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Chapter 8
Enestrom—Kakeya Theorem and Some

of Its Generalizations bt

Robert B. Gardner and N. K. Govil

8.1 Introduction and History

The study of the zeros of polynomials has a very rich history. In addition to having nu-
merous applications, this study has been the inspiration for much theoretical research
(including being the initial motivation for modern algebra). Algebraic and analytic
methods for finding zeros of a polynomial, in general, can be quite complicated,
so it is desirable to put some restrictions on polynomials. Historically speaking, the
subject dates from about the time when the geometric representation of the complex
numbers was introduced into mathematics, and the first contributors to the subject
were Gauss and Cauchy. Gauss, as part of his 1816 explorations of the fundamental
theorem of algebra, proved (see, for example, [26]):

Theorem 1 If p(z) = 7" + a\2"~' + - + a, is a polynomial of degree n with real
coefficients, then all the zeros of p lie in

l2l < R = max {(nv2]a %)

In the case of arbitrary real or complex a;, he [26] showed in 1849 that R may be
taken as the positive root of the equation

7 — \/E(lal lZ”—l +otlal) =0.

Cauchy [13, 51] improved the result of Gauss in Theorem 1, and proved:
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172 R. B. Gardner and N. K. Govil

Theorem 2 If p(z) = ) j_yu ;2 is a polynomial of degree n with complex

j
ay | ”

coefficients, then all the zeros of p lie in|z] < 1+ ,Jmax
<jsn—

Notice that neither Theorem 1 nor Theorem 2 put any restrictions on the coefficients of
p (beyond the restriction that they either lie in R or C, respectively). See[1, 2, 3, 19]
for several related results which apply to all polynomials with complex coefficients.

In this survey, we explore the Enestrom—Kakeya theorem and its generalizations.
By this, we mean that we explore results which give the location of zeros of a
polynomial in terms of their moduli based on hypotheses imposed on the coefficients
of the polynomial. We give a mostly chronological presentation. The well-known
Enestrom—Kakeya theorem is most commonly stated as follows:

Theorem 3 If p(z) = Z'}ZU a jzf is a polynomial of degree n with real coefficients
satisfying 0 < ag < ay < -+ < ay, then all the zeros of p lie in lz| < 1.

Proof Define f by the equation
P@(1 = 2) = dg + (@ —ag)z + (@2 — a)T + -+ + (g — ay )" — @, 2"
= @) — a?""".
Then for |z| = 1, we have
| F (| < laol + lay — aol + lag — ar| + -+ + an — an-1l
=ag+ (4 —ap) + (@ —ar) + -+ (ay —an-1)
= d,.
Notice that the function 2" f(1/z) = 3 (a; — a;— 2"/, a_; = 0 has the same
bound on |z| = 1 as f. Namely, |z" f(1/2)] < a, for |z] = 1. Since " f(1/z) is
analytic in |z| < 1, we have |2 f(1/2)| < 4, for |z] < | by the maximum modulus

theorem. Hence, | f(1/2)| < a,/|z|" for |z] < 1. Replacing ¢ with 1/z, we see that
| f(2)] < aylz)" for |z| > 1, and making use of this we get,

(1= 2)p@)| = 1 f@) — an2"™|

> a, |z = | f @)

n+l _ anIZ|”

= ay[2|"(Iz] = D).

Soif |z] > 1 then (1 — z)p(z) # 0. Therefore, all the zeros of p lie in |z| < 1. O

The proof given here is modeled on a proot of a generalization of the Enestrom—
Kakeya theorem given by Joyal, Labelle, and Rahman [46]. The original statement
of the result is slightly different and has a complicated history.

It seems that G. Enestrom was the first to get a result of this nature when he
was studying a problem in the theory of pension funds. He published his work in
Swedish in 1893 in the journal Ofversigt af Vetenskaps-Akademiens Forhandlingar
[22]. He mentioned his result again in publications of 1893-1894 and 1895. In 1912,
S. Kakeya [47] published a paper (in English) in the Tohoku Mathematical Journal
which contained the more general result:

> aylz|
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Theprem 4 Ifp(z) = Z’;ZO a;7’ is a polynomial of degree n with real and positive
coefficients, then all the zeros of p lie in the annulus Ry < |z| < Ry where Ry =
minosji,,_mj/aj_,_l and Rz = max()sjs,,_laj/ajH.

In the final few lines of Kakeya’s paper, he mentioned that the monotonicity as-
sumption of Theorem 3 implies that all zeros of p lie in |z| < 1. The paper gave
no references and Kakeya seems to have been unaware of Enestrdm’s earlier work.
Kakeya’s paper received a bit of attention and was mentioned in at least three other
papers in the T6hoku Mathematical Journal during 1912 and 1913; one is in German
[42] and two are in English [40, 41]. The two papers in English are by T. Hayashi.
At some point, Hayashi must have learned of Enestrom’s earlier result. Hayashi en-
couraged Enestrom to publish his own results in the T6hoku Mathematical Journal
and in 1920, Enestrdm [23] published in French: “Remarque sur un théoreme relatif
aux racines de I’equation a,x" + dy 1 x" " 4+ - cajx + ag = 0 on tous les coeffi-
cientes a sont réels et positifs” (“Remark on a Theorem on the Roots of the Equation
apx" +dy_ 1 X" - 4a x +ay = 0 where all Coefficients are Real and Positive”) .
In this work [23], Enestrom presented a “verbatim” (fextuellement) translation of his
original 1893 paper. We can now see that Enestrom was the first to publish a proof
of Theorem 3 in 1893 and that Kakeya independently proved the result in 1912. This
could therefore be a reason to refer to Theorem 3 as the “Enestrom—Kakeya theo-
rem.” Since Enestrdm’s argument is so historically important, we present a complete
English translation of this paper of Enestrom [23] in the appendix of this chapter.

8.2 Generalizations of Enestrom—Kakeya Theorem
During the 1960s

The Enestrom—Kakeya theorem gives an upper bound on the modulus of the zeros
of polynomials in a certain class (namely, those polynomials with real, nonnegative,
monotone increasing coefficients). We can easily obtain a zero-free region for a
related class of polynomials in the sense that we can get alower bound on the modulus
of the zeros. By applying Theorem 3 to 7" p(1/z) where p has real, nonnegalive,
monotone decreasing coefficients, we get the following:

Theorem 5 If p(z) = Y__a;2’ is a polynomial of degree n with real coefficients
satisfying ag > ay > -+ - > a, = 0, then all the zeros of p lie in |z| = 1.

In 1963, Cargo and Shisha [12] introduced the “backward-difference operator” on
the coefficients of polynomial p(z) = Z’J":o a;z) by defining Va; = a; — a;_
(when speaking of Vg or Va, 4, we will assume a_; = ¢, = 0). More generally,
they also defined “fractional order differences” for any complex o as

k
Vo, = Z (— 1"

m=0

See Cargo and Shisha [12] (also [52, 54])

[T
m
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Theorem 6 If p(z) =),
coefficients satisfying V¥aj < 0 for j = 1,2,...
zeros of p liein|z| = 1.

a jz-f is u polynomial of degree n with real, nonneguative
nand 0 < a < 1, then all the

Cargo and Shisha showed that Theorem 6 reduces to Theorem 5 when o = 1. They
also gave specific polynomials to which Theorem 6 applies, but Theorem 5 does
not, thus showing that the hypotheses are weaker in their result, even though the
conclusion is the same as that of Theorem 5.

The generalization of Enestrdom—Kakeya theorem for functions of several variables
was given by Mond and Shisha [53].

