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Abstract: The classical Enestrdm-Kakeya Theorem states that If p(z) = 3" a.z" is a polynomial
such that 0 < ao < a1 € 6z < -+ < an ,then all of the zeros of p(z) lie in the region
|#| < 1 in the complex plane. Many generallzations of the Enestrém-Kakeya Theorem exist
which put various conditions on the coefficients of the polynomial (such as mononicity of
the moduli of the coefficlents). In this paper, we will introduce several results which put
conditions on the coefficients of even powers of Z and on the coefficients of odd powers of Z.
As a consequencs, our resulis will ba applicable to some analytic functions to which these
related results are not applicable, '
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1  Introduction

The classical Enestrom-Kakeya Theorem states that if p(z) = ¥,_gay2? is a polynomial
such that 0 < ap < 61 < 69 < -+ < @n Shen all of the zeros of p{2) lie in the region |2| < 1 in
the complex plane. Many papers {cf.[2~4]) put verious conditions of coefficients of a polynomial
and obtained several results about the location of zeros of a’polynomial by using mononicity
of moduli of coeflicients of a polynomial, others studied the location of zeros of a polynomial
by using roononicity of real and imaginary parts of coefficients of o polynomial. In [1],the
authors studied the location of zeros of an analytic function by putting conditions on moduli of
coefficients of an analytic function. The following is main result discussed in theorem 6 in [1].

Theorem t Let f(2) = Y oopauz” ¥ 0 be analytic in |2{ < t. If.large;] < &« < %,
7€{0,1,2,3, -} and for finite nonnegative integer k,Jag| < tlay[ < -+ < thap > th gy > -
then f{x) does not vanish in :

¢ .
|Z| < ' : 2sin o 0O 44 A
((21& les/@ol — 1) cos a + sin o+ S55E 377 t—’]aj]) -

It is will known that analytie functions such as sine,cosine, exponential and logarithm fuuc-
tions have many applications in the practical problems. Finding the locations of zeros of analytic

functions is a widely useful topic in complex analysis, since the locations of zeros are the main
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properties of the analytic functions. In this paper, we will put conditions on the coefficients of
even powers of Z and on the coefficients of odd powers of Z, and give the example to illustrate
that our results will be applicable to some snalytic functions to which these related results are

not applicable.

2 The Main Results and Applications

Mativated by theorem 6 in [1], we put restriction an moduli of odd and even coefficients.
Theorem 2 If P(z) = 2:’;0 a,z" is an analytic function in |2} < T and {arga; — 8| <
a < §for j € {0,1,2---,} and for some real § and some nonnegative integers k and { and some
positive t such that ¢ < T

lao] < laalt? < Jualt® € - € lagkit®™ 2 lozgs2lt™* P 20 > -

lor] < Jaslt? < Jasltt < -0 € lags ¥ 2 2 lagra ¥ 20 2 -

Then p(z) does not vanish in |z| < Ry where

. t|ao|
Ry -~mm( M, ot

Here
My = —{ag|t cos a + Ja; [t3(1 — cos &) + 2(|age|t? 7 + jagi_ [t?1) cos et

el -
Z(Iaglt2 + |ai-2)# sincx
=2
Theorem 3 Let P(z)} = 3,77, @,2* be an analytic function in {z] < T with real coefficients .
such that

L]
ap 207 204 2 -

3

o 563 Sap K-

1A

Then p(2) does ot vanish in |2| < min(R,,) where

tlao}

Ry = -

and
M; = [ao] + 2jai|

We now apply this Theorem 3 to a specific analytic function.

Example 2.1. Consider p{z) =1~ % + {-ﬁ - %7- + -+ = cosz which is an analytic function
in j2| € 00. Then according to Corollary 3, p(z) does not vanish in [z] < 1, that is, all zeros of
cos z satisfy |z} > 1. We can not apply theorem 1 ([1}) to cos # because the coefficients of cos 2
do not satisfy the condition in theorem 1({1]).

