EAST JOURNAL ON APPROXIMATIONS
Volume 10, Nwmber 3 (2004), 301-312

SOME RESULTS CONCERNING RATE OF
GROWTH OF POLYNOMIALS

ROBERT B. GARDNER, N. K. GOVil. AND AMY WEEMS

~

A well-known result due to Ankeny and Rivlin [2] states that if
" :

p(z) = Zavz” is a polynomial of degree n satisfying p(z) # 0 for
v=0

|z} < 1, then for R > 1

n

.
max In(2)| < max In(2)l.

It was proposed by late Professor R.P. Boas, Jr. to obtain inequal-
ity analogous to this inequality for polynomials having no zeros in
|z| < K, K > 0. In this paper, we obtain some results in this direc-

n
tion, by considering polynomials of the form p(z) = “0+Z apz’, t>1,

v=t
which have no zeros in |z] < K, K > 1.

1. Introduction
Let p(z) = Ezzo a,z¥ be an algebraic polynomial of degree at most n, z
being a complex variable, ||p|| = Imla)l( [p(2)], and let M(p, R} = |n[1afz [p(2)].
Z|= 2=

S. Bernstein used the Maximum Modulus Theorem to prove (see, for ex-
araple, {14]):

Theorem A. [f p is a polynomial of degree n, then for R > 1
M(p, R) < R"||p|-

Theorem A is a best possible result and equality holds if and only if
- p(z) = Az™, A € €. Thus if we consider polynomials p such that p(0) # 0,
then the bound on M (p, R) could be improved. Along this line, Ankeny and
Rivlin [2] proved:
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Theorem B. f p is a polynomial of degree n and p(z) £ 0 for |2] < 1,

then Jor R>1
R"’—l—l

M(p, R) < lipl)-
The above resull is best possible and the equalzty holds for p(z) = 2™ + 1.
As a refinement of the above result, Aziz and Dawood [3] proved

Theorem C. If p is a polynomial of degree n and p(z) # 0 for |z| < 1,
then for R > 1

Rﬂ

1
M(p, R) < < Imm |p(2)].

LEVHTE

The above Theorems B and C have been generalized and refined by Govil [7],
by proving

Theorem D. Ifp(z)=ap+3 ,_,a,2", t > 1, is a polynomial of degree
n>2,p(2)#0 for|z| < K, K>1, and zf'm Il?_l?( {p(2)|, then for R> 1,

T R e

"( " — )Ip(0)|
ifn>2, and
2 MR s (Rln++1§ )“ ”_( Al)m (R E- D o),
ifn =2

In this paper, we first present a refinement of Theorem D, and so also of
Theorems B and C. Our result in this direction is

n
Theorem 1. If p(z) = ay + Zavz'“, t > 1, is a polynomial of degree
=i '
n>2,p(z)#0 for |z} < K, K> 1, and if m = !llllilfl{ |lp(2)|, then for R > 1,

R + s, R —1
< -
M(p,R) < ( e )”P” ( )m

" (B R”L”)WM|

n . T

ifn> 2, and

Mo 8 < (7)ol - (L2 m - B W
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ifn =2 Here
(1) ladl _ jet—1 +1

apg|—m

(L) ket 1

ao —m

so = Kl

Theorem 1 sharpens Theorem D. To see this, first note that it follows,
for example by the derivative test, that for every n and R > 1, the func-

L R” R* =1 . : : ,
tion {l2|l — 1o m, is a non-increasing function of z. If we

combine thls fact with Lemma 3, according to which sp > K* for ¢t > 1, we

get
B0 ) it (F =Ly o < (B o - (B
1+so /P 1+ 5o Y 1+K*
Thus the right-hand sides of (1.3) and (1.4} in Theoremn 1, can not exceed the
right-hand sides of (1.1) and (1.2) respectively in Theorem D, implying that
Theorem 1 sharpens Theorem D.
Although, Theorem 1 in general gives a bound sharper than obtainable

from Theorem D, in some cases the improvement can be considerably signifi-
cant and this we show by means of the following example.

Example. Consider p(z) = 1000 + 2% + 2% + 21, Clearly, here { = 2
and n = 4. We take K = 5.5, since we find numerically that p(z) # 0
for |z| < 5.4483. For this polynomial the bound for M(p,2) obtainable by
Theorem D comes out to be 1530.3 while by Theorem 1 it comes out to be
1140.1, which is a significant improvement. Nuinerically, we find that for this
polynomial M (p,2) = 1066.6, which is quite close to the bound 1140.1, that
we obtained by Theoremn 1.