In 1967, Joyal, Labelle, and Rahman [46] published a result which might be
considered the foundation of the studies which we are currently surveying. The
Enestrom—Kakeya theorem, as stated in Theorem 3, deals with polynomials with non-
negative coefficients which form a monotone sequence. Joyal, Labelle, and Rahman
generalized Theorem 3 by dropping the condition of nonnegativity and maintaining
the condition of monotonicity. Namely, they proved:

Theorem 7 If p(z) =
satisfyingag < a; < -+

> o ;7! is a polynomial of degree n with real coefficients
< ay, then all the zeros of p liein|z| < (ay —an~+laopl)/lay -

Of course, when ag > 0 then Theorem 7 reduces to Theorem 3. The Joyal-Labelle—~
Rahman result, like the original Enestrom-Kakeya theorem, is only applicable to
polynomials with real coefficients. In 1968, Govil and Rahman [30] presented a
result that is applicable to polynomials with complex coefficients:

T g .
Theorem 8 If "'_’(:] = Z’j:o
coefficients satisfying larga; — Bl < «

a;z/ is a polynomial of degree n with complex
< w/2 for some o and B and for

=0,1,2,... ,n and |ao] < |a|| < -+« < |ay|, then all the zeros of p lie in
el = coser+ sinar + 252 30 oyl
With « = B = 0, Theorem 8 reduces to Theorem 3. In the same paper, Govil

and Rahman gave a result for polynomials with complex coefficients but impose
a nonnegativity and monotonicity condition on the real or imaginary parts of the
coefficients of the polynomial:

Theorem 9 If p(z) = Y.'_ya;z’ is a polynomial of degree n with complex co-
efficients where Rea, = «; and Ima; = f; for j = 0,1,2,... oM satisfving
0<ag <o <...<ay, e, 20, thenall the zeros of pliein |z| < 1+ Z"_n 1351

With each 8; = 0, Theorem 9 reduces to Theorem 3.

8.3 Generalizations of Enestrom—Kakeya Theorem
During the 1970s and 1980s

In 1973, Govil and Jain [28] refined Theorem 8 by giving a zero-free region about
the origin and thus restricting the location of the zeros to an annulus:

Y
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Theorem 10 If p(z) = ZLO a;z’ is a polynomial of degree n with complex coeffi-
cients satisfying larga; — p| < a < /2 forsomea and B andfor j =0,1,2,... ,n
and 0 # lag| < |ai| < -+ - < |ay|, then all the zeros of p lie in L
1
R=12R(lay|/lacl) — (cosa +sina)] —

<l7 =R

n—I

2sine e |a/|

where R = cosa + sina + T
g

In the same paper, Govil and Jain similarly refined Theorem 9 by giving a zero-free

annular region and improving the outer radius when the real or imaginary part of the
coefficients satisfy monotonicity condition:

Theorem 11 If p(z) = Z'}=0 a;z’ is a polynomial of degree n with complex co-
efficients where Rea; = «; and Ima; = B; for j = 0,1,2,... ,n, satisfying
O0<ap<a < ---<a, a, #0, then all the zeros of p lie in

|m]|
R'=V[2Rat, + RIBa| — (e + [Aol)]

<z =

where R =1+ 1 (2123181 + 16 )

In a “sequel” paper Govil and Jain [29] further refined Theorems 10 and 11. The
refinement was accomplished by using a more sophisticated technique of proof to im-
prove the inner and outer radii of the annulus containing the zeros of the polynomial.
The refinements are, respectively:

T.heorem 12 If p(z) = Y_}_qa;z’ is a polynomial of degree n with complex coeffi-
cients satisfying larga; — B| < a < /2 for some oo and B andfor j = 0,1,2,... ,n
and |ag) < |a(| < -+ < lay|, then all the zeros of p lie in

— R2|b|(My — |ag|) + {4lao| R* M5 + R*|b|* (M —

£<L_L Ll
2 \lanl M.) 4<|an|_ﬁ.

laol)’}'?] < Izl < R

1/2
ol
+ —
|

202
where

and My = \a,lr, My = |a,|R" [r+R il cosa +sina) |, ¢ = lax — a1l
_ _ 2sinag -l

b=a, —ay andr = cosa + sina + = Ton] Z —olajl.

Theorem 13 If p(z) = Zj’:o a;z’ is a polynomial of degree n with complex co-

efficients where Rea; = a; and Ima; = B; for j = 0,1,2,... ,n, satisfying

O<ap<a < - <ay, a, %0, then all the zeros of p lie in

R2|b|(My — |aol) + (4lag) R*M; + RYBI*(Ms — laol)*}'/?] < 1zl < R

2M2[
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172
R (L1, [ 12+M3/
2 Cp M; 4 \ay, M; Ay
and M3 = o,r, My = R" [(an + |énl)R+anr — (g + |Bo)], ¢ = lay
b=ay—ap andr =1+ 23218l +1BaD).

In 1984, Dewan and Govil [21] considered polynomials with real monotone
coefficients and obtained:

Theorem 14 Ifp(z) =
satisfying ap < a1 < -

where

— ap_il,

Z’; _oa;7! is a polynomial of degree n with real coefficients
- < u,, then all the zeros of p lie in

— [-R*b(M, —

1/2
R_c<1 1>+ c2<1 1>2+M| !
) || M, 4 \ |ay| M, |G|

R"(|an|R+an—ao), ¢ = an—

lagl) + {4lao| R*M3 + R*b*(Ms — laol)*}'/*] < lz| < R

2M2

where

and M| = a, —ap+|agl, M2 = —a,_1, andb = a| —ay.

Dewan and Govil also showed that R < w and that the inner radius of the zero
containing region is less than 1, indicating that this result is an improvement of the
result of Joyal, Labelle, and Rahman (Theorem 7); hence it is also an improvement
of the Enestrom—Kakeya theorem. They also gave specific examples of polynomials
for which their result gives sharper bound than obtainable from Theorem 7 of Joyal,
Labelle, and Rahman.

In 1980, Aziz and Mohammad [6] introduced a condition on the coefficients to

produce the following generalization of Theorem 3:
Theorem 15 [f p(z) = Z';ZO a jzj is a polynomial of degree n with real, positive
coefficients. If t; > t, > 0 can be found such that

ajt|t2+aj_|(t| —tz)—aj_z >0, forj=1,2,... n+1

where we take a_y = a,4| = 0, then all zeros of p lie in |z| < 1.

With #; = 1 and #, = 0, Theorem 15 implies the Enestrom-Kakeya theorem. In the
same paper, Aziz and Mohammad [6] introduced an interesting and general condition
on the coefficients of a power series representation Z;io a;z’ of an analytic function

in order to restrict the location of the zeros. The condition is that |arga; — 8| <« <
n/2forsomea and B and for j = 0,1,2,... and |ag] < fa|| < -+ < t*Nae_y| <
t"lagl > t*|agqer] > --- for some ¢ > 0 and some k = 0,1,.... Aziz and

Mohammad [7] imposed similar conditions on the coefficients of polynomials and
proved the following three theorems.

T
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Theorem 16 If p(z) =
coefficients satisfying

Zj‘:o a;z’ is a polynomial of degree n with complex

\

lao| < tlai] < - < t¥|lag] = M apq | = - = " an|

for somek =0,1,... ,n and some t > 0, then all zeros of p lie in

2k | " lay — |a
|z|§t< i“'—1>+2X:7|aJ lla/”.
" e, =0 == ay|

Theorem 17 If p(z) = Z;;o a jzj is a polynomial of degree n with complex
coefficients where Rea; = aj and Ima; = B; for j =0,1,2,... ,n, satisfying

0<op <t < <troy >ty > >1"ay >0

forsome k =0,1,... ,n and some t > O, then all zeros of p lie in

k n ]
e <o (2% )4 25 AL
t"oy oy - ==l
j=0

Theorem 18 If p(z) = Y j_ga 2/ is a polynomial of degree n with complex
coefficients where Re a; = aj and Ima; = B; for j =0,1,2,... ,n, satisfying

<thay > "oy > -

O<ap<ta; <--- >t"a, >0

and

O<Bo<tBy<--<t'B =ty >-

for some k =0,1,...
lie in

>t"fp 20

,n,somer =0,1,...,n, and somet > 0, then all zeros of p

lz] < '|_|{2(t o 4+ " nﬁr) — (o, + ,Bn)}

Notice that each of the three previous results imply Theorem 3 for the appropriate
choices of ¢, k, and 8;.

