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H
Abstract. The Enestrom-Kakeya Theorem states that if p(z) = Y, a,z"is a
v=0

polynomial satisfying 0 <4y <a, < ... <a,, then all the zeros of p{z) lie in
|z| £ 1. We present related results by considering polynomials with
complex coefficients and by putting restrictions on the arguments and
moduli of the coefficients.
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1. INTRODUCTION AND STATEMENT OF RESULTS

The classical Enestrom-Kakeya Theorem (see [6] for references) deals with
the location of zeros in the complex plane:

H
Theorem 1.1. Ifp(z} = 3 a,z" is a polynomial with real coefficients satisfying
=0
<ay<a £...<a,
then all the zeros of p(z) lie in |z| < 1.

There are several generalizations of the Enestrom-Kakeya Theorem which
weaken the hypotheses and are, therefore, applicable to a larger class of
polynomials, Joyal, Labelle and Ralman [5] dropped the condition of positivity
of the coefficients and proved: =

Theorem 1.2. If p(z) = ¥ a,z" is a polynomial with real coefficients satisfying
v=()

MSas...sa

= W,

then all the zeros of p(z) lie in |z] < T e Lol _,aD J‘*’l“ol_
aﬂ
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Of course, when a, > 0, Theorem 1.2 reduces to Theorem 1.1. A related
result due to Govil and Rahman [3] concerns restrictions on the moduli and
arguments of the coefficients and states:

i
Theorem 1.3. If p(z)= 3, a,z" is a polynomial such that |arg a; -p| s o< %

pr=
forje {0,1...n] and for some real §, and

lagh < lagl <. S Hayl
then all the zeros of p(z) lie in |z] £ R, where

2 cin o ol
R = cos & + sin &+ |sm| > lal-
H =0

In this paper, we significantly weaken the condition of monotonicity on

the moduli of the coefficients and prove: :
H
Theorem 1.4. If p(z) = 2, a,z’ is a polynomial such that |arg 4, - | < o5 %
v=0
forje {0,1, ..., n} and for some real §, and for some positive ¢ and some non-
_ negative integer K,
o) < Hay| < ... S a2 5 Mg |2 2 4y
then all the zeros of p(z) lie in |z| 2 R, where
o]t

R = min S
(ZlaK ItK - |a0|)cosa+|a0|sina +

2sing Ez;“ﬂv it” + " la,, | (1+sino —cosa)

The hypotheses of Theorem 1.4 were first introduced by Aziz and
Mohammad in a study of the zeros of analytic functions (see Theorem 6 of
[2]). If we are more restrictive on q, then we get the following:

Corollary 1.5. If p(z) = X, a,2" is a polynomial such that |arg 4, - | S @ =
v=0 '

3
4
non-negative integer K,

|ag) < thay | < oo S M| 2 5 ag o] 2 2 ay )

then all the zeros of p(z)} lie in |z| = R, where
lag |
(2 | |£€ ~|ag|) cos o + |ag | sin e +

2 sin o Z'j;% \a, |7 +£" |a, |(1+ sin & — cos &)

forje {0,1,..., n} and for some real 8, and for some positive ! and some.

R =

The following is a generalization of Theorem 1.3:
H
Theorem 1.6. If g(z) = Zi:o 4,2" is a polynomial such that |arg a;,— | s @<

ST
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for j € {0, 1, ... n} and for some real §, and if for some positive ¢ and some
non-negative integer K,

laul < jflarr—ll S = tKlanle 2 tKﬂlan—K_lI 2.2 HI'?UI!

then all the zeros of g(z) lie in [z] £ R, where

(Zlan_K l X —la,|) cos o +|a, | sin o

+2sina Y0 |0 [ £ 42" |ao|(1+sine ~cosar) 4

R = max : el
la,, |¢ t

The proof of Theorem 1.6 follows by applying Theorem 14 to p(z) = 2" (I—J :
z

‘Notice that with = 1 and K = 0 in Theorem 1.6, we get: -

1t
Corollary 1.7. Ifg(z) = 3 a,z" is a polynomial such that |arg 2, - 8| < & %
v=0

for je {0, 1, ..., n} and for some real 3, and
aul 2 lan—ll 2.2 laﬂlf

then all the zeros of g(z) lie in |z| £ R, where

2 singx, #-1 la0|

Z | ”-'UI +
|an ' 12, I

Notice that, since 1 + sin & - cos @< 2 sin & when 0 S @< z/2, Corollary 1.7
is an improvement of Theorem 1.3 (and when o = 0, both of these results
reduce to Theorem 1.1), though Corollary 1.7 is inherent in the proof of
Theorem 1.3 (see [3]). :

