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Abstract

The well-known Enestrom—Kakeya Theorem states that a polynomial with real, nonnegative, mono-
tone increasing coefficients has all its complex zeros in the closed unit disk in the complex plane. In
this paper, we extend this result by showing that all quaternionic zeros of such a polynomial lie in the
unit sphere in the quaternions. We also extend related results from the complex to quaternionic setting.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

While studying the theory of pension funds in the 1890s, Gustav Enestrom was lead to_
explore the zeros of a polynomial with real, positive, monotone coefficients. He proved the
following [2].

Theorem 1 (Enestrom—Kakeya Theorem). If p(z) = > ,_yacz" is a polynomial of degree n
(where z is a complex variable) with real coefficients satisfying 0 < ay < a; < --- < a,, then
all the zeros of p lie in |z] < 1.
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Soichi Kakeya independently proved Theorem 1 and published his proof in English in
1912 [10]. Enestrom later published a French translation of his earlier proof (which appeared in
Swedish) in 1920 [3]. For these reasons, the result has become known as the “Enestrom-Kakeya
Theorem”. For a detailed survey of the result and its generalizations, see [5].

An early generalization of Theorem | was due to Joyal, Labelle, and Rahman in 1967. They
modified the Enestrom—Kakeya Theorem by dropping the condition of nonnegative coefficients,
as follows (see [9]).

Theorem 2. If p(z) = Y j_oaez’ is a polynomial of degree n (where z is a complex
variable) with real coefficients satisfying ag < a; < --- < a,, then all the zeros of p lie
in |Z| =< (|a0| —ap + an)/lanl'

Govil and Rahman presented a result applicable to polynomials with complex coefficients,
as follows (see [8]).

Theorem 3. If p(z) = D 4o agz® is a polynomial of degree n with complex coefficients
satisfying |argag — B| < 6 < m/2 for some B and 6 and for £ = 0,1,2,...,n and
2sin n—I1

lag| < lay] < --- < layl|, then all the zeros of p lie in |z] < cos@ + sin6 + Sl 2ut=0 |ag).
"

In the same paper, Govil and Rahman gave a result for polynomials with complex coeffi-
cients and imposed a non-negativity and monotonicity condition on the coefficients, as follows
(see [8]).

Theorem 4. If p(z) = Y ;_oaez’ is a polynomial of degree n with complex coefficients where
Reay = ap and Imay = By for £=0,1,2,...,n, satisfying 0 <oy <o) <--- <oy, a0y #0,
then all the zeros of p liein |z| <1+ ‘37 > oo |Bel-

2. Background

With the interpretation of the complex numbers as a two-dimensional “number system”, Sir
Rowan William Hamilton spent years trying to find a three-dimensional number system. He
failed at this, but famously succeeded in finding a four-dimensional number system on October
16, 1843. This number system is the quaternions which we denote as H in honor of Hamilton.
We use the standard notation H = {« + Bi + yj + 6k | @, B, v, 6 € R}, where 1, j, k satisfy
i? = j> = k* = ijk = —1. The quaternions are the standard example of a noncommutative
division ring.

For g = a+Bi+yj+6k € H, the real part of g is @ and B. y. § are the imaginary parts of g.
The conjugate is § = a — Bi —yj — 8k and the modulus is |q| = /qq = Ja® + p2 + 2 + 8.
The modulus is then a norm on H. For » > 0, we define the ball B(0,r)={g e H]| |g| < r}.
We define the angle 6 between two quaternions ¢, and g» by treating them as if they were
vectors in R*, For ¢; = oy + B1i + v j + 81k and g2 = aa + Bai + yaj + 82k, the angle between

q, and g» is

wyos + S+ o034+ 8184

K(‘11v6]2)=c05_‘< 102+ Bifa + niys a.;_).
|f}’1[!q:|

We represent the indeterminate for a quaternionic polynomial as ¢. Without commutativity
we are left with the polynomial a¢” and the polynomial apga,q - - - ga,, where a = agua; - - - ay,
as different. To alleviate this problem, we adopt the standard that polynomials have the
indeterminate on the left and the coetficients on the right, so that we have the quaternionic
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n

polynomial pi(g) = Y y_pg‘as. For such a p; and pa(q) = > y_, g, the regular product is
(p1% P2X(@) = X icon.m j=01.m g’ ab;.