8.4 Generalizations of Enestrom—Kakeya Theorem
During the 1990s

In the style of Aziz and Mohammad [7], Dewan and Bidkham [20] dropped
the nonnegativity condition of Theorem 17 and proved for polynomials with real
coefficients:
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Theorem 19 [f p(z) =3 ;_ya 2/ is a polynomial of degree n with real coefficients

satisfying
k41

ag <ta) < - <thap > " Vapy > - = 1t'a,

for some k =0,1,... ,nand some t > 0, then all zeros of p lie in

2tfay @ |
lz| <t = — )+ ———(lao| — ao)-
e 1"Jl|

""!”irl |an |

With ay > 0 and a,, > 0 in Theorem 19, we see that the zeros of p lie in

2tkak
lz] <1 ( o 1>.

The above result also follows from Theorem 17 if we take each g; = 0, and in this
sense Dewan and Bidkham’s result overlaps with that of Aziz and Mohammad [7].

Related to the hypotheses of Theorem 19, Gardner and Govil [24] proved the
following in 1994 which was inspired by a result by Aziz and Mohammad [6] for
analytic functions:

Theorem 20 If p(z) = Z’}ZO a jzj is a polynomial of degree n with complex
coefficients where Rea; = oj and Ima; = B; for j = 0,1,2,... ,n, satisfying

ap <ta) <--- <t = M yy = - = 1y

and
Bo<tB<---<t'B=2ttB > >1"B,

forsomek =0,1,... ,n, somer =0,1,...,n, and some t > 0, then all zeros of p
liein R| < |z] £ Ry, where

Ry = min {(tlaol/Q(* o + 1" B) — (a0 + Bo) — 1" (@ + Bn — lan])), 1}
and

Ry = max {[laol" " — 1"~ (o + o) — 1ot + Bu) + (1% + 1)(e" ™ e

k—1 r—1
+ t”_r_l,gr) + ([2 -1 Z tn—j—laj + Z t”_j_lﬁj
=1 =

n—| n—1

4 ; 1
=2 n—j—=1_, . tll—j—| . / al, =
+(1=1% E t o) + E B; |an| "

J=h j=r+1

The flexibility of Theorem 20 is revealed by considering the corollaries which result
by letting ¢t = 1, and k,r € {0,n}. For example, witht = 1, k = n, and r = n, it
implies the following, which is clearly a generalization and refinement of the result
of Joyal, Labelle, and Rahman (Theorem 7):

Y
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Corollary 1 If p(z) = Z';’:o a jzf is a polynomial of degree n with complex

coefficients where Rea; = aj and Ima; = Bj for j =0,1,2,... ,n, satisfying
0y < o) S"'SallandﬂOSﬂl SS/SH

for some t > 0, then all zeros of p lie in

[etn] <2 < Jag] — (o + Bo) + (e, + By '}.

|“'u| — Loy + ﬁli] + (o, + ﬁn.:' I”ul

By making suitable choice of ¢ and k and using appropriate transformations Gardner
and Govil [24] also obtained several results analogous to the above corollary when,
for example, real parts of the coefficients is monotonically decreasing and imaginary
parts monotonically decreasing, or real parts of the coefficients monotonic increasing
and imaginary parts monotonic decreasing.

In order to apply the above Theorem 20 of Gardner and Govil [24], both the real
and imaginary parts of the coefficients have to be monotonic, but if this does not
happen and instead only the real or imaginary parts of the coefficients satisty this
condition then the Theorem 20 is not applicable. In this regard, Gardner and Govil
[25] proved a result related to Theorem 20, but with hypotheses restricted to just the
the real parts or imaginary parts of the coefficients. To be more precise their result
is the following:

Theorem 21 [f p(z) = Z';z(, a;7 is a polynomial of degree n with complex

coefficients where Re u; = ajandIma; = B; for j =0,1,2,... ,n, satisfying
ag <toy <o <t > oy > > 1y,

for some k =0, 1,...
where

,n, and some t > 0, then all zeros of p liein R| < |z] < Ry,

n—I
Ry = r|ao|/ 2tk — oo — "oy + "] + |Bol + Bule” +2) " |B;1t/

j=!
and

k—1
Ry = max § (laol"™ + (% + D" oy — "o — ta, + (P = 1)) 1"
j=1

n—1 n

. . 1
(=) D0 ey Y (1Bl a1 e /lm.;

j=k+1 j=I

By using suitable transformations, Gardner and Govil [25] also obtained results
analogous to the above Theorem 21 when the condition is satisfied by imaginary
parts of the coefficients.

~d
|
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In the same paper that contained Theorem 19, Dewan and Bidkham [20] also
generalized Theorem 14 due to Dewan and Govil, and proved the following:

Theorem 22 If p(z) = Zj’:o a;z’ is a polynomial of degree n with real coefficients

satisfying

Qa4 < S Z Ay = =y

Sforsomek =0,1,... ,n, then all zeros of p lie in

1
5 [~ R*b(M3 — |ao]) + {4lao| R* M + R*B* (M — |ao))?)'*] < |zl < R

%
1/2
R_c(l 1>+ c2<1 1>2+M1 !
2 || M, 4 \|an| M lan|
and M| = —a, +2ak—a0+|a0|: M, = R"(IanIR+2ak_an‘a0): c=lay—a,_|,
and b = a; — ay.

where

In 1998, Aziz and Shah [8] introduced a very general condition on the coefficients
of a polynomial. Though the condition is complicated, it allowed them to conclude
several of the previous results mentioned above. They proved:

Theorem 23 Let p(z) = Z;;o a jzj be a polynomial of degree n with complex
coefficients. Suppose for some t > 0 we have

?1|21>£ltcl()z”Jrl +(ta) — ag)?" + - + (tay — ap_1)z) < M,
<l=r

and
max| — a”ZrH—l +¢ay —a,— )"+ F (tar — ap)z| < My,

z]=r

where r is any positive real number. Then all zeros of p lie in

R [—r*b(M; — tlaol) + {4tlaolr*M; + r*b* (M, — tlag)?}'"?] < Izl < R
2

where

R =2M}[ — c(M| = |an)r? + {(4la,|r*M;} + r*c3 (M| — |a,])?)'7217",

¢=|tay —ay—i|, and b=|ta; — aol.

Aziz and Shah proved that Theorem 23 implies Theorem 12 due to Govil and Jain and
stated that a similar argument shows that Theorem 23 implies Dewan and Bidkham’s
Theorem 22, as well as Govil and Jain’s Theorem 13. In the same paper, Aziz and
Shah also gave the following result with similar type of hypotheses which implies
Theorem 19 due to Dewan and Bidkham:

Y
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Theorem 24 Let p(z) = Z’;zo a;z’ be a polynomial of degree n with complex
coefficients. Suppose for some t > 0 we have [

1|n|ax|ta0z" + (ta; — aO)Zn_l + -+ (ta, — an—l), =M
2|=r

where r is any positive real number. Then all zeros of p lie in

M 1
|z] <max{-—, ;.
,anl r

Aziz and Zargar [9] relaxed the monotonicity condition of Joyal, Labelle, and Rah-
man [46] and obtained a result related to the Enestrom-Kakeya theorem. Here,the
disk obtained is not necessarily centered at the origin. This result involves a modifica-
tion of the monotonicity condition by introducing a parameter A, in the sense that the
first (n — 1) coefficients of the polynomial satisfy the monotonicity condition while
the last coefficient a,, does not follow this pattern, and is free. This A condition will
appear often in research on the Enestrom—Kakeya theorem in the new millennium:

Theorem 25 Let p(z) = Z?:o a jzj be a polynomial of degree n with real coef-
Sicients satisfying ay < a; < -+ < a,_| < Aa,. Then all the zeros of p lie in
lz+ A — DI < (Aay —ao + laol)/|ax].