We can extract further corollaries from Theorems 1.4 and 1.6 by choosing
Ke {0, n) and t € {¢, 1}. For example, with K = 0 in Theorem 1.4, we get:

R = cos o + sin o + (1 + sin @@ — cos @),

z

Coroliary 1.8, Ifp(z 2 a,2" is polynomial such that |arg a; - | < < >

forje (0,1, .., n}and for some real f3, and for some positive t,
lagl = tla;| = ... = t%a,],

then all the zeros of p(z) lie in |z} 2 R, where

Jag |¢

B |ag |(cos a + sin oip+ 2 sinazg;nuvw '
+ £ |a, | (1+ sin o — cos c)

- The proof of Theorem 1.4 will employ Schwarz’s Lemma. We can use a
= generalization of Schwarz’s Lemma to produce a result which, although not
.. as concise as Theorem 1.4, can- produce bounds on the zero containing region
- of a polynomial which are better than those of Theorem 1.4 (as we shall see in
- Section 2). We will show:
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Theorem 1.9. If p(z) = i a,z° is a polynomial such that |arg 4;- B| < a <
v=0 )

% forj e {0, 1, ..., n} and for some real j, and for some positive ¢ and some .
non-negative integer K, ~
lag| < Hlay| < ... S Nag| 2 ENag, 2 .. 2 ay,),
then all the zeros of p(z) lie in |z| 2 R, where
—[BlE2 (M —|ag [£) + [ bl
R=min (M ~|ag|t)? + 4|a, | M3 £ }}/?

!

2 M?
a 2 sing 71
M = Hap| 4| 2|-5-{F¢ ~1 |coser +sina + Y |a, £
a Iao| v=0
i a” .
+ " t— {1 + sina ~cosoc)}
fly

If we are more restrictive on the parameter o, we can get the following
result which is more concise than Theorem 1.9:

H
Corollary 1.20, If anvz" is a polynomial such that |arg a; - | < o< % for
U=
j€ {0, 1, ..., n} and for some real §, and for some positive ¢ and some non-
negative integer K, 7
lag] S tlay| 5 ... S Mag| 2 5 ag | 2 ... 2 £a,],

then all the zeros of p(z) lie in |z| 2 R, where

. ~ (B2 (M =y |8) + {4 (6 (M~ |ag|t)? + 4aq | M £ |1/
- 2 M2
and where M and b are as defined in Theorem 1.9.

Analogous to Theorem 1.6, we get the following by applying Theorem 1.9
top(z)=2"4g («iw)

H
Theorem 1.11. If g(z) = U;Eo 1,2 isa polynomial such that |arg 4;~ | S o<

er— forje {0, 1, ..., n) for some real 3, and for some positive ¢ and some non-

negative integer K,
IanE < tlau-ll <. tKlanﬁKl 2 tK*-llan—K-ll 2.2 tnlaﬂif
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then all the zeros of g(z) lie in |z| < R, where

2M* 1
R = max { —|p|? (M~ |a, |¢)+{t* BPx ¢
(M= |a, [t +4]a, | M £]/2

a,_y 2 sing "ol
Mztlanlj 2|-=={#K 1 {cosex + sina + Zla “y[
i | |
2 1% :
+ " |— (1 + sina — cosx )
aﬂ
b= a, - tan—l'

Again, we can extract a more concise corollary from Theorem 1.11 by
restricting a < % Also, we can get several corollaries from Theorems 1.9 and

1.11 by choosing K € {0, n} and/or t € {¢, 1].

2. AN EXAMPLE

The proof of Theorem 1.9 is similar to the proof of Theorem 1.4, but uses a
generalization of Schwarz’s Lemma whereas the proof of Theorem 1.4 uses
Schwarz’s Lemma. One is therefore lead to believe that Theorem 1.9 should
give better results than Theorem 1.4. Due to the complicated nature of the
parameters in these theorems, it’s difficult to compare the resulits directly.
However, we can give an example to show that Theorem 1.9 can give better
bounds than does Theorem 1.4.