The absence of commutativity leads to a behavior of polynomials rather unlike their behavior
in the real or complex settings. For example, a real or complex polynomial of degree n can have
at most n (real or complex) zeros. In the quaternionic setting, the second degree polynomial
g*+ 1 has an infinite number of zeros; namely, any ¢ = Bi +yj + 8k where B2+ y2+ 82 = 1.
We denote the set of all such quaternions ¢ as S: S = {8i + yj + 8k | B>+ y> + 62 = 1}.

The following result concerning the roots of the regular product of two polynomials is
from [11].

Theorem 5. Let f and g be given quaternionic polynomials. Then (f * g)(qo) = O if and
only if f(go) =0 or f(go) # O implies g(f(q0)™'g0f(g0)) = 0.

An analytic theory of functions of a quaternionic variable has been developed recently. The
next result illustrates the fundamental role played by the 2-sphere S in the zeros of quaternionic
series, as well as polynomials (see [6]).

Theorem 6. Let ) .0, q‘a, be a given quaternionic power series with radius of convergence
R. Suppose that there exists xo, yo € Rand I, J € Swith I # J such that Z?’;O(xo+y01)ia¢ =
0 and Y 32 (xo + yoJ)fae = 0. Then for all L € S we have 4o o(xo + yoL)ar = 0.

With this in mind, we see that we cannot use the degree of a polynomial as a bound on the
number of zeros. However, Gentili and Struppa have given a definition for the multiplicity of
the zeros of a polynomial such that the zeros counted by their multiplicity equal the degree of
the polynomial (see [7]).

Gentili and Struppa also introduced a Maximum Modulus Theorem for regular functions [6].
Note, their class of regular functions includes convergent power series and polynomials.

Theorem 7 (Maximum Modulus Theorem). Let B = B(0, r) be a ball in H with center 0 and
radius r > 0, and let f - B — H be a regular function. If | f| has a relative maximum at a
point a € B, then f is constant on B.

A number of results concerning polynomials have been extended from the complex setting
to the quaternionic setting. In particular, Bernstein’s inequality and some of its refinements have
been extended; see Chapter 6 of [4]. In this paper we extend the Enestrom—Kakeya Theorem
from complex polynomials to quaternionic polynomials.

3. Statements of results

The proof of the Enestrom—Kakeya Theorem only requires the Triangle Inequality for
modulus and the Maximum Modulus Theorem. Since both of these hold in the quaternions,
it is straightforward to extend the Enestrom—-Kakeya Theorem to functions of a quaternionic
variable, as follows.

Theorem 8. If p(q) = Y ;_, gac is a polynomial of degree n (swhere q is a quaternionic
variable) with real coefficients satisfying 0 < ag < a) < --- < a,, then all the zeros of p lie
inlg|l<1.
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We now show Theorem & is sharp. Consider the polynomial p(g) = ¢"~'+¢" 2+ - -+g+1.
By Theorem 5, p(q) * (g — 1) = 0 if and only if either (1) p(g) = 0, or (2) p(g) # 0 implies
p(@)"'gp(g) — 1 = 0. Notice that p(g)~'gp(g) — 1 = 0 is equivalent to p(q)~'gp(g) = 1 and,
if p(g) # 0, this implies that ¢ = 1. So the only zeros of p(g) * (1 —g) are g = 1 and the
zeros of p. But p(g) * (¢ — 1) = ¢" — 1. Now we explore the roots of unity. For any u € §
(so u?> = —1), we have (cos(2km/n) + usin(2krr/n))* = | where k € {0, 1,...,n — 1} (this
follows from De Moivre’s Theorem; see, for example, [1]). Note, for k =0 we get 1 as a root
of unity. Moreover, if n is even and k = n/2 we also get —1 as a root of unity.

First, consider n odd. Then, we notice that cos((n — €)mr/n) = cos(€m/n) and sin((n —
) /n) = — sin(€xr/n), so the pair of roots fork = £ and k =n—£ where £ € {1,2,...,(n —
1)/2}) lie on the same sphere. The corresponding (n — 1)/2 spheres are distinct since the real
parts are distinct. By Theorem 6, all elements of these spheres are also roots of the polynomial.
Therefore, for n odd the set of roots of p(g) * (g — 1) consists of 1 real root and (n — 1)/2
isolated spheres, consistent with Gentili and Struppa’s multiplicity theorem in [7].