Of course, with A = 1, Theorem 25 reduces to Joyal, Labelle, and Rahman’s Theorem
7. With A = a,_,/a,, we see from Theorem 25 that the zeros of a polynomial with
monotone coefficients ay < ¢y < --- < g, has allits zeros in |7+ (@, /a, — 1)| <
(@n—1 —ag+lao})/|a.|. Later, Aziz and Zargar [9] generalized their own Theorem 25
and proved:

Theorem 26 If p(z) = ZLO a;z! is a polynomial of degree n with real coefficients

satisfying
ag <tay <o <thg > g > > 1,

Jorsomek =0,1,... ,n — 1 and some t > 0, then all zeros of p lie in

Q) 2*ay a,l_|> 1
7+ —t)| =t - + (laol — ao).
( ay ) (tnlan| tlau| tn_l|an|
In the same paper, Aziz and Zargar [9] proved a result related to Theorem 26, but with

a hypothesis concerning the even-indexed and odd-indexed coefficients separately.
Their result is:

Theorem 27 Let p(z) = Z’;’:o a;z/ be a polynomial of degree n with real
coefficients satisfying

0<ag<tPay <tlay < <y,

and

0<a <tay<tlas<-. . < 12 gy oyt
Then all of the zeros of p lie in
ap—1 An—1

ay

<t+

an
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8.5 Generalizations in the New Millennium

Cao and Gardner [11] extended the even- and odd-indexed coefficient condition of
Aziz and Zargar’s Theorem 27 to polynomials with complex coefficients to prove
the following:

Theorem 28 Let p(z) = Y :_pa;z/ be a polynomial of degree n with complex

I S i i
coefficients where Rea; = «j and Ima; = By for j =0,1,2,... ,n, satisfying

¢ 2
oy < t’ay < thay <0 < o, > t2k+20l2k+2 Z EEER 2/ JOtan/zj,

2¢-2 o> p2ln2l

o) < f20l3 =< 1‘4065 <---=t Op—1 = t2€012z+| E A2\ (n+1)/2)—1»
2 2n/2
Bo<t2Py <tBy <o < 1P Py = 5 Bypn > 2 2B,

and
By <Py <tBs <. <t¥7p 4 > R 22 By v iy2)—1
for some k,£,5,q in (0,1,...,|n/2]). Then all the zeros of p lie in Ry < lz] < Ry

. Mo
where Ry = min {’IL:;“' .t], R, = max {“I« l' ,i and
"

M= —(ag + Bo) + (lai| + |81 Dt — (o + Bt
4 20eapt® + 2o 127 + Bost® + Bag— 11271 — (@n—t + Bu—i)t
= (an + ﬂll)tn + (lan—ll + |,3n—| |)t”—] + (lanl + Iﬂnl)tn

My = 1"(lag| — ap — Bo) + (o | — ) — )"+

n—I

- —2¢
+(* + Dieget" ™' 7 +aget” )
125 = -
+ ,325tn I + ﬂ2q—1t” 2q) - (an—l + ,311—1) + |an—1| . (an + ,Bn)t
-2 2¢-3 252
+ (t4 -1 Z ajtn—l——j + Z Otjt”_I—J + Z ,Bjt”_l_j
J=0, Jeven j=1,j odd j=0,j even
293 211721 2L+ D/2] -1
n Z IBjtn—l——j . Z Oljln_]_J _ Z C(jt”_]_j
j=1,j odd j=2k42, j even j=2¢+1, j odd
2n/2] 2l(n+1)/2]—1
. Z ﬂjt”_]—j _ Z ﬂjt”_l—j
j=2542, j even j=2q+1,j odd

The flexible hypotheses of Theorem 28 allow to obtain a large number of corollaries.
For example, monotonicity conditions can be imposed on the even and odd indexed
coefficients to prove the following result for polynomials with real coefficients:

Y
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Corollary 2 Let p(z) = Z'j'-zo a;z/ be a polynomial of degree n with real
coefficients satisfying
ap < ap T dq4 < A2n)2)s \
and
a) = az = as = - Qn+y/2)—1-

Then all the zeros of p lie in R| < |z] < Ry, where Ry = min {%, 1] and R, =
max {llfl'/[Tzl’ I]for M| = —ap+ |ai| +a +2a2|_n/2j ~+ lan—i| — an—1 + |an| — a, and
M, = |ag|l — ap + la| + a1 + 2az(4/2) + lay-1] — a1 — ay.

Cao and Gardner gave specific examples of polynomials showing that these re-
sults sometimes give improvements over previous results. In addition, they [11]
addressed a similar condition on the moduli of the even and odd indexed coefficients
for polynomials with complex coefficients:

Theorem 29 Let p(z) = Y.}_ya;2/ be a polynomial of degree n with complex
coefficients satisfying larga; — B| < a < 7w/2 for some a and B and for | =
0,1,2,... ,nand
laol < Plas| < tMag| < -+ < Hlag| = F P agpa| > - = P gy, 0],
jai] < Plas| < tflas| < -+ < 2P agen| 2 Pageri| =
R o i T
forsomek =0,1,...,|n/2] and £ =0,1,...,n/2]. Then all the zeros of p lie in
R, <zl £ Ry where Ry = min {"A;—"l",t], R, = max [II["’—Zl, ,l},

My = ||t 4 a1 |t" 7" + |a, |t" 4 cosal — |ao| — lar|t + 2]az|t* + 2|aze_ |2

n—2
—1 B i -
—lan_il" ™" — laylt"] +sine | 2 a1t/ + Jaol + larlt + lan-1]e" ™" + lan]t"
j=0
and
2k—2
M =laolt"™ + lay|t"*? + |ay_i| +cosa y (¢ =D | D ale" "
Jj=0, j even
2¢-3 21n/2] 2 (m+0/2]—1
+ Z |aj|tn-—l—j _ Z |aj|t"_]_J _ Z |aj|t”—'_f
j=1.j odd J=2k+2, j even j=2¢+1, j odd
+(t* + D(lazelt" ™" 72 + |age— [£"72) — lagle"
2 —1
—la It”+ —lan—1| = laylt }
n=2
+sina { @+ DD gl + laolt" ™+ lai¢" + lay—i)r* + |ay |
j=2
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The hypotheses of Theorem 29, as well as several of the other results above, involve
a reversal of an inequality condition on the coefficients of a polynomial. In 2005,
Chattopadhyay, Das, Jain, and Konwar [14] took this idea of a reversal of the in-
equality to its logical conclusion, and introduced hypotheses concerning an arbitrary
number of reversals in an inequality on the coefficients. As an example, they [14]
proved:

Theorem 30 Let p(z) = Z’; a2’ be a polynomial of degree n with complex
coefficients where Rea; = oy and Ima; = B; for j =0,1,2,...,n, satisfying for
somet > 0

ap <tay <--- <M > =2 My <P,y <,
and
Bo<thr < <tB, =t By = =B, <G < "By,

where the inequalities involving the real parts reverse at each of the indices

ki k... k,, and the inequalities involving the imaginary parts reverse at each
of the indices ry, ra, . .. ,rq. Then all zeros of p lie in Ry < |z] < R,, where
1 M; 1
R, = = min [M.I],R2=ma)([—2,—],
M |an| t
p .
My =— [ap+ (= )P a," + Z( — 1) oy, %

j=l1

q
— | Bo+ (= DI B" + D (= 1Y Bt | + lanlt”,

j=1

and
p .
My = | —aot" + (= P ot + (2 + 1) (= Dy ™57
j=!
P kjy1—I
+(@=DY (= Y !
Jj=0 m=k;+1
q .
. ﬂotil—l 3= 1)q+|,8nt 4 (t2 + 1)2( _ 1)1,3rjt”—rj_]
j=l
q Fj+l—
+(t2—1)2 — 1y Z Byt ! + [agt"*!,
j=0 m=rj+1

where we take ko = ro =0and kp| = rgy1 = 1.
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With k; = k, r; = r, and the number of reversals p = g = 1, Theorem 30 reduces to
Gardner and Govil’s Theorem 20. In the same paper, Chattopadhyay, Das, Jain, and
Konwar also gave a result which hypothesizes a number of reversals i inequality
concerning the moduli of the coefficients, thus giving a generalization of Theorem 16
due to Aziz arid Mohammad.

