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Abstract

In this paper, a relationship between the zeros and critical points of a polynomial p(z)
is established. The relationship is used to prove Sendov’s conjecture in some special cases.

1. Introduction

The conjecture of interest in this paper is known variously as the Ili-
eff Conjecture, the Ilieff-Sendov Conjecture, and the Sendov Conjecture. It
was originally posed by Bulgarian mathematician Blagovest Sendov in 1958,
but often attributed to Ilieff because of a reference in Hayman’s Research
Problems in Function Theory [6] in 1967.

THE SENDOV CONJECTURE.. If all the zeros of a polynomial p(2) lie in
|2| <1 and if 29 is a zero of p(z), then there is a zero of its derivative p'(2)
in the disk |z — zp| < 1.

Hundreds of papers have been published on this conjecture (for details
see [7]). Though progress has been made, the general conjecture remains
open. Motivated by the progress, Sheil-Small [14, p. 206] has commented:
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“Most of the results obtained point strongly in favour of the con-
jecture being correct, although there are occasional hints in the
opposite direction. My own view is that odds of 4-1 in favour of
the conjecture are cautious odds in the circumstances.”

Rahman and Schmeisser [9, p. 239] strike a more conservative tone:
“After more than thirty years of research on Sendov’s conjecture,
it seems that the standard methods from the theory of polyno-
mials have been exhausted and new approaches are needed.”

In 1968, Rubenstein [10] showed that Sendov’s conjecture holds for all
polynomials p whose zeros lie on |2| = 1. In the same paper, Rubenstein
also proved the conjecture for all polynomials of degree 3 and 4. In 1969
Schmeisser [11] showed that, if the convex hull containing all zeros of p has
its vertices on |z| = 1, then p satisfies the conjecture (for the proof see [9,
Theorem 7.3.4]).

Some partial results about Sendov’s conjecture include:

1. The conjecture holds for polynomials with real and non-positive coef-
ficients [12]. -

2. The conjecture holds for polynomials with at most six distinct zeros [2],

3. The conjecture holds for polynomials of degree less than or equal to
8 [3].

4. The conjecture holds if, instead of considering disks centered at ze-
ros of a polynomial of radius 1, we consider such disks of radius
1.08331641 [1].

In this paper, we prove a relation between the zeros of a polynomial
and its critical points and use it to obtain some results related to Sendov’s
conjecture.

2. A useful relationship between the Zeros and Critical points

Suppose p(z) is a polynomial of degree n with zeros 21,%22,...,2n and
leading coefficient a, so that p(z) = a, [[5_;(z — k). Let the zeros of p’ be
Cp for k=1,2,...,n — 1, so that we can write

W §(2) = nan ] (2 — ).
We have = .

(2) p'(2) = a"jdz' [H(z — zk)} == iy Z H (z — 2zx).
j=1lk

k=1 1 k=1,k#j
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So for any j with 1 < j <mn, we have p/(2j) = an [}y (2 — 2¢). But
from (1) p/(2;) = nay [3Z1 (2; — ¢) and therefore

n—1 n
nan H(zj — (k) = an H (2 — 2x)-
k=1 k=1,k#j /
This gives
n—1 n
3) n[[lz-Gl= ] lzi—zlfor1<j<n
k=1 k=1,k#j
Hence we have the following:
LEMMA 2.1. If p(2) is a polynomial of degree n with zeros z1,22,...,2n
and critical points (1,(2,...,(n—1 then
n—1 1 n
lej“‘fﬂ:; Il lzi—zlfori<ji<n
k=1 k=1,k#j

REMARK. If [Ty_; 2 |2 — zk| < m, then Micilzi—Gl<1for1<j<
n that is |z; — (x| < 1 for atleast one k,1<k<n—1and1<j<n. This
shows that in this case there is atleast one critical point of p(z) which lies
in the circle |z — 2z;| < 1, for all j,1 <j < n.

As an application of the above lemma we now prove some results which
show that Sendov’s Conjecture is true for certian classes of polynomials and
accordingly we have the following:

THEOREM 2.1. Let p(z) = an [ 51 (2— 2&) be a polynomial of degree n >
2 with its zeros satisfying |zx| < 1 for k =1,2,...,n and with
2n
n+1

maz|,—1|p(2)| < |ax|

Then each of the disks |z — 2| < 1, k=1,2,...,n, must contains a zero of
?'(2).

It is natural to ask if there are any polynomials satisfying the conditions
of Theorem 2.1. For this consider the polynomial p,(2) = 1+ 2z + 22 + 23 +
++++ 2"+ 2n2" for which maxj,—; |p(2)| = 3n. By the classical Enestrom-

Kakeya Theorem [5] all zeros of p,, lie in |z| < 1 as required by Theorem 2.1.
Also it can be easily verified

n+1
2 = > —_—
n=lan| 2 == max |p(2)]
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holds for n > 3. Therefore for each n > 3, polynomial p,, satisfies the hy-
potheses of Theorem 2.1. This shows that there exists polynomial of every
degree greater than 2 to which Theorem 2.1 applies.

THEOREM 2.2. Let p(2) = an [[;_; (2 — 2x) be a polynomial of degree n >
2 with its zeros satisfying |zx| <1 for k=1,2,...,n. Let m be a natural
number such that 2™~! < n < 2™. Suppose each disk |z — zx| < 1, for k=
1,2,...,n contains at least n — m zeros of p other than z,. Then Sendov’s
conjecture holds true for such polynomials.

