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The classical Enestom-Kekeya Theorem states that a polynomial p(z) =
Y¥.pa,.z" satisfying 0 <ag<a, < -+ <a, has all its zeros in |z] < 1. We
extend this result to a larger class of polynomials by dropping the conditions that
the coefficients be real and positive and weakening the hypothesis that coefficients
be monotonic increasing. Our result generalizes and sharpens severa! known
results,  © 1994 Academic Press, [nc.

1. INTRODUCTION AND STATEMENT OF RESULTS

Many results exist concerning the location of the zeros of a polynomial
f a complex variable as a function of the coefficients of the polynomial.
Jdne such classical result is the following well known Enestrom-Kakeya
[heorem.

TueOREM A [2,4].  If p(2) = LI _,a,2" is a polynomial of degree n with
eal coefficients satisfying

0<ay<a; < - <a

hen all the zeros of p(z) lie in |z| < 1.

Joyal et al. [3] dropped the hypothesis that the coefficients be all
jositive and proved the following generalization of Theorem A.

TueoreM B, If p(z) = £7_,a,.z" is a polynomial of degree n with real
oefficients, a, + 0, satisfying

1A
&

g < a, <a, < no
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then all the zeros of p(z) lie in

a, — ay + lagl

lz| <

1

We wish to weaken the hypothesis of Theorem B and consider a larger
class of polynomials. We are inspired by the following theorem of Aziz and
Mohammad [1], which is for analytic functions.

Tueorem C.  Lef f(z) = I _qa,.z" beanalyticin |z| <t. If Rea; = «a;
and Tma; = B; forj=0,1,2,... and for some k and r,

0<ay<ta < - <ta, z21""a > ...,
and
By<tB, < ...t'B,=t"""B,. = ...,
then f(z) has all its zeros in

tia,l
Z(aktk +B.t7) = (ag + By) .

lz] =

For polynomials we can prove the following more general result. The
interest of this theorem also lies in its flexibility and this is demonstrated
in the four corollaries that follow from it.

Tueorem. Let p(z) = Y7 _,a,.z" be a polynomial of degree n.
If Rea; =a; and Ima; = g; forj = 0,1,2,...,n, a, # 0 and for some k
and r and for some t = 0,

fk+l

2 k . n
OIOSIQ|SI(12£'SI‘(1;{Z ak+]2 21‘0[,1,

and
Bo<tB st’By< -+ <tB, =2t = - 2178,

then p(z) has all its zeros in R, < |z| < R,, where

R, = min{(tlay| /(2(t*a, + t'B,) — (g + By) = t"(a, + B, — la,l}), ¢}
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and

‘ RZ = max (|aolt"+l - fn-l(a() + B()) - t(an + ﬁfi)
'+'(t2 o 1)(tr1—k—lak + rn—r—lBr)

k-1 r—1
(2= Yy ,_V_‘,t"*f*‘ﬁj)

i=1 j=1

n—1 . n—1 . 1
+(1 -— [2) Z tn—J—laj + Z tn_}-lﬁj)/ianL 't‘},

j=k+1 j=retl

Remark. Note that the above theorem is more general than Theorem
C when applied to polynomials. For polynomials, Theorem C requires
a; = 0 for all j, whereas our theorem does not require this hypothesis.
Also when applied to an admissible polynomial, the bound obtained by
our theorem may be considerably better than the bound obtained from
Theorem C. We illustrate this by the following example.

ExAMPLE.

p(z) = (1 +i) + (0.2 + 02i)z + (0.03 + 0.03i)z°
+(0.0031 + 0.0031i) 23 + (0.0003 + 0.0003) z*.

Theorem C gives that p(z) has all its zeros in |z| > 1.3598, while by our
theorem when applied to p(z) with ¢ = 10, k£ = r = 3, we find that p(z)
has all is zeros in |z| > 1.6363, an improvement on the bound of Theorem
C by over 20%. Besides. if we also care to calculate the outer radius R,
we will get an annulus containing all the zeros of p(z).