In 2007, Shah and Liman [56] extended Aziz and Zargar’s idea from Theorem 25 to
complex polynomials by hypothesizing a condition on the moduli of the polynomial.
Their result is as follows:

Theorem 31 Let p(z) = Y i _ya 120 be a polynomial of degree n with complex
coefficients where Rea; = o and Ima; = B; where |arga; — B| < a < m/2 for
some o and B for j =0,1,2,... ,n. If for some A > 1 we have

laol < laif < ... lan—i| = May|

then all the zeros of p lie in

n—I
e+ (4 -1 < ()~|61n|—|aol)(Slna+Cosa)+lao|+281n6¥2|a, ]/Icfu

In the same paper, Shah and Liman produced similar results by imposing the “A
condition” on the real parts and by combining this with a reversal in the monotonicity
condition.

In 2009, in a paper dealing mostly with the number of zeros in a region, Jain [45]
produced a corollary involving a fairly simple monotonicity condition very similar to
the original Enestrom-Kakeya theorem, but combined with an additional hypothesis
on coefficients ag, an—, and a,;:

Theorem 32 If p(z) = Y., a;z’ is a polynomial of degree n with real coefficients
satisfying 0 < ap < aj; < --- < ay_| < a, and such that

(n + 1)"a" " {(n + Daoay, + @y — a1 )an—1 — ao)} < n"(@y — ay_)"*",

then all the zeros of p lie in

L e

n+1 ay

lz| <

Jain [45] also showed by example that for some polynomials satisfying both the
hypotheses of the Enestrom—Kakeya theorem and the hypotheses of his Theorem 32,
the location of the zeros can be more finely constrained by his result than by the
Eenstrom—Kakeya theorem (which will, of course, restrict the zeros to [z] < 1).

Choo [16] generalized Theorem 29 by introducing another parameter in each of
the monotonicity-type hypotheses on the coefficients. In addition, he gave a simpler
expression for the upper bound on the zero containing region:
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Theorem 33 Ler p(z) = Z';ZO a;zl be a polynomial of degree n with complex

coefficients satisfying larga; — Bl < a < m/2 for some a and B and for j =
0,1,2,...,nand

lagl < lazl < t*aal < -+ < *lagl = P lagegal = -+ = M H g,

lay| < Plas| < t*as| < - < 1% 2 aget| = t¥|aze1| =
o> 2t gy )|
forsomek =0,1,...,|n/2],£=0,1,...,1n/2]. & > 0, and A, > 0. Then all the
zeros of p lie in R| < |z| < R, where R| = min {ﬂ;;'—‘”,t], Rr = max [F'"'"rm’ %},
My = lailt + lap_i|t"~" + |ay|t" + 1 = Day—i )"~ 4 1 = Da, |t

! —I
+cosal — |agl — a1t + 2laxult® + 2]age— 1271 — A** |y 1" — A¥janlt"]

n—2

+sina |2 lajlt7 + laol + lailr + A lay_1[t"" + 2% [ay|t"

j=0
and
My = lag) + larlt + lani 1"~ + [ = Dagi |17 + [V = Da,|t"
+cosa [2laxlt™ + 2laz—1 1757 — AF|an " — A*F|an— "' — |as|t — laol]

n=2
sina 4 A% lanle" A ano 11! 4 lalt + laol +2 3 laj1e!
j=2

For n even we have A* = A, and A** = Ay, but for n odd we have A* = Ay and
A=A -

In the same paper, Choo [16] gave a similar generalization of Theorem 28 due to
Cao and Gardener.

In 2010, Singh and Shah [57] combined the hypotheses of Aziz and Mohammad’s
Theorem 15 (but applied to complex coefficients, as opposed to real coefficients) with
the hypotheses of Aziz and Zargar’s Theorem 25 to get the following:

Theorem 34 Let p(z) = Eﬁ:o ajzl be a polynomial of degree n with complex
coefficients where Rea; = a; and Ima; = B for j =0,1,2,... ,n. Ifty > 1, > 0,
can be found such that we have

(th|12+(¥j_|(t|—tz)—-aj_zzo, for j=2,3,...,n,
Bititr + Bj—1(ti —t2) — Bj—2 =0, for j=2,3,...,n,
where we take ap 1 = Bpy = 0, and for some A > 1,

Aoy (ty — to) — oy = O and 2B, (¢ — t2) = P = 0,
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then all zeros of p lie in |z + (A — 1)(¢| — t2)| < R where

1 1
R y—— {}‘(an + Bt — 1)+ (o + Bt — (o) + ,Bl)tﬁ“ - (Ol(' ﬂo)tn—_l
1 |

T ol n—l

1 t
+ (letity + a0ty — )| + |Bititz + Polti — 2)I) ot (levo] + |/30|)t%] :
1 |
With all the coefficients real and positive, and A = 1, the Theorem 34 reduces
to Theorem 15 due to Aziz and Mohammad. With ¢, = 1, , = 0, and A = 1,
Theorem 34 reduces to Theorem 25 of Aziz and Zargar. In the same paper, Singh
and Shah [57] modified the hypotheses

rcy(t) — ) —ay—; >0 and )",Bn(tl — ) — ,Bn—l >0,

to
AMag(ti —t) —ay— >0 and AB,(t1 — 1) — Bu—1 =0

where A, > 1 and A, > 1, and proved a result concerning the location of zeros in
a disk (not necessarily centered at origin) which includes many of the other results
mentioned above. In a related result, but concerning zeros in a disk centered at origin,
Singh and Shah [58] in 2011 presented the following:

Theorem 35 Let p(z) = Zl}zo a;z’ be a polynomial of degree n with complex
coefficients where Rea; = aj and Ima; = B for j =0,1,2,... ,n. Ift; > 1 2 0
can be found such that for j = 1,2,... ,n 4+ | we have

ajtib +o;_ 1t —t)—a;,>0
and
Bitita + Bi—i{ti —t2) = Bj—2 =0,

where we take a_) = ayy) = B = Byt = 0. Then all zeros of p lie in |z] <
(loy + By + M|t /|ay| where

[0 %)) 1 1
M= _al;‘? T + oty + oty _tZ)IF + |aof1f2|t,llj

n Po | 1
—Bi= — = H1Binta + Bolty — )57 + |Boti 2] 57
1 f t i
Again, this result implies Aziz and Mohammad’s Theorem 15.
Using the same hypotheses as Theorem 35, Singh and Shah [59] proved another
result concerning the location of zeros, but this time obtained an annulus region
containing all the zeros:

Theorem 36 Let p(z) = Z'J'.:O a jzj be a polynomial of degree n with complex
coefficients where Rea; = a; and Ima; = B; for j = 0,1,2,...,n. If t; = 1,
t; # 0, can be found such that for j = 1,2,... ,n+ 1 we have

ajtib+o;_(tt—h)—aj 220
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and
Bititz + Bj—1(ti —t2) — Bj—2 = 0,

where we take a_; = Qup) = P—i = Putt = 0. Then all zeros of p lie in
min{R,, 1/} < |z| < max{Ry,(}. Here,

Ry = {—(lanl — K)la(t; — ) — 1| + [(lanl - Kl)zlan(tl e |2
3.2 1/2
+4Ki ] /2K ),
Ry = {—(lao|tlt2 — Kp)aitit; + ao(ty — t2)|t|2

1/2
+(laoltt, — KaPlaitits +aotty — )P} +4K3laoliin] "} /2KD),

Ky = (@ +B)+ (ool — oo/ 7+ + (1ol — Bodta/ 11, and Ky = (o +Bu)t1 ™ +
(ol + 18,1+ — (o0 + Bodtitz.