Consider the polynomial p(z) = —0- + 27 + 4z% + 82%, By Theorem 1.4 with

f= —;_ and K = 1, we get that p(z) #0for|z| < ﬁ . By Theorem 1.9 with ¢t = =~
and K =1, we get that p(z) # 0 for |z| < .04826. This is an improvement of
Theorem 1.4 by a factor of about 3.36 (in terms of the area of the zero-free

region).

3. LEMMAS
We need the following lemmas.
%
Lemma 3.1. Letf(z)= E #,2z° be analytic in |z| < f such that |arg 2~ f| < o

v=0

< er— forje (0,1, ...} and for some real 8, and if for positive ¢ and some non-

negative integer K,
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lagl < Hayl < ... € Mgl 2 5 (gt 1i> L,
thenforje (1,2, ...}
gy~ a; 1 < \tlayl = 1a; _yllcos o+ (Hal + |4y, 1) sin e
Lemma 3.1 is due to Aziz and Mohamniad [2].

Lemma 3.2. If f(2) is analyticin |1zI R, f(0) = 0, f/(0) = b and |f (2)| £ M for |zl
= R, then for |1zi <R,

M|z Mlz| + R*[b|
SO R M

Lemma 3.2 due to Govil, Rahman and Schmeisser {4].

Lemma 3.3, Letay, 4, ..., 4, be n complex numbers such that larg z-fl<o
< -Z— for je {0, 1, ..., n} and for some real §, and suppose for some positive ¢

and some non-negative integer K,
lagl S flayh € ... < Mlagl 2 Ma 12 L2 L,

|0 |t
Then <t.
(2)ag |#5 ~|ag |) cosa +|ay | sine +
2sinay, :_:_; |a, |£° + £ |a, | (1 + sine — cosex)
Proof. With o = 0, the résult becomes
ot ol

bl 4

2|a [# —|ag | N |ax l]tK + (Jag | £ ~lao ) - fay |5

which is clearly true. Now let

fla) = lagt —1ayl) cos o + layl sin @+ 2 sin & ?E la, it’
+ 1" la, l(1 + sin ot —cos @). "~
For o e [0, %] , we have
. n-1
f(@) = (1ag) - 2la %) sin o + layl cos o+ 2 cos & ;S;‘,l |, 1

+ t"layl {cos & + sin ) .
> (lagl - 2agtX) sin @ + 2laglt cos &
2 2lagltX (cos a - sin ) = 0.
Therefore f(o) is an increasing function for « € [0, %J, and the result

follows.
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Lemma 34. Let Ao, 1, .-, 4, be n complex numbers such that [arg 4, - | <
< .-Zé forje {0,1, ..., n) and for some real 8, and suppose for some positive t

and some non-negative integer K,

lag| <ty | < .. < Mag| 2 5 ag, |2 ... = a,).

a 2sino "t
Then  f(0) = fay]{| 212X -1 |cosa + sinar + 2 a, |
Ay laol v=l
A H aﬂ .
+ ¢ = (1+sma+cosa)-1} 2 0.
0

a
Proof. First f(0) = 2t|aol( -f- K-1]20.Now

¢

sing + cos +

0

7(@) =t {(1 -2t

2 cosor "1

lao , Z 'ﬂ |tv tn

(cosoc — mﬁcx)}

a
(cosc —sina) + " [——| (cos &~ sin @)

)

a
> Hay| {sina + 2|5 K
2o

bl

{cosar sina)} >0
Ay

since o € [0, %:l . Therefore f(a) 2 0 for a e [O, %} .

4. PROOFS OF MAIN RESULTS

Proof of Theorem 1.4: Without loss of generality, we may assume f = 0.
Consider

n+l

Py(z) = (z~ Dp(z) = ~tag + z i (A, ~ ta,)z" 1 + a,z
v=l

= —tay + Gy{z).
Now since |arg a]-| < a<n/2 for ]“e {0, 1, ..., n}, then by Lemma 3.1 for
|z{=1t,
|ta; — a;_| < |t|a;| ~ |ag, [[cos o+ (Hay| + |4, ]) sin o
Therefore for |z| = ¢,
n
1Gi@)] < t X 1oy, ~ ta, |7 + £ |a, |

v=1
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<t { ﬁ‘, It[av| |1 ” 1 cosa +
el