3. Illustration

We can illustrate applications of Theorem 2.2 by finding polynomials for
which the zeros are somewhat clustered together. For example, let m € N,
m >4, and n = 2™, Define three disks, D_ = {2 € C| |z +1/2| < 1/4},
D, ={2€C||z—-1/2|<1/4}, and Dy ={z2€ C||2| <1/4}. Let p be a
. polynomial of degree n with n — 2m + 2 of its zeros anywhere in Dy, m — 1
of its zeros anywhere in D_, and m — 1 of its zeros anywhere in D.. Notice
that disks D_ and Dy are contained in |z + 1/4| = 1/2, and disks Dy and
D are contained in |z — 1/4| = 1/2; (see Figure 1). So any closed unit disk
centered at a zero in D_ or centered at a zero in D, must contain at least
m — n other zeros of p. Of course, a closed unit disk centered at a zero in
Dy must contain all zeros of p. So polynomial p satisfies Sendov’s conjecture
by Theorem 2.2. One sees how this approach can be used to generate other
polynomials satisfying the hypotheses of Theorem 2.2.

o+ yal = 1/2 o —3/4] = 1/2

D_ Do D,

_3/4 _1/4 1/4 . 3/4

Fig. 1. Locations of zeros of a polynomial to which Theorem 2.2 applies.

We next apply the Lemma 2.1 to establish that a certain zero of a par-
ticular form of polynomial contains within distance 1 some critical point of
the polynomial.
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THEOREM 3.1. Let p(z) = an(z — B)g(z) be a polynomial of degree
n where || < 1. Suppose that all the zeros of q lie in |2| <1, and
max|,— |¢(2)| < n. Then the disk |z — 8| <1 contains a critical point of p.

Notice that Theorem 3.1 applies when g(2) = 2" 1 + 2" 2+ .- 4+ 2+ 1.
By a result of Schmeisser [11] on the convex hull containing the zeros of p,
the conclusion of Theorem 3.1 holds if 8 is in the convex hull determined
by the zeros of this particular g. Theorem 3.1 therefore contributes a new
result when 3| < 1 and 8 is outside the convex hull determined by the n —1
zeros of g(z) = 2" 1+ 2" 2+ ...+ 2+ 1.

Concerning the Sendov’s conjecture Rubenstein [10, Theorem 3] proved
the following result.

THEOREM 3.2. Ifp(2) = 2"+ an_12"" + apn—22" "2+ - -+ a1z +ap with
p(z1) =0 and |p'(21)| < n, then p' has a zero in |z — 2| < 1.

Here, as an application of Lemma 2.1 we give an easy proof of this the-
orem.

\ For the proof of these results, we also need the following lemma due to
Donaldson and Rahman [4].

LEMMA 3.1. If p is a polynomial of degree m, p(B) =0, and
masxy_y [p(z)| < 1, then

p(2) cntl

ma.xz_ﬁ_ >

|2=1

4. Proofs of the Theorems

PROOF OF THEOREM 2.1.. Assume there is some 2, say z;violating the
claim. Then 2z; must be a zero of p of multiplicity 1, or else 2; would also be a
zero of p/. Since (1, (s, ..., (n_1 are the zeros of p/, therefore |z; — (x| > 1 for
k=1,2,...,n—1. Let M = max, [p(2)], so that max,—; [p(2)/M| = 1.
Then by (3)

n n—1
(4) [ —2z) =n]](z -G
k=2 k=1
Applying Lemma, 3.1 to p(2)/M with 8 = 21, we get
(5) max p(2)/M < n+ 1.
l2|l=1| 2 — 21 2
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Now

zZ— 21 zZ— 21

p(z) _ onllia(z—2) _ an ﬁ(z — 2k)-

Therefore from equation (5) we have

laanl n+1

Since 2% H(z — 2) is analytic in C and |21] < 1 by hypothesis, Therefore

k_2
by the Maximimum Modulus principle,

lan| ﬁ n+1
— |21 — zk| S .
M br 2

Hence by equation (4) we have

n|a n+1
(6) '"'Hll—c1<——
. . n|an|
Since |z1 — (x| >1for k=1,2,...,n — 1 by assumption, we have, Y <
n|anl n]anl n+1

H |21 — (x| and so from inequality (6), <=5 which gives

1 1 .
lan| < 'n,2+ M = n;; lmla.}lc |p(2)|, contradicting the hypotheses. So the as-
zZ|= i
sumption is false and hence |2; — (x| < 1forj=1,2,...,nand k=1,2, ..,
n — 1, as claimed. ;

PROOF OF THEOREM 2.2.. Assume, to the contrary and let |z; — (x| > 1

foreach k=1,2,...,n— 1, where (1,(a, ..., (1 are the zeros of p’. There-
fore from (3),

n—1 n

n ] 1z — Gl =[] o - 2.

k=1 k=2

So that
n

(7) H |Z]_ = Zk| > n.

k=2
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But for at least n — m of the values of k € {2,3,...,n} we have |23 — 2| < 1
and for at most m — 1 of the values of k € {1,2,...,n} we have 1 < |21 — 2| <
2. So [Tr_y |21 — 2zx| < 2™~* < m, but this contradicts (7). So the assump-
tion is false and the desired result follows. ]

PROOF OF THEOREM 3.1.. Let the zeros of p’ be (1,(2,...,(p—1. Then
Y (8) = nay, HZ;% (B — (). But p'(B) = ang(B) so that

n—1 N
n 2 max|g()| 2 lg(B)] =n 1118 - ¢l

k=1
or z;% |8 — (x| < 1. Hence, for some k, |3 — (x| < 1 as claimed. O

PROOF OF THEOREM 3.2.. Let the zeros of p’ be (1,(2,...,{n—1. By
(1), we have p/(21) = n ITr=1 (21 — G), 50 [P/ (21)| = nTThzy 21 — Gel <, or
‘ Z;% |z1 — Cs| < 1. Hence |21 — (x| <1 for some k € {1,2,...,n—1}, as

claimed. O
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