If in (1.3) and (1.4), we take t = 1, divide both sides by R"™ and make
R — 00, we get

Corollary 1. If p(2) = ag + Z“” U is a polynomial of degree n > 2,
p(z) £0 for |z| < K, K > 1, and z'f m = Inililfl( lp(2)|, then
) z|=

|a1| < el —m
~ 14 sp ’

(1.5) |an| +

Since by Lemma 3, we have sg > K* for ¢ > 1, the inequality (1.5) clearly
sharpens inequality (1.8) of Govil [7] (p. 625), which for K =1 sharpens the
well-known inequality

-+- < ———
I(Lﬂl n — 2 H]
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that can be obtained by applying Visser’s Inequality [15] to the polynomial
P’ (2) and then combining it with with the well-known inequality of Lax [10],
conjectured by Erdos.

For polynomials of any degree n, one can easily get f]om Theorem 1,

Corollary 2. If p(2) = ag + Eavz”,'t > 1 15 @ polynomial of degree n

v=t
and p(2) # 0 for |z| < K, K > 1, and if m = Inlli?f {p(2)|, then for R> 1

R"™ + 59 R —1
M(p, R) < - :
(p )—-(1+S )““ (1_*_30)”?’3
where sg s as de.ﬁned in Theorem 1.
: R" -+ R” . . : :
Since f(z) = T Holl— - m 1s a non-increasing function of z, and

by Lemma 3, we have sy > K* 2 I, for t > 1, we immediately get

Ao i ¢ S L -
14 359 1480 — P
Thus, Corollary 2 is also a refinement of Theorem C, and so obviously of

Theorem B, :
If we do not have the knowledge of Il‘Illil}{ |p(2)], we can use the following
zl=

1.

result, whose proof is similar to that of Theorem 1.

Theovem 2. If p(z) = ap + Zavz”, L > 1 is a polynomial of degree
v=t
n>2aendp(z) #0 for |zl < K, K > 1, then for R> 1:

MG, < (522 ) - (B - B2 o

tfn > 2, and

MG, < (22 - £ o

ifn =2, where

(_t_) lay] Kt=1 +1

81 = Jet+t r: szll[’t+1 1
(5) fap K+ +

p(K2z)

, which clearly satisfies its

On applying Lemma 1 to the polynomial
o

' ¢ . . .
hypotheses, we get — |—{ K* < I, which can easily be shown to be equivalent

n |dp
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i)

to s > K'. If we combine this with the fact that the function '1 1s a

. + ®
non-inereasing function of #, Theorem 2 gives

. n
Corollary 3. If p(2) = ao + Zauz”, t > 1 is a polynomial of degree
v=1

n>2 and p(z) # 0 for |zl < K, K > 1, then for R > 1

Rn-l-fft R" 1 Rr- -2 _ ,
wie, R s (R )bl - (Bt - B2 wo

when n > 2. When n =2, we have

M, s (BLE) - B o

Of course with K = 1, Corollary 3 gives another refinement of Theorem B.

2. Lemmas

We need the following lemmmas:
n

Lemma 1. Lel p,(z) = H(l — zp2) be a polynomial of degree n not van-
. v=1
ishing in |z|] < 1 and let pl(0) = pj(0) = -+ = U)(0) = 0. If
®(2) = {pn(2)} = 3 opr g br,c ¥, where ¢ = 1 or —1, then

lbr,l <n/k, (+1<k<2041)
and
n
b e [—1 b - [+1
|b2rg2,1] < 0+ 1)2(n+ ) lbarge, -1l £ 0+ )2(n+ +1).
The above result is due to Rahman and Stankiewicz (Theorem 2/, p. 180
of [13]).

n
Lemma 2. If p(z) = Zavz” is @ polynomial of degree n > 2, p(2) # 0
=0
in |z| < K, then |p(2)| > m for |z| < K, and in particular
(2.1) |ag] > m

where m = mi .
m= i |p(2)]
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Proof. We can assume without loss of generality that p(z) has no zeros
on |z| = K, for otherwise the result holds trivially. Since p(z), being a poly-
nomial, is analytic in |z| < K and has no zeros in |z| < K, by the Minimum

Modulus Principle,
[p(2)] > m for || < K

Since p(z) is of degree n > 2, the above inequality implies that [p(z)| > m for
|| < K, which in particular implies |ao| = |p(0)| > m, which is (2.1). W]

n
Lemma 3. If p(z) = a0+§: ayz’, t > 1, is ¢ polynomial of degree n > 2,

=1
p(z) £ 0 for |z| < K, K > I, and if m = lnlqir}{ Ip(z)], then
2|=

_ ty e grt—1 .
(22) 89 = [{t+1 (H) ao-l.!_.rn K +1 > I{t’ £> L
(£) Lol gt 4]

n agl—1m

Proof. Without loss of generality we can assume ag > 0 for otherwise we
can consider the polynomial P(z) = e~ *"8%p(z), which clearly also has no ze-
ros in |z| < K and M(P,R) = M(p,R). Since the polynomial