Similarly, for n even the set of roots of p(g) * (¢ — 1) consists of two real roots (namely,
1 and —1) and (n — 2)/2 isolated spheres (corresponding to k € {1,2,...,(n — 2)/2} in the
formula above). By Gentili and Struppa’s multiplicity theorem in [7], this is all the roots of
p(q) * (¢ — 1). The polynomial p(g) = ¢"~' +¢" >+ ---+ ¢ + 1 has all coefficients real and
equal and so it satisfies the hypotheses of the Enestrom—Kakeya Theorem. So p has all roots
on |g| = 1. This example shows that the bound in Theorem § is best possible.

The following is similar to Theorem 2 but instead of polynomials with monotone increasing
real coefficients, it considers quaternionic polynomials with monotone increasing real parts and
imaginary parts.

Theorem 9. If p(g) =Y ;o qtay is a polynomial of degree n with quaternionic coefficients
and quaternionic variable, where a; = o + Bei + v j + 8¢k for £ =0, 1, ..., n, and satisfying
g <o <=0, f=<B = =B V=NZ S Va8 =<8 < £ 4y, then all the
zeros of p lie in

Il < (leo] — eto + an) + (1 Bol — Bo + Bn) + (1ol — vo + ) + (180l — 30 + &)

|all |
Notice that if we take 8, = y» = 6 = 0 for £ = 0,1, ...,n in Theorem 9 then we get
Theorem 2 as a corollary.
We also extend Theoremn 3 to quaternionic polynomials.

Theorem 10. Let p(z) = Y »_, gtas be a polynomial of degree n with quaternionic coefficients
14 =09 poty 8 q

and quaternionic variable. Let b be a nonzero quaternion and suppose L(ac,b) < 6 < /2

Sor some 6 and for £ =0,1,2,...,n Assume |ag| < |a\| < --- < |ay|. Then all the zeros of

p lie in |g| < cosf + sinf + 2808 ZZ;(]) lac|.

Jetn |
In the terminology of vector spaces, the set {g € H | L(g, b) = 7/2} is the “perp space”
or “orthogonal complement” of the span of b (treating b as a vector) and {¢g € H | L(g, D) <
0 < m/2} is a “convex cone”. If ag = oy + Bei, where . B € R, for £ =0.1.2.. ... n, then
Theorem 10 implies Theorem 3.
Finally, we will extend Theorem 4 to quaternionic polynomials.

Theorem 11.  If p(2) = Y ;o gtac is a quaternionic polynomial of degree n where a;, =
o+ Bei + yej + 8¢k for £=0,1,2,...,n, satisfying O <oy <o) <--- <a,, a, 0, then
all the zeros of p lie in |z <1+ 072,7 Yoe—ollBel + lyel 4+ 18c1).
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If we take y, = 6 = 0 for £ = 0,1,...,n in Theorem 11 then we get Theorem 4 as a
corollary.
4. Proofs of results

We need the following for the proof of Theorem 10.

Lemma 12. Let q1, g2 € H where q) = a1+ ii +y1j + 81k and g2 = aa + Bai + yaj + b2k,
Lgqr, 1) = 20" <20, and |q,| < |qa|. Then

lg2 — qi] < (Ig2] — |q1]) cos 8 + (Ig2| + |q1]) sin 6.

Proof. Define U1 = [a, f1,81, 1] and ¥, = [ay, B2, 82, 2] in R Then ||Ui]| = |gil,
lU2]l = |g2l. Let 26’ be the angle between ¥, and 75. So
(B2 — Bi 1% = 190012 + 115201* = 2081 13211 cos 26 < 194> + I T2ll* — 21|91 |11 9]} cos 26
= (1911 — 1921)* cos® & + (|5, [l + |91I)* sin* 6
< (Bl = 1921)* cos® 8 + 2/ | — [152D*D 1| + [19211)* cos® 6 sin® 6

+ (I91]] + 13211)? sin® @
= (151l = B2 cos 8 + (B[l + [1T211) sin )

and so
192 — B1ll < (Ba2ll — W01l cos @ + (U1l + [192]]) sin 6.