When each g; = 0, Theorem 36 reduces to Theorem 15. With all coefficients real and
positive, and ¢; = 1 and 1, = 0, Theorem 36 implies the following clean refinement
of Theorem 3:

Corollary 3 Let p(z) = Zj‘:o a jzj be a polynomial of degree n with real co-
efficients satisfying 0 < ap < a; < -+ = ay, then all the zeros of p lie in
~ <7 < 1.

Aap
In the same paper, Singh and Shah [59] introduced a reversal in the inequality imposed
on the coefficients at a particular point and proved:

Theorem 37 Let p(z) = Y.} a;z) be a polynomial of degree n with complex
coefficients where Rea; = oj and Imaj = Bj for j = 0,1, 2.o,nlfti >6>0
can be found such that

ojtity + a1t —h)—a;2 >0, for j = 2,3,...,r+1,
ajtip oty —h)—aj < 0, forj=r+2,r+3,...,n+1,
Bitita + Bj—1(ty — o) — Bj—2 = 0, for j = 2,3,...,r+1,
Bitita + Bt —t)—Bj2 =<0, forj =r+2,r+3,...,0+1,
for some hwith 1 < r < n, where we take o+ = Bny1 = 0, then all zeros of p lie in

t 20 1 ty | 204 1
el = [(—— —an) + = (lool -ao)] + {,——"l + (el —ao>}
1 1 1

|all|

~ anl L
28, 1 28,4 1
5.0 {(Ji - ﬁ,,) + —(IBol — ﬁo)} 2 {J_*—_', + —(1Bol — ﬂo)} :
lan| 1 h lan| L 1] £y

Singh and Shah remarked that Theorem 37 reduces to Dewan and Bidkham’s Theo-
rem 19 when each coefficient is real and # = 0, and further reduces to Theorem 3

LB
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when r = r and @ > 0. In the same paper, Singh and Shah [59] also presented a
related generalization of Theorem 26 due to Aziz and Zargar.
In 2013, Singh and Shah [60] gave another result related to TheoreMB6:

Theorem 38 Let plz) = Zj:o a jzj be a palynomial of degree n with complex
coefficients where Rea; = ay and Ima; = B; Jor j=0,1,2,...,0n. Ift; >t = 0,
can be found such that for j = 2,3,... ,n we have

ajtib +oj_1(t — ) —a;2 >0,
Bitita + Bj—i(ty — ) — Bj—2 > 0,
and for some real A1 and A, we have
(an + )‘I)(tl - t2) — Oy = 09 and
(Bn +22)t1 —82) — By 20,
then all zeros of p lie in

(A +ia )1t — 1)
742 | IAF]

ly

.SR?

where

R = {[(@ + 1)+ Bu A1t —12) +(an + B2 — (o + B0/ 1} — (@0 +Bo)/ 1!
+(laitity + ooty — )| + |Bitita + Bo(ti — 2))/ 1} + (laol + |BoDr2/ 1)}/ 1@

With , = 0 in Theorem 38, one easily gets as a corollary the following:

Corollary 4 Let p(z) = Y} ya;z’ be a polynomial of degree n with complex
coefficients where Rea; = oy and Ima; = f; for j = 0,1,2,... ,n. Ift > 0, can
be found such that

' + M) = " sy = P = 2t >
and
By +A2) = " Bt = " B = 2 181 = o
for some real Ay and Ay, then all zeros of p lie in
P
5 .
:__|_( | iAo ) <R

Gy

where
R = t{(ctn + 11) + (Bu + 12) — [ + Bo — Il = |Boll/ "}/ lanl.

Among the many results listed above which overlap with Corollary 4 is included
Joyal, Labelle, and Rahman’s Theorem 7, which follows from the corollary when
AM=X=0andr =1
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Many of the results abave, such as Corollary 4, involve the parameter ¢ > () in
such a way that coefficient a; (or possibly its real part, imaginary part, or modulus)
is multiplied by ¢/ and then involved in some type of monotonicity condition. Such
a result often will follow from a simpler result which does not involve parameler ¢
by applying the simpler result to polynomial p(tz). Recently, Gulzar, Liman, and
Shah [39] introduced a condition on the coefficients which is somewhat more subtle
and does not yield a result which will easily follow from a simpler theorem. They
required the parameter ¢ to follow a pattern similar to that given in Corollary 4, but
only for some of the coefficients. They prove:

Theorem 39 Let p(z) = Y.:_qa;z/ be a polynomial of degree n with real
coefficients satisfying

ap<a) < <apoy <tag < tagp <0 < kg | < g
for some t > 0and 1 < k < n. Then all the zeros of p lie in

an — a0+ laol + (¢ = D {1 @y + la;) = lanl}

|l

lz+ (- Dl =

With k = n and ¢ = A, Theorem 39 implies Aziz and Zargar’s Theorem 25. With
k = 1, the hypotheses of Theorem 39 is similar to several of the results above (though
there is no resulting reversal in the monotonicity hypothesis).

Choo and Choi [18] gave an interesting result in 2011 related to the hypothesis
of monotonicity of the coefficients in the Enestrom—Kakeya theorem. They allowed
one coefficient, say ay, to violate the monotonicity condition and then constrained
the deviation of a; from ax_; and az, such that the zeros of the polynomial would
still liein |z} < 1:

Theorem 40 If p(z) = 3.}y a;2! isa polynomial of degree 1 with real coefficients

satisfying a,, = ap 41 = -+ = ly, - fori =0.1.2,....m. where rg =0 <r| <
Fy < vor < Py < Pyt = 0+ L Suppose that for some 0 < k = nt — I,
a"m > a"/ll*' >z a"k+l > a"k—l > ark-z > > aru > 0
and let
ay ) Ay, =) (27 | Ay, a/',_z oy,
p:max{L._.ﬂ._.“' ,L’L’;’_'. ‘_l)_
Ay Crye Aripr Origy G yy
If p < 1, then p has all its zeros in the disk |z| < 1 provided a,,_, — € < ap =

Gy, + €2 where

(1 = pIRy (1 —p)Ra
- and €3 = >
L+ p+ =P =0 — D |+ o+ = pXrep —r—1)

€]

R| = al'm +a"m—| + .-‘+ark+| +ark72 + e +ar| +a0

—{(n— rm)ar,,, 4+ (rm =Tt — 1)ar,,,,| +- 4 (rk+2 — I+l — l)arkH
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+ (Fegt = Feet =2ty + (it — Pkm2 — Dy, +- -+ (r2—ri — Day + (ri — Dao},

and
Tty 4ol o ay @

—{(n — rm)ar,,, + (rm — rm—1 — 1)“:',,,4 + e (g2 — e — Z)arkH

H(ri — rr—t — Dag_, +(re—) — re—2 — Day_, +- -+ (2 — ri — Day, + (ri — Dao}.