n

p(z) = ao + Z%ZU 15 of degree n > 2 and p(z) # 0 for |2] < K, hence,

v=t
by Lemma 2, the polynomial p(z) — m # 0 for |z] < K, implying that the
polynomial P(z) = p(Kz) —m # 0 for |2| < 1. If we now apply Lemma 1 to

the polynomial , which clearly satisfies the hypotheses of Lemma 1,

) g —m
we get -
¢

{
|L¢|[f <L‘
ag—m i

o

The above inequality is clearly equivalent to

t
i(M) (K ~1)<K~1,
n \ |ao| — m

which is equivalent to

sl -t
(R ()
n\ ap—m n \ag—~m
and from which (2.2) follows.

Lemma 4. If p(z) is a polynomial of degree n > 2, then for R > 1,
M(p, R) < RM|pl| — (R™ — R"~*)|p(0).
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This result is due to Frappier, Rahman and Ruscheweyh (Theorem 2,
p. 70 of [6]). In case, p(z) is of degree I, then it is clear that

(2.3) M(p, R) = Rllpl| - (R - 1)]p(0)|.

n
Lemma 5. If p(z) = ao + zavz”, t > 1, is a polynomial of degree n
v=t
having no zeros in |z| < K, K > 1, then on |z] =1,

1 (¢/n)|as/ao]l K1+ 1

. ' ! < "z
(2 4) |p (Z)l = Ot ('t/n)lat/a[)“{t-i + 1|Q( )I

where ¢(z) = 2"p (%) .

This lemma is implicit in Qazi (Lemma, 1 of [12]), however, for the sake of
completeness, we present a brief outline of its proof.
By a well-known theorem of Laguerre [9], if p(z) # 0 in |2| < K, then

np(z) — 2p'(2) # ~(p'(2)
for |#] < K and |} < K. The function

_ Kp'(Kz)
H(z) = np(Kz) —~ Kzp'(Kz)

is therefore anmalytic in |z] < 1 where it satisfies [f(z)| < 1. Further
FO) = f1(0) = -+ = fE=2(0) = 0 and f-1(0) = (¢/n)(a:/a0)K?, and

therefore by the generalized form of Schwarz’s lemma

_1 e+ @t/n)|as/aol K
1£(2)] < |2ft! ((t TrTTa o] I:.'tl j, " 1)

for |z| <'1. In particular, this holds for |z| < 1/K, and so

1 (t/n)|asfao| KM 4+ 1
f
WS Fom mlafaol BT + 1

Inp(z) — 2p'(2)]

for |z] = 1, from which (2.4) follows.
The inequality (2.4) is also clearly equivalent to

(25) l¢'(2)| > s1lp'(z)| on |z = 1

where

o = et ((t/n)|at/ag K= 4 1)
' (t/n)|arfagl Kt + 1)
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Lemma 6. The function

e ()l /K 1Y
S(m) =K + ((t/?l)(latl/m)‘[{t+l + l)

is a non-decreasing funclion of 2.
Proof. The proof follows by considering the first derivative of s(z). O

Lemma 7. [f a polynomial p(z) has no zeros in |¢| < K, K > 1, then for
every A, |A| < 1
(2.6) l¢"(2)| = |Almn for |z] = 1,
1
where m = min |p(2)] end ¢(z) =2"p | = ].
= mig [p(2)] and ¢(2) = 2"p (2.)
The proof of this lemma is implicit in Govil (Lemma 3 of [7]), however for
the sake of completeness, we present its brief outlines. For this, first note that,
we can assume without loss of generality that p(z) has no zeros on |z| = K,
for otherwise the result holds trivially.
. X : 1
Since p(z) has no zeros in |z] < K, K > 1, the polynomial g(2) = z"p (%)
. : 1 . .
has all its zeros in |2| < % < 1 and hence by the Maximum Modulus Principle

for unbounded domains:

i /KT for |z| > 1
' Q(z) - [nin|z|=1/K |(](z)l - K
which is equivalent to
1
(2.7) lg(2)] > K™{2| L la(2)] for |2 2 -
Note that, as Is easy to verify,
. m
| min la(2) = —=
and this on combining with (2.7) gives
1
(2.8) a()] 2 mzl" for |2] > -

It follows fror (2.8) that for every A where |A| < 1, the polynomial ¢(z)—Amz"
has all of its zeros in |z| < 1/K and therefore by the Gauss-Lucas Theorem
(p. 29 of [1]), the polynomial ¢'(z) — Amnz"~" has all its zeros in |z| < /K,
implying