Since ||vy — U]l = |g2 — g1, the claim holds. O

Proof of Theorem 8. Define f by the equation
P(Q)*(I—Q) = a0+q(al _a0)+q2(a2_al)+' : '+q”(an_an——])_q”_Han = f(CI)—CJHHGn-

By Theorem 5, p(g) * (1 — g) = 0 if and only if either p(g) = 0, or p(g) # 0 implies
p(g)'gp(g) — 1 = 0. Notice that p(q)~'gp(g) — 1 = 0 is equivalent to p(q)~'gp(g) = 1 and,
if p(g) # 0, this implies that ¢ = 1. So the only zeros of p(g) * (1 — g) are g = 1 and the
zeros of p.

For |g| = 1, we have

LF@l = a0+ Y g"(ae — ary)

=]

< lagl + Y _ 1g"(ax — ag_y)|

=1

n
= laol + Y _lac — aei]
=1

n
=ap+ Z(flc —ap_y)
=

=W,
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Consider the function ¢" * f(1/q9) =q" * Y 09 ‘ac = > 4_o 9" tas. We have

n
q" Z q ‘as
=0

So ¢g" % f(1/g) has the same bound on |g| =1 as f, namely |¢" * f(1/q9)] < a, for |g| = 1.
Since ¢"* f(1/q) =Y y_0 9" ‘ar = ¥ y_y §"an—¢ is a polynomial and so is regular in |g| < 1,
lg" * f(1/q)| = 19" f(1/q)| < a, for |g] < 1 by the Maximum Modulus Theorem (Theorem 7).
Hence, | f(1/9)| < a,/|q|" for |gq| < 1. Replacing g with 1/g, we see that

= max | f(1/¢)| = max | f(g)].
lyl=1 lgl=1

max |¢" * f(1/g)] = max
lgl=1 lgl=1

|f(‘I)| = ﬂn|(1|" for |q| > 1. (H

Next, for |g] > 1 we have

1p@@) * (1 =) = 1f(g) — " a|
> aylqI™' = | f (@)
> alqI™" — alg|” by (1)
= axlq|*(Ig| — D).
So if |g] > 1 then |p(g)*(1 —¢q)| > 0 and p(g) * (1 — gq) # 0. Since the only zeros of

p(g) * (1 —g) are g = 1 and the zeros of p, for |g| > 1 we have p(q) # 0. That is, all the
zeros of p lie in |g| <1 as claimed. [

The proofs of the three remaining theorems follow similar to that of the previous proof.

Proof of Theorem 9. Define f as in the proof of Theorem 8 as f(g) = p(g)*(1 —g)+g"* ' a,.
For |g| = 1, we have

1f (@) = |ao+ Y q"(ae — ar1)

=1

n
< laol + ) lag — ae—|

=1

= Jod + B2+ 2+ 82

+ Y Vo — o) + (Be — Beor ) + (e — vee1)> + (80 — 1)
=1
< leto] + [Bol + [¥0l 4 180l

n

+ Z(laz — |+ 1Be = Beor| + lve — ver | + 180 — 8¢ 1)
=1
= |aol + |Bol + Ivol + [0l — 0 — Bo — ¥o — 8o + atw + Bu + ¥ + 80

As in the proof of Theorem 8§, for |g| > 1

Lf (@l = ((laol — g + an) + (1Bol — Bo + Bu) + (vol — vo + )
+ (18] — 80 + 8,)) Igl".
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Next,
1p(@) * (1 — @) = layllg"™"" — | f ()
> laallg™" — (o} — @0 + &) + (180l = Bo + Ba)
+(Iv0l = v0 + ¥a) + (I80] — 80 + 8,)) 191"
= (laxllgl — (ool — g + ) + (1Bol — Bo + Bn)
+(vol — vo + va) + (80l — 8o + 8)) 1g]".
So if

= (lCt()I —ap+ an) + (‘,BOI - ,30 + ,Bn) Eg (|V0| — Y + yn) =+ (|80| - 80 + 571)
lay |

lg]

(in which case |g} > 1) then |p(g) * (1 — g)| > 0 and p(q) * (1 —g) # 0. Since the only zeros
of p(g) * (1 — q) are ¢ = 1 and the zeros of p, for