If in our theorem, we take ¢t = 1, k = n and r = n, we get:

CororLary 1. Let p(z) = " _qa,.z% a,+ 0, and Rea; = a; and
Ima; =B, forj=0,1,2,....,n If

OZOSC![S"‘S(I and ﬁoﬁﬁIS"'Sﬁn,

n

then p(z) has all its zeros in

l“zoi lagl — {ag + By) t+ (e, + B.)
< |z| < :
|anl - ((10 + ﬂO) + (an + Bn) |an|
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In particular, if all the coefficients a; are real, that is, g; = 0 for
0 <j < n, Corollary 1 gives that p(z) has all its zeros in the annulus

lal lay| — ay + a,
< |z| < )

]

which is an improvement of Theorem B. Further if the coefficients a; are
all non-negative, a, # 0 then Corollary 1 clearly reduces to Theorem A,
the Enestrom—Kakeya Theorem. _

By making suitable choices of ¢, k, and r, one can, in fact, obtain the
following corollaries which are also of interest. In each of these p(z) =
¥r_ga.z a,#0,and Rea; = ; and Ima; = §; for j = 0,1,2,..., n.

CoroLLARY 2. Ifayza, > - za,andBy= B, =z - =B, then
p(z) has all its zeros in
|a,| 2] < lagl + (ep + Bo) — (a, + B,)
Ianl + (a() + B(l) - (an + Bn) - B |an|
CorOLLARY 3, Ifayza, = '+ za,and B, < B, < -+ <B,, then

pz) has all its zeros in

Ia()l 2] < lagl + ay — By — @, + B,
|an| + @, — B(} - an + Bn B B ]ani
CorotrarY 4. If ay<a, < " Sa,and Byz B, = 0 = ...B,,
then p(z) has all its zeros in
|ayl < lz] < lagl — ay + By +a, — B,
|an| - Ly + BO + a, — Bn B B |an|

Note that one can obtain Corollaries 2, 3, and 4 from Corollary 1 as
well.

2. Proor ofF THE THEOREM

Consider the polynomial
P(z) = (¢t —z)p(z)

=ta, + 3 (ta; - a,_)z’ —a,z"""
i=1

=ta, + G(z),  say.
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On |z| =,

n
|Gi(2)l < ¥ lta; —a; |t/ + |a,|t"+}
j=1

k n
< 2 (te—a; )+ Y {a;, — ta )t/
j=1 J=k+

+ (B = B )P+ (B — 1B+ lay et
i=1

j=r+1
= —t(ay + By) + 2(tk+lak + fr“ﬁr) - f"H(an + B, ~ la,l)

= ﬂf“

and on applying Schwarz’s lemima [3, p. 168] to G (z), we get

M, |z|
|G,(2)] < P for |z] < ¢,
which implies
|P(2)| =|~tay, + G(2)]
> tlagl —|G(2)]
ﬁszl

Hence, if |z| < R, = min{(t2|a,| /M), t}, then P(z) # 0 and so p(z) # 0.
Next we show that p(z) # 0 if |z] > R,. For this, we again consider

P(z)=(t—-z)p(z) =tay+ 2 (ta;—a,_ )2/ —a,z"*!
j=1

= —q,z""" + G,(z), say.

Then

H
tayz" + ). (ta; — a;,_)z" |,
j=1

1
ol
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and on |z| =1,

1
chz(—)
Z

n
< tlagle™ + ) lea; — a;_ [t" ™
i=1

H n
< laglt™ '+ ¥ lte; —a;_len 7+ 3 (1B ~ 4B, 1)t
j=1 j=1

= |aglt""! ~ ¢" (g + By) — t{a, + B,)
+(2+ (" * ey + 77718,
k-1 |

r—1
+(2-D)| Y e Y t”"f”'Bj)

j=1 j=1

n—1 a-1
+(1 _tZ) Z t”_j—laj+ Z tn—-j—lﬁj)

j=k+1 j=r+1
== Mz.
Hence it follows by the maximum modulus theorem [5, p. 165] that

1
ZnGz('z—')

..<..M2, fOI‘ |Z| St,

which implies
1
|G,(2)| < MylzI",  forlz] = r

From this it follows that

|P(2)| =|-a,z"*" + Gy(2)|
> la,) 1z|""" = MylzI",  for lz] = 1/¢,

= |z[*(la,| lz| — M3).

Thus if |z| > R, = max{(M,/la,),(1/¢t)}, then P(z)+ 0 and hence
p(z) # 0, and the proof of the theorem is complete.
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