(2.9) (2] 2 Wmnlz*~ for |2 > -
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Because ?1—; < 1, we get in particular from (2.9)

lg'(2)] > |A|mn for |2| =1,
which is (2.6), and the proof of Lemma.7 1s thus complete. O

n

Lemma 8. If p(z) = ao + Zavz”, t > 1, is a polynomial of degree n

vt
having no zeros in |z| < K where K > 1, then for |z| =1,
(2.10) (@) = solp'(2)] + mn,

where ¢(z) = 2"p (1) m = lll}.’ll[fl lp(2)|, and

e}

( )Ialail Kt-141

o|—m

(}ﬂ) lﬂil I&t’H—I-l

n

Sp = Kt

Proof. The polynomial p(z} has no zeros in [#| < K where K > 1, and this
by the Minimum Modulus Principle implies that for every A with [A] < 1 the
polynomial p(z) — Am has also no zeros in |z < K where K > 1. Therefore
applying (2.4) to the polynomial p(z) — Am we get on |z| = | that

(%) @it 41\
(n) ladl__ jre1 +1 l» (z)|

ao—,\m

(2.11)  |¢'(z) — Xmnz""Y > Kt

Since for every A, |A| < 1 we have
(2.12) lag — Am| > |ao| — [A|m > |ao] —m

and |ag| > m by Lemina 3, we get on combining (2.11), (2.12) and Lemma 6

that for every A where |A| < 1
% Ia()a!"-inl I{t ! + 1 |pl'(z)1
(%) e K 41

(2.13)  |¢'(2) = dmnz"" > K (

lag]—m
on |z| = 1.
Now choosing the argument of A so that on |zf =1,
(2.14) l¢'(2) = dAmnz""| = |¢'(2)| — |A|mn

we get from (2.13) that on |z| =1,

ay I(t 1 +
Iaul_m "z Almn.

(2.15)  lg'(=) = K**! (
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The fact that the right-hand side of (2.14) is non-negative follows from
Lemma 7. Lemma 8 now follows by making |A| — 1 in (2.15). O

Lemma 9. [f p(z) is a polynomial of degree n, then on |z| =1

(2.16) ' () + |4'(2)] < nllpll,

where ¢(z) = 2"p (%)

Lemma 9 is a special case of a result due to Govil and Rahman (Lemma 10-
of [8]). o

The following lemma is of independent interest because besides proving
a generalization and refinement of the Erdos-Lax Theorem [10], it provides
generalization and refinements of the results of Aziz and Dawood [3], Chan
and Malik [4], Govil (p. 31 of [6]), Govil (Lemma 6 of [7]) and Malik [11].

n
Lemuna 10. If p(z) = ao + Zavz”, t > 1 is a polynomial of degree n
v==t
having no zeros in |z| < K where K > 1, then

2 (gl — m)
0

(2.17) | M\ 1) < 17

where m = |nllin |p(2)| and

z|=K 1 lasl  grt-1
Sp = K+ (n) |Go|i—mh +1
(&) s r 41

ag|—m

Proof. On combining (2.10) and (2.16), we get on |z| = 1

solp'(2)} + mn + |p'(2)] < nlpl|
from which (2.17) follows. O

Since s; > K't, the following lemma which provides a generalization of
Erdos-Lax Theorem [10] also sharpens results of Chan and Malik [4] and
Malik [11].

1]
Lemma 11. If p(2) = ap + Zau 2V, t > 1 is a polynomial of degree n
v=t
having no zeros in |z} < K where K > 1, then

n
M, 1)< T_'l_";'l"”?)“

e L 1)

81 = fi'H—l ('
(&) [k + 1

]

where
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Proof. On combining (2.5) and (2.16), we get on |z| = 1,

siip'(2)] + [p'(2)] < nllp|l,
and from which the result follows. O

Proof of Theorem 1. For n > 2 we have

|p(Re™) ~ p(e*)|
R o R .
f p'(re?)e? dr| < / ' (re’?)|dr
1 1
< / (P TM @Y, 1) ~ (= )P (0)]) dr, by Lemma 4
1

R
___Rn-—-l , R —~1 an
= T - (5 - )lp(U)l

12

— 1 /n(llpli — m) R* —1 Rn ~2
< by L 10
T oon ( 1+ s 7 " — |?’(0)], by Lemma
Rn Rn o 1 Rn _ 1 Rn 2 1
=TT ”PI|*(1+SO)m—( - — )|p(0)|,
iraplying

: R" + sg R =1 R*—1 R'2-1
8 . . . /
lp(Re )IS( T+ 5 )Il [ ( )m ( - — ),P(O)I,

from which the theorem follows.
If n = 2, then p'(z) is of degree 1, and so if we use (2.3) in place of
Lemma 4, the result will follow, as above. (l

Proof of Theorem 2. The proof of this result follows on the lines of the
proof of Theorem 1, but on applying Lemma 11 instead of Lemma 10. We
omit the details. a
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