In the following theorem, we obtein the following inequality by using generalization of
Schwarz’s inequality.
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Theorem 4 If P(z) = T ;0.0 a,2* is an analytic function in || < T end |argae; — B <

a< Zforj€{0,1,2.-.,} and for some real 3, and some nonnegative integers k and I, there
exists some positive t such that ¢ < T and

lao| < lag|t? < jaalt* € - < lazsit®® 2 lagksaft®+2 > ... 2

o1) < lasle® < foslt? < -+ S a2 B2 2 lagraale* 2 - 2
Then p(z) does not vanish in |2| < Ry where

Ry = min [ $laol(lerl = M) + {tslaoF(f‘;n [¢2 —
203

Here

My)? + 4Mtdaol} t)
t]

My = —|aglt cos o -+ Jas [t3(1 — cos &) + 2(|agk [t252 + |agy—1 [tH+!) cos at

i(laelt’ + |@;—af)t! sin

=2

As inspired from {2} by putting restriction of real and lméginary parts of analytic function,
we get the following theorem.

Theorem 5 Let P(z) = Y72 a,2# be an analytic function in 2| £ 7' and Re{a;) = ay,
Im{a;) = @; and for some nonnegative integers k,!,s and q , there exista & positive t such that
t< T and

o0 € aat? € agt? < o S amt™ > agrgot® 2>

arSast® Saptt s Lagat?? 2 anat? 22

Bo < fat? € Bat? < - € Faut® 2 Boppat® 2 2

B Bat? S Pot* o < fag 11272 2 Bog 9> > e
Then p(z) does not vanish in |2j < R, where

— tlas|
Ry —min( , ,t)

My = (laz} 4 |B1DE — (o1 + Fr )t — (a0 + Go)+
2[&2,@5”‘ + agt2 4 g, 17 4 ﬁzq_ltaq"l]

Here

The following inequality of analytic funiction is obtained by using generalization of Schwarz’s
inequality aid mononicity of real and imaginary parts.

Theorem 6 Let P(z) = J.77 5 a,2* be an analytic function in [z| < T and Re(a;) = oy,
Im(a;) = B; and for some nonnegative integers k ,l,s and q , there exists a positive t such that
1< T and

o € agt® € ot < - S ot > agat®Hi> 2
arfast? Sapt € Koyt etz 2
o< Bet? S Bt S S Bout™ = Bapant® iz 2 -0n
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B < Pot? S Pt <o S Brgat?TE 2 Bagat?? 2 2
Then p(z) does not vanish in |z| < R1 where

Ry = min (t21a1|(|ﬂo| - Ml) + {t‘l'alfl\ggol — M1)2 + 4Miit2|aol}§ ’t)
1

Here

My = (Ia’ll + iﬂ]_[)t — (0’1 +- ﬂl)t — (ao + ﬁﬂ)‘l"
2lagkt® + agi_1t¥ + Baat® + Pag187 7]

3  Proof of the Main Reszults

We need the following lemma which is the generalization of Schwarz's inequality to prove
the main theorems. ‘ :

Lemuna 1 Let f(z) be analytic in |z| < R, F(0) = 0, F'(2) = b, and |f(2)] < M for
|2| = R, then for }2| < R M| M=l + RE

z 2+

1@ < 57 37 71210

The following Lemme is due to Aziz and Mohammad [L].

Lemma 2 Let P(z) = 3 7 oa.z" be analytic in |2] € t such that |arga; - 8] S o< §
for j € {0,1,2-+-,n} and for some real 8, and positive t and nong ative integer k,

*laol € laalt € laalt? € -+ < Jarltt 2 larpalthtt 2 oo 2 Jaa)t”
Fhen for 5 € {1,2.--,n}
lta; ~ a;-1] & (Hay = |a5-1) cos @ + (tlaj| + [a;-1[) sinax. '

Praof of Theorem 2
Proof Consider the following analytic function g(z)

. o
g(z) = (% — 2%)p(z) = t?ag + a1tz + Z(a,-t2 —- a;_9)7' = t2ap + G1(%)
- i=2
on jzj =1
haacd .
1G1(2)] < lax}t® + 3 lait® — az_zt?
=2
By using Lennna 1 in the above, we obtain

[61(2)] < fanle® + 3 _{(llailt? — fai-all) cos o +- (fosft? + fai-2]) sin a)lt’

=2

< —|aolt? cos a -+ a1 [t3(1 ~ cos @} + 2(|aas [£25+2 4 jag 4 [+ ) cosat+

L]
+ 3 (lalt? + Jaia|)t sinat’ = My

==
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Then it follows from Schwarz's lemma, therefore
M
Gr@l < ML for pa <o

Which implies
l9(2)] = t%a0 + G1(2)|

= ¥laol — {G1 (=)