(leol — ap + o) + (1Bol — Bo + Bn) + (Ivol — yvo + ) + (180] — b0 + 8,)
|y

lg| >

we have p(q) # 0. That is, all the zeros of p lie in

gl < (lag| — o + an) + (IBol — Bo + Bu) + (Ivol — vo + ¥u) + (180l — 80 + 8,)
- |a"| '

as claimed. 0O

Proof of Theorem 10. Again let f(g) = p(q) * (1 — g) + ¢"*'a,. For |g| = 1, we have

@)= |ao+ Y q"(ar —ae)

=1

n

<laol+ ) _ lae — a1l
=1
n

< laol + ) ((lae| — lag-1])cos & + (lacl + lac—i ) sinf) by Lemma 12
=1
n—1
= lagl(1 — cos B — sin @) + |a,|(cos 6 + sin@) + 2sin Z el
£=0
n—1

< |a,|(cos@ + sin@) + 2sin b Z |ag].
(=0

As in the proof of Theorem 8,

n—1

1f@)l < <|anl(cos9 +sing) +2sin6 ) |ac|) lg|" for Ig] > 1.

{=0
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Next,

Ip(q) * (1 — )| = laallg|"*" = | f(g)]

n—1
> |ayllg]™" - <|a,,|(cose +sin6) + 2sin6 Y lac|> lq)"

=0

n—1
= [|a,,||q| = <|a,,](c089 +sin@) + 2sind Z |a¢|>} lg|".

£=0
So if |g| > cos@+sin9+ﬁ sin @ Z'é;(; lag| then |p(g) * (1 — g)| > 0 and p(g)*(1—q) #0.
Notice that

n—1

2
ol sin® Y |a| > cosf +sin6 > 1
a”

=0

cos@ +sinf +

since 8 € [0,7/2]. So |q| > cosf + sinf@ + l—(lesinG Z'f';(l, |ag| implies also that |g| >
1. Since the only zeros of p(g) * (1 — g) are ¢ = 1 and the zeros of p, for |g| >
cosf + sinf + %‘"lsim‘) Z’E;é la;| we have p(g) # 0. That is, all the zeros of p lie in

2

lg] < cos® +sinf + = sin® Z';;A |ael, as claimed. O

Proof of Theorem 11. First, note that

lag — ag—1] = (og + Bei + yej + 8¢k) — (@g—1 + Be1i + ve1J + 8¢—1k)]
< (og —otp—1) + | Bel + 1Be—1] + [¥el + |Ye—1| + 8] + [8¢—1].
Let

f@=p@+(0—q)—q"Ma, = g% ar—ar1)+ao— q"" (Bui + vaj + 8:).
=1

For |g| = 1 we have

1F@ =D q% @ — ary) + a0 — g7 (Bui + vaj + 8,K)
£=1

<Y (lag — ae ) + laol + 1Bul + lyal + 18]
(=1

<Y (o — oy + 1Bel + 1B |+ lyel + lyei] + 8¢ + 18- 1)

=1

+ oo + |Bol + Iwl + [8o + |Bul + 1Yl -+ 184l

=, +2) (Bl + lyel + 18c]),

=0
and so

"

lg" * A/l = 1q" /)] < on + QZ(Iﬁd + [yel + 18,1 for lg] = 1.
{=0
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Then by the Maximum Modulus Theorem (Theorem 7),

19" FQ/) < e +2 ) _(1Bel + lyel + 18e]) for Ig] < 1.
£=0

Replacing g with 1/gq, we see that

|F/@) < 1gl" [ om +2 D (Bel + lyel +18e]) | for Ig] > 1.

¢=0
Next, for |g| > 1,
lp(@)* (1 — @) = f(q)+ ¢ el
> g™l — 1 £(@)]
> g™ oy — Ig1" [0t +2 Y (1Bel + el + 18¢])

=0

lglots — [ +2 ) (1Bel + lvel +18:)) ) ¢ lal".
{=0

Il

So if lgl > 14 = 35_o(Bel + |yel + 18] then |p(g) * (1 ~ @)l > 0 and p(g) * (1 — ) # 0.
Since the only zeros of p(g)*(1—gq) are ¢ = 1 and the zeros of p, for |g| > 1+ai" > icollBel+
[vel + 18¢]) we have p(gq) 7% 0. That is, all the zeros of p lie in

2 n
lgl < 1+ =3 (Bel + el + 182,
n £=0

as claimed. [
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