& &v~1 . n
El(t|al,|+[av_1|)t sin o + £ |a,, |

=

[ K | 1
=t[cosa E(tlaulm’av_1|)t”“1 + ¥ (‘av_1l~t]av|)t"“]]
v=1 0= K+1

+ sina i £ |, |+ ﬁ‘, |a0m1|t”‘l}+t” |a,, ]]
v=1 v=1

K K
= t{coso{ | [£7 = 22 |y lf”"“l
v=1 v=1

H

i
tY | S ]
v=K+1 v=K+1 i

f-1
+ sin & [2 2 lay |£° +ag |+ ¢ay | |+ £7]ay, !}
v=1

l

t{cosa[tK lax | -lag |+ 5 |ax | = 7 |a, ”

il

n-1
+ sin o [2 2 |y [t +|ag | + £¥|a,, ]}+ t*|a,, I}
v=]

a 2sing "7}
= t|ag|{|-2|=—|t =1 |coser + sina + > |a, |t
) |apl v=1
a
+t" -a—’i— (1+sina —cosa)} = f|ag|M (4.1)
0

Now since G4(0) = 0, then it follows from Schwarz’s Lemma (see page 135
of [1]) that

1G,(2)] < ap] Mlz] for |z| < .

So by (4.1)
|P1(2)] 2 Hlag| -Gy (2)]
> |ag| [t - |z|M] for |z| <t

Therefore, Pi(2) > 0 if |z] < 7\% and |z| < ¢. The resuit follows.
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Proof of Corollary 1.5: This follows from Theorem 1.4 and Lemma 3.3.

Proof of Theorem 1.9: Again, without loss of generality, we may assume f§ =
0. As in the proof of Theorem 1.4. Consider

Py (z) = (z - Hp(z) = ~tay + G4(2).
As seen above,

a 2 sin ¢¢ "1
|G,(2)| < #|ay] 21X ~1 | cos o + sin o + Y la, ¢
Gy Iﬂol v=1

I

ay

+ £ (1 +sina—-cosoc)}

= Ml'
Since G,(z) is analytic for |z| <, |G,(2)] < M, on |z] =, Gy(0) = 0, G, (0) = aq
— ta; = b, then by Lemma 3.2 we have

Mzl Mylzl+ ¢ 1b]

G <
1Gi@] < =5 M, +zllbl
for |z| < t. Therefore
{Py(z)| 2 tag| - | G4(2)|
M, |zl M,z + £2|b]
=a £~ orlzl <
olt =2 M, +1zl[b] f
M2 |2 + M, b £zl
= |a0 |t -

£ (M, +12lib))

B |ag |12 (M, +|zlIbl) - M12|Z|2 ~ M, bl #? |z]
tZ(M1 +|zl}bl)
T2 (M, +lzlbl)
So |Py(zY > 0if |z| < f and <

(MZ|z* |+ | bl M, - ap} 1))z - |agl M)

| 1
~ B2 (M —|ag |£) + £ (B (My —|ag |8 + 4 |ag | ME £ )2

2M?
So |P,(z)| > 0if |z] < R, and the resuit follows.

l2] <
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Proof of Corollary 1.10:Let M and b be as defined in Theorem 1.9. Notice that
B> (M= |y [£) + 1 £ [0 (M ~|ay |£)®
+ 4|LIOIM3 t3 }1/2
2M?

N : <t

if and only if (M+ b} (M - |a,|t) 2 0. Since a e { 0, %J, we have from Lemma

3.4 that M — |ap]f 2 0 and the result follows.

REFERENCES

L. Ahlfors, Complex Analysis, New York: McGraw-Hill (1979).

A. Aziz and Q. Mohammad, On the Zeros of a Certain Class of Polynomials and Related

Analytic Functions, J. Math. Anal. Appl. 75 (1980), 495-502,

3. N.K. Govil and Q. Rahman. On the Enestrom-Kakeya Theorem. Téhoku Math. J. 20 (1968),
126-136.

4. N.K. Govil, Q. Rahman and G. Schmeisser, On the Derivative of a Polynomial. IHinois J.

Math. 10 (1967), 53-63. -
5. A.Joyal, G. Labelle and Q. Rahman, On the Location of Zeros of Polynomials, Canadian

Math. Bull. 10 (1967}, 53-63.
6. M. Marden, Geometry of Polynomials, 2nd Ed., Mathematical Surveys, Number 3. American

Mathematical Society (1966).

N =