> tag) - 2L for 1oy < ¢

Therefore, if |2] < R, = min{ifﬁ'—‘gl,t}, then g(z) # O and so p(z) # O that is, p(z) does not
vanish in |z] £ R, :

Proof of Theorem 4

Proof Consider the following analytic function

o0
9(2) = (£2 — 22)plz) = t2ag + a1tz + Y _(ait® — ai_2)#' = t%a0 + G1(2)
i=2
on |z| =t
hiacd .
[C1(2)] S laufe® + Y lait? — asalt’
=2
By using the above Lemma 1, we obtain

1G1 (2} < e le® + S 1(llaelt?* — laiall) eds o + (faslt® + |ac—2]) sin a)]¢*
=2

< —laolt? cos & -+ Jar}t*(1 ~ cos &) + 2(Jagk P2 + Jaz_ 1 [t¥+)) cos ot

o0
+ 3 " (ladle? + Jai-2]t sinatf = My
=2

Then it follows from Lemma 2, therefore

M;|s| Mi)z) + t4)ai]
12 M + |z||a1jt?

|Gr(z}| < for |2] <t

Which implies
lg(=)] = Jt%a0 + G1(2)]
Z t¥aol = [G1(2)}

My|z] My|z| + ttla |

> t2|ao| ~ f <
2 Plaol ~ =g~ g e O IS

Therefore, if |2} < B) = min “lall('n"M‘)+{‘aI“']?'.E;"M‘)BHM?“I"“D& ,t), then g(z) # 0 and

80 p{z) 5 O that is, p(2) does not vanish in [2] £ B
Proof of Theorem 5
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Proof We consider the following analytic function

[
9(2) = (£ — 2%)p(2) = tao + ;1t?z + Y _(ait? — ai_p)#’ = t2ap + Gi(2)

1222
on fz]=t¢
hacd -
IG1(2)] < fa1|e + 3 ait? ~ a;_g|t’
=2
20 I3 .
< (Joul + 181)8% + Y _(leit? = aicalt’ + 1882 — Bialt’)
=2
S (laa] + 18 )22 = (ay -+ B1)E® — (o + Bo)t? -+ 2oapt 42 4 gy 131 4 G, 12242 4 g 1429+
= t2M1

We apply Schwarz's theorem [5, p.168| to G, (z),we get
t2M,
IGi(2)f < —-?l—lz-l = tMilz|, for |zl<t
Which implies
' lg(2)| = [t2a0 + G1(2) Z t¥ao] — |G1(2)] 2 Plac) ~ tMy|2] forlz| <t
Henes, if {z] € Ry = min (E}&fl,t) ,#then g(z) 5 0 and so p(z) # 0. that is, p(z) does not vanish
in |z} < Ry

Proof of Theorem 6
Proof Consider the following analytic function

e )
9(2) = (£ = 2)p(x) = Pao + ast?z 4+ 3 _(a:it? — 8;..2)2" = t3ag + G1(2)

i=2
on |z} =t
=2 :
1G1(2)] < Jau|t® + 3 fait? — a;_aft’
=2
00 ) .
< (laa] + 1808 + D (lest? = ai_alt’ + |Bit? — Big)th)
i=2
< (leal + iADE ~ (a1 + B1)12 — (oo + Bo)t® + 2aaet™ 12 4 gy g2+ 4 3,,42042 4 By £29+Y)
=t

We apply Lemma 2 to G(2),we get
M |2|(My 2] + t?|ay |

[Gi{z)| £ M3 o] ), for |z| < ¢
Which implies
= 12 21 2, _ Miz|(Mi]z] + t?|ay ]
l9(z)| = |t%aq + C1(2}| 2 t*{ao| — [G1{2)} = t*aq) M & [ofia] forlz| < ¢

Hetice, if |2] < By = min (tﬂlm|(Ino|'-M1)+(z‘laag‘(};ol—-M:)2+4Mft’|au|}a" t),then g(z) # 0 and

so p(z) # 0.
That is, p(z) does not venish in |2| < R
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Forced Oscillation of Systems of Nonlinear Neutral Parabolic Partial
Functional Differential Equations
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Abstract: ‘This paper studies the systems of nonlinear neutral parabolic partial functional differential
equations with continnous distributed deviating arguments, Sufficient conditions are obtained for the
forced oscillation of solutions of the systems.

Keywords: parabolic partial functional squations; nonlinear neutral type; continucus distributed
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