R2 = 4a,

"

Choo and Choi gave examples of polynomials illustrating their result. In particular,
they gave P(z) = 3.62% + 52° + 4z* + 3.22° + 2.5 4+ 2z + 1.5 as an example
of a polynomial which violates the monotonicity condition of Enestrom-Kakeya,
but which still has its zeros in |z| < 1. Coefficient aq violates the monotonicity
condition; the authors computed ¢; = 1.4667 and observed that ag > as — €1, thus
indicating that the hypotheses of their theorem are satisfied. In the same issue of
the same journal, Choo and Choi [17] introduced the following generalization of the
Enestrom—Kakeya theorem:

Theorem 41 If p(z) = Z’}=o a;z’ is a polynomial of degree n with real coefficients
satisfying

ap<ay < Spgo) SAYyg Sy S Sy
for some real ), then the zeros of p lie in |z| > R where

R . ]Hn!
ety | + ety 4 |2 = Daig—g| + (& — Day—y —dg

l:fall—k—] Z Op—k>

and
R = [eto]
lety | -+ cty + (X — I )etyy —kl + (1 = Ryety - — ap

ifan—k Z Uy—f+1-

In the same paper, Choo and Choi gave a similar result by hypothesizing that the
real parts of p satisfy the conditions of Theorem 41 and that the imaginary parts are
monotone increasing. They also gave the following result which has a hypothesis
concerning the moduli of the coefficients of p:

Theorem 42 Let p(z) = Z’; 0 u.,-:.f be a polynomial of degree n with complex

coefficients where Rea; = aj and Ima; = B; where |arg a; — Bl <a <af2for

somea and Bfor j =0,1,2,... ,n.If
lao] < lai| -+ = |an—k—l| = )‘lan—kl = Ian—_k+ll < Zanl
for some ) > 0, then the zeros of p lie in |z| > R where

laol
R =
(lay] + (A = Dlay—(cos o + sina) — Jag|(cos o — sina) + 2sina Yy

=1
'}=1 la;l
lflan—k—ll > lay—tl, and

laol

B (lap] + (1 = A)|ag—e(cos o + sinar) — |ag|(cos o — sina) + 2 sino Z'J';]' la;]

if lan—k| = |an—ry1-
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In 2012, Aziz and Zargar [10] modified the hypotheses of their own 1996 result,
Theorem 25, and proved the following three theorems.

Theorem 43 If p(z) = ZI;’:O a;z’ is a polynomial of degree n with real coefficients
such that for some A > 1and 0 < p < 1 we have

0<pap<a <day <+ Zdap_) < My,

then all the zeros of p liein |2+ A — 1| < A+ 2a0(1 — 0)/ay.

Theorem 44 If p(z) = Z'_: _oa;7) is a polynomial of degree n with real coefficients
such that for some 0 < p < 1 and some ) < k < n we have

pap <ay Say < Sap Z gy 200 Z Ay
then all the zeros of p lie in

‘z—i—a”——l—l

Uy

1
< ——I{2ak — a1 + (2 — p)lao| — pao}.

- |a’l

Theorem 45 If p(z) = Z'}:O a;7/ isa polynomial of degree n with real coefficients
sich that for some 0 < p < 1 and some () < k < n we have

pap < ay < ay <o S Z Gyl Z 00 2 M,
then all the zeros of p lie in

2ay, — ay (2 — p)lao| + pay
ety

z| <

Aziz and Zargar [10] also showed that each of these implies Theorem 7 of Joyal,
Labelle, and Rahman, and hence it is a generalization of the Enestrom-Kakeya

theorem.
Recently, Gulzar [33] (see also [31]) proved:

Theorem 46 Ler p(z) = ZLO a;z’ be a polynomial of degree n with complex
coefficients where Rea; = aj and Ima; = ﬁ, for j =0,1,2,... ,n, satisfying
,anfal < e Sy <o+4a,

for some o > 0 and 0 < p < 1, then the zeros of p lie in

o oy — pl Lﬂ'!ll1 + aep) - 2|evg| + 2 Ei}:u }ﬂjl

o
Z+ —
Jex, |

all

=

Under the same hypotheses, Gulzar [38] gave an inner radius for a zero-free region
for p as given in Theorem 46 by showing that p has no zeros in |z| < laol/{20 +a, +
lan| — plaop + lagl) + |aol}. With similar monotonicity, hypotheses concerning the
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coefficients, but with the added factor o as in Theorem 46 and with p = 1, Liman,
Shah, and Ahmad [49] gave additional related results in a 2013 publication.
In a result related to Choo and Choi’s Theorems 41 and 46, Gulzar [3&)r0ved:

Theorem 47 Let p(z) = Z'}:o a jzj be a polynomial of degree n with complex
coefficients where Rea; = aj and Ima; = B; for j =0,1,2,... ,n, satisfying

) S0 S S gl SAMY g S S S S0 ta,
Jor some o > 0 and real A, where a,_y # 0, then the zeros of p lie in

o +a, + A — Day_g + |A — 1|etp—x| + |ao] — g + 22:’:.“ |:3]|

o
2+ —| =
an |l

if 0y_g—1 > aty—y, and the zeros lie in

o +ay + (1= AMtn—g + |2 = Ulow—i| + o] — o0 +2 37 _ 18]

g
2+ —| =
aH lalll

if ok > Qg

With o = 0 and each 8; = 0 in Gulzar’s Theorem 47, one can produce an annulus
(centered at origin) containing all the zeros of the polynomial where the inner radius
is given by Choo and Choi’s Theorem 41.

In [35], Gulzar combines the hypotheses of his own Theorems 46 and 47 (with
parameters p, o, and A) to present three generalizations of the Enestrom-Kakeya
theorem (with hypotheses on (1) the real part, (2) the imaginary part, and (3) the
modulus of the coefficients).

8.6 Related Results

In this survey, we have have tried to present results that put a restriction on the
modulus of the zeros of a polynomial explicitly in terms of the coefficients of the
polynomial, as the original Enestrom—Kakeya theorem does. There are other results
related to the Enestrom—Kakeya theorem which we have not yet been able to mention
due to restrictions in the length of this chapter, but will now describe them briefly.

We say “explicitly” in the previous paragraph, because there are a number of
results which restrict the modulus of the zeros of a polynomial, but the restrictions
are given indirectly in the sense of being given by a root of a polynomial itself. This
type of result was first given by Cauchy [13], who proved the following:

Theorem 48 Let p(z) = 7" + Z;’;(l) a jzj , be a complex polynomial. Then all the
zeros of p(z) lie in the disk

{z:1zl <n} Clz: |zl < 14 A}, (8.1)
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where

A= max |a;
()-,;j-iu—ll il

and 1 is the unique positive root of the real-coefficient polynomial

Q(x) = x" — layy|x" ™" = lay2lx" 2 — - —Jailx — |aol. (8.2)

Govil and Rahman [30] also gave this type of result, and the same is stated as follows:

Theorem 49 Let p(z) = Z;’:o a;z/ # 0 be a polynomial of degree n with complex
coefficients such that for some a > 0, we have a"lay| < a" " Ya)| < <alag_ <
|an|. Then all the zeros of p lie in |z| < (%) M where M is the greatest positive root

of the trinomial equation x"t' — 2x" + 1 = 0.

Related results concerning the location of the zeros of a polynomial have also been
presented by Aziz and Mohammad [7], Sun and Hsieh [61], Affane-Aji, Agarwal,
and Govil [2], Affane-Aji, Biaz and Govil [3], Choo [15], Choo and Choi [17], Dalal
and Govil [19], Gulzar [34, 36], and Gilani [27].

The hypotheses of the following result, due to Jain [43] in 1988, are very much
in the spirit of the Enestrom—Kakeya theorem, although the conclusion involves the
size of the real part of the zeros instead of the modulus:

Theorem 50 Let p(z) = Z?:o a jzj be a polynomial of degree n with complex
coefficients where Re a; = o and Ima; = B; where largua; — B| < a < 7w /2 for
somea and B, and j = 0,1,2,... ,n. If0 < lag| < lay| < -+ <lay—i]| < lay] = 1.
Then all the zeros of p lie in the vertical strip {z : —max{1,8,} < Re(z) < 8,} where
81 = [(I—a)+{(1 —a)? +4M}'2]/2,8, = [— (1 —a) +{(1 —a)* +4M}'/?]/2,
and M = (lai| — |ay)(cosa + sina) + 2sina( Y, la;) + lay|.

