1. The three possible genotypes for a single locus containing two alleles, 4 and a.
The frequencies of each genotype are based on an allele frequency of p for A and assume

random mating or Hardy-Weinberg equilibrium.
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COMPUTATIONS

We want to maximize W for p €[0,1]. Differentiating W with

respect to p yields

% =2(w —2w, + wy )P+ (2w, =2w,).

If w,—2w,+w, =0, then Wi a constant and either

dp

w has a maximum at p=1 if w,>w, andw, >w,, or
2. W has a maximum at p=0 if w;>w and w, >w,, or
W is a constant if w, =w, = w;,,

If w,—2w, +w, #0, then W has a critical point at

W= W
p:‘
W, — 2w, +w,

= C.

If ¢ #(0,1), then the maximum of W on p €[0,1] will occur at either
p=0orp=1, that is when W =w, or W =w,, whichever is larger. If
¢ €(0,1) then the maximum of W on p €[0,1] will occur at either p=0,
p=c, orp=1, whichever yields the largest w. Also, with ¢ e(O, 1), W
will have a minimum at one of these three points. In fact, under these
conditions, W must have an extremum at p =c¢ . Therefore, the concavity

of the graph of W is of particular interest.
The second derivative of W with respect to p is

=2(w, = 2w, +w;).

So if 2w, <w, +w;, then the graph of W will be concave up and W will
have a minimum at p =c (see Figure 1). If 2w, > w, +w,, then the graph
of w will be concave down and W will have a maximum at p=c (see
Figure 2). It is this second case which interests the biologist.
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Figure 1. A graph of average fitness Figure 2. A graph of average fitness W
w for a population in which p for a population in which selection will
represents the frequency of allele A. maintain polymorphism. Again, p is the
The graph of W is concave up and frequency of allele 4. The critical point at

p=c gives a stable equilibrium for the

model and the points p = O and p = 1 are
unstable equilibria, as discussed in the

text. In this graph, w, = 1.0, w, = 1.6, and
w, =06.

patural  selection will  eliminate
polymorphism. In this graph, w, = L6,
w, = 0.6 and w, = 14.

DISCUSSION

A single locus in a population may be monomorphic, in which case
every member of the population has the same type of allele present at that
locus, or a locus may be polymorphic in which case there is more than
one type of allele present in the population at that locus. When molecular
methods were introduced into genetics, it was discovered that there is a
great deal of polymorphism in most populations. It is this diversity that
gives the method of “DNA fingerprinting” its power to distinguish
between the genetic material of individuals (and it is the absence of a
reliable data base of allele frequencies for different ethnic populations that
has led to controversy over the forensic applications of this method). So,
we ask the question “What are the possible values of w;, w, and w; such

that natural selection will maintain polymorphism?”.
To maintain polymorphism, ¢ €(0,1) is necessary and the graph of
# must be concave down, that is 2w, >w, +w;. Simple algebraic
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manipulations show that these two conditions imply that w, >w, and
w, >w,. (In fact, with the recent advent of graphing calculators, it is
quite possible that students can experiment with the fitness parameters and
discover this result from the graphs of W, without ever using caiculus!) If
we consider what this means biologically, then it is exactly what is
expected! This is the so called heterozygote advantage model in which the
heterozygote is more fit than either homozygote. In the case that either
homozygote is more fit than the heterozygote, genetic diversity is lost and
fixation for one of the alleles occurs. An example of this is given in
Figure 1. Therefore, the only way to preserve polymorphism at a single
locus with natural selection is through heterozygote advantage. This is an
important biological fact which we have discovered from the underlying

mathematics!

STABILITY AND EQUILIBRIA

We have assumed an absence of outside forces in our model. For
example, we have ignored random genetic drift (i.e. changes in allele
frequencies which resuit from chance alone; these changes are due to
“sampling error” in populations of finite size and is less important in
large populations), migration and mutation. All three of these factors can
act to perturb allele frequencies from an equilibrium. Additionally,
immigration and mutation can introduce new or extinct alleles into a
population. Continuing to restrict our model to two alleles, we can view
all of these outside forces as perturbations in allele frequencies. This
biological interpretation now leads to the mathematical idea of stability. In
the case of heterozygote advantage, natural selection will push a
population to a polymorphic equilibrium (see Figure 2). If the allele
frequencies are slightly perturbed, then selection will force the population
back to the equilibrium (we can view selection as a force pulling upward
on points which are restricted to the W curve). Therefore, in this case,
the equilibrium at p=c¢ is said to be stable. In fact, it is said to be

universally or globally stable, since any initial value of p &(0, 1) will,
with time, be “attracted” to this equilibrium. For this reason, this
equilibrium is called an attractor or a sink (for rigorous definitions, see
[4]). On the other hand, in Figure 2 there are also equilibria at bothp = 0
and p = 1 (at which polymorphism is lost and fixation of the g allele or
the A allele occurs, respectively). However, these represent unstable
equilibria since a slight perturbation (represented by the introduction of
the missing allele through mutation or immigration) will have the effect of
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sending the population (through the force of -selection) away from the
original equilibrium and towards the polymorphic equilibrium. For a
further discussion on stability in the population genetics setting, see [3].
The idea of stability is very important in mathematics, particularly in
differential equations (linear and nonlinear) and dynamical systems. The
labeling of equilibrium points as stable, unstable, or semistable gives a
fundamental classification of these points and yields important physical
information about the underlying dynamical problem. Our application
gives insight into this mathematical concept through an intuitive
understanding of the underlying biology!

AN EXAMPLE

In my opinion, a mathematical model carries much more weight if
one can point to a specific real world example to which the model applies.
One of the best such examples for our model is the allele which in the
homozygous condition codes for thalassemia, a type of lethal hereditary
anemia related to sickle cell anemia. We represent this allele by a and let
the alternative allele be represented by A. In the heterozygous state, an
individual has a resistance to malaria. In some areas in which malaria is
prevalent, the frequency of the thalassemia allele may be as high as 10
percent (see [2]). We now use this data and our model to analyze the
fitness values associated with the three different genotypes-(namely, the
AA or normal genotype, Aa or malaria resistant genotype, and the aa or
thalassemia genotype). Notice that we are in fact using the model
“backwards” by starting with an observed equilibrium and deriving the
fitness values. First, individuals which have genotype aa have lethal
thalassemia, and so w,=0. The choice of w, is arbitrary, so take
w, = 1.0. The frequency of the a allele is observed to be 0.10, so there is

equilibrium at ¢ = p=0.90. Setting
W, — W,

5 =090,
W, =2w, + W,

C=

gives that w, = 089. Notice that for this population, w=090 and the
average fitness in this population is higher than that in a population
without the thalassemia allele. It is this small advantage that keeps the
allele present (at the expense, one might observe, of automatically losing
one percent of the population to the anemia). This illustrates the strength
with which natural selection can act to encourage the presence of traits
which may give a slight advantage to individual members of a population
(this is, of course, a fundamental property of Darwinian evolution).
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CONCLUSION

This particular application is very enlightening with its interplay of
mathematical and biological concepts. The main ideas behind the model
are fairly elementary and require little time spent on background
information. I find that the majority of my students are able to follow and
appreciate this example. We frequently see engineering and physics
examples in calculus class, but rarely (with the exception of population
growth models) do we see good sound examples from the life sciences.
For this reason, I personally feel that this application has great appeal!
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