In the same paper, Jain gave a result by putting the monotonicity hypothesis on the
real parts of the coefficients. He also presented the corresponding result which put
restrictions on the imaginary parts of the zeros of the polynomial p. Also, Jain [44]
in 1993 gave a result which restricts the real part of the zeros, but with no condition
on the coefficients (and hence not really related to the Enestrom—Kakeya theorem).
It seems that this type of approach to the restriction of the zeros has been relatively
little studied.

The techniques used in proving many of the theorems above can also be used to
establish a bound on the moduli of the zeros of an analytic function which has a
related monotonicity-type condition on the coefficients of its series representation.
For example, Govil and Rahman [30] included the following result in their 1968
paper which was primarily devoted to polynomials:

Theorem 51 Let f(z) = Z(f:o a;z’ be an analytic function in |z| < 1. Suppose
larga; — Bl < o < /2 for some a and B for j = 0,1,2,... and |ay| > |ai| =

laa| > -+ . Then the zeroy of [ lie in|z| > {cose +sina + 2;:::1“ ZTL la; ).

Also closely related to the results of this survey is the following which is due to Aziz
and Mohammad [6] and appeared in 1980.

h |
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Theorem 52 Let f(z) = Zﬁo a jzj be an analytic function in |z| < t. Suppose
0 <ag <ta, <t?ay <---. Then dll the zeros of f lie in |z| > t.

Related results have been presented by Krishnaiah [48], Aziz and Shah [8], Lin,
Huang, Cao, and Gardner [50], Shah and Liman [56], Choo [16], and Gulzar [37].

A natural question is: “Is the Enestrom—-Kakeya theorem sharp?” In other words, is
there a polynomial p satisfying the hypotheses of the the Enestrom—Kakeya theorem
for which there is a zero of modulus 1 (thus indicating that the given bound cannot
be improved)? For p,(z) = 1 +z+ 72 4 - - - + 2", the zeros of p, are the (n + 1)th
roots of unity, cos @ +i sin 6 for8 = 2km/(n+ 1) fork = 1,2, ... ,n. Therefore, the
Enestrom-Kakeya theorem (Theorem 3) is sharp. In fact, this example shows that
the alternate version of the Enestrom-Kakeya theorem (Theorem 4) is also sharp.

However it is possible to sharpen the Enestrom-Kakeya theorem by taking away
a part of the unit disk that does not contain the zeros of the polynomial, and this has
been done, among others, by Govil and Rahman (see Theorem 5 in [30]), and by
Rubinstein (see Corollary 1 in [55]).

In 1912-1913, Hurwitz [42] characterized polynomials for which the Enestréom—
Kakeya theorem is sharp. In 1979, Anderson, Saff, and Varga [4] gave a proof (and
correction) of Hurwitz’s result based on matrix methods. In a sense, their result states
that a polynomial satisfying the hypotheses of the Enestrom-Kakeya theorem has
a zero of modulus 1 only if the polynomial has p, as a factor for some n (this is
an oversimplification of their result, but somewhat reflects the importance of this
result). An interesting corollary to their main theorem deals with the version of the
Enestrom—Kakeya theorem as stated in Theorem 4:

Cor?llary 5 Ifp(z) = Z';:O a jz:j is a polynomial of degree n with real and positive
coefficients, then ull the zeros of p lie in the annulus R| < |z| < Ry where Ry =
Mifg<j<p—it;/ajp and Ry = maxg<j<y—1d;/djp1. If Ri < Ry, then it is not
possible for p to simultaneously have zeros on |z| = R| and on |z| = R».

In a related result, Anderson, Saff, and Varga [5] in 1980 introduced a “generalized
Enestrom—Kakeya functional” and established a result concerning the location of
zeros of polynomials and showed that their result is asymptotically sharp.

Appendix

Remark on a Theorem on the Roots of the Equation
dpx + ay_(x""" 4+ ajx + ay = 0 Where
All Coefficients Are Real and Positive
by
G. Enestrom, Stockholm, Sweden

Tohoku Mathematical Journal, 18 (1920), 34-36
A translation of “Remarque sur un théoréme relatif aux racines de I’equation
anx" + an_1 X"~ 4 a1 x + ap = 0 ot tous les coefficientes a sont réels et

positits” by G. Enestrom. Translated by Robert Gardner.
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In 1912 M. S. Kakeya demonstrated in a paper in this journal that the absolute
value of each root of the equation above [in the title] is between the smallest and

largest values of
Qp—1 dn_2 ap

b LA ] b
ay  Gn—| a)

and therefore for [posilive] a, > a,—; > +-- > dy, the absolute value of each root is
less than 1.

This theorem has already been proposed and demonstrated by me in 1893 in a
footnote to a problem on pension funds.' This problem leads us to the equation

B l'4ak® 2+ 4a;,0k+a,_1 =0 (A)
where all of these coefficients are real and positive and for which
l>a >ay >+ > ds—1.

The reference cited in the footnote is written in Swedish and at the request of
Mr. Hayashi I now translate verbatim the part about the roots of this equation.
Define o as the smallest of the quantities

ap aj as—1

a]’ ? L
a a as—2

and it is then evident from this definition of ¢, that
gy —iag 20 (g=0,1,2,...,s —2;ap = 1).
Multiplication of equation (A) by k — «), results in
K+ (a) — k™ - (ag — o@Dk 2 4 -+ (agm1 —anas_)k —ajas =0 (B)

and if we substitute p( cos ¢ + i sin ¢) for k, where p is the absolute value of k, then
p and ¢ must satisfy the equations

p° cos sg+(aj—ay)p" " cos (s—1)p-+(ar—a1a1)p’ > cos (s—2)p
4o+ (us_) —ajas_p)pcosp —ajas—; =0,
p° sinsd4(a —ap)p* ™" sin (s — D@+(az —aia;)p* % sin (s —2)¢
4+ F (a1 —aas_z)psing = 0. ©

We now show that if p < o, equation (C) can not hold, regardless of the value of
¢. Indeed, all coefficients a; — |, az — ot1ay, . .. ,as—| — @ Ay are positive, so the

! Hiirledning af en allmin formel for antalet pensiondrer, som vid en godtyeklig tidpunkt forefinnas
inom en sluten pensionslcassa; Ofversigt af Vetenskaps-Akademiens Forhandlingar (Stockholm),
50, 1893, pp. 405-415. The resulting theorem was stated by me, also in L’intermédiaire des
Mathématiciens 2, 1895, p. 418, and in Jahrbuch iiber die Fortschritte der Mathematik 25 (1893
1894), p. 360, and also mentions the problem of the theory of pensions to which I alluded in the
text.
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left side can not be greater than
—1 (-2
p' + (@ —ap’™ + (@ —1a))p" 4 -+ (ag-1 — d1a52)0 —Qas-

and this expression can be written as

oo —a)+aip M —a)+ -+ agap(p —ap) +ai(p —ap),

which is negative if p < «). The left side of equation (C) is therefore negative for
o < «. It follows that the absolute value of each root of equation (A) is greater than
or equal to «;.

In a similar way we can show that with «, as the largest of the quantities

ay aj as_o

a|9 ? ViRIEE
ay az Gs—|

’

the absolute value of each root of the equation (A) must be less than or equal to o.

For this proof, replace k with k*~' [in equation (A)]. Then multiply the new
equation by & — 1/a, and we easily find that the absolute value of k can never be less
than 1/a3, from which it follows immediately that the value of k can not be greater
than «y. We now have

o7 S |kl| SaZ’ (i =031’2"“ ,S—l).
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