An L^p Inequality for a Polynomial and its Derivative

ROBERT B. GARDNER

Department of Mathematics, East Tennessee State University, Johnson City, Tennessee 37614

AND

NARENDRA K. GOVIL

Department of Mathematics, Auburn University, Auburn, Alabama 36849
Submitted by E. R. Love

Received September 16, 1994

Let $P(z) = a_n \prod_{v=1}^n (z - z_v)$, $a_n \neq 0$ be a polynomial of degree n. It is known that if $|z_v| \geq K_v \geq 1$, $1 \leq v \leq n$, then for $p \geq 1$,

$$\left(\int_0^{2\pi} |P'(e^{i\theta})|^p d\theta\right)^{l/p} \leq nF_p \left(\int_0^{2\pi} |P(e^{i\theta})|^p d\theta\right)^{l/p},$$

where

$$F_{p} = \left\{ 2\pi / \int_{0}^{2\pi} |t_{0} + e^{i\theta}|^{p} d\theta \right\}^{1/p},$$

and

$$t_0 = \begin{cases} 1 + n / \sum_{v=1}^{n} \frac{1}{(K_v - 1)} & \text{if } K_v > 1 \text{ for all } v, 1 \le v \le n \\ 1 & \text{if } K_v = 1 \text{ for some } v, 1 \le v \le n. \end{cases}$$

This inequality is best possible in the case $K_v = 1$, $1 \le v \le n$ and equality holds for the polynomial $(z + 1)^n$. In this paper, we extend the above inequality to values of $p \in [0, 1)$ and thus conclude that this inequality in fact holds for all $p \ge 0$. © 1995 Academic Press, Inc.

1. Introduction and Statement of Results

Let \mathcal{P}_n be the set of all polynomials (over the complex field) of degree less than or equal to n. For $P \in \mathcal{P}_n$, define

$$\begin{split} \|P\|_{\infty} &= \max_{|z|=1} |P(z)|, \\ \|P\|_{p} &= \left(\frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta\right)^{1/p} \text{ for } 0$$

A classical result of Bernstein [2] states that if $P \in \mathcal{P}_n$ then

$$||P'||_{\infty} \le n \, ||P||_{\infty}. \tag{1.1}$$

Also it is known (see Zygmund [9] and Arestov [1]) that if $P \in \mathcal{P}_n$, then

$$||P'||_p \le n||P||_p, \qquad 0 \le p \le \infty$$
 (1.2)

with equality if and only if $P(z) = \lambda z^n$, $\lambda \in \mathbb{C}$.

If a restriction is put on the location of the zeros of P, then the bound in (1.1) and (1.2) can be improved. If $P \in \mathcal{P}_n$ and $P(z) \neq 0$ for |z| < 1 then (see Lax [7] and DeBruijn [3])

$$||P'||_{\infty} \le \frac{n}{2} ||P||_{\infty} \tag{1.3}$$

and

$$||P'||_p \le \frac{n||P||_p}{||1+z^n||_p}, \qquad 1 \le p \le \infty.$$
 (1.4)

Rahman and Schmeisser [8] proved that if $P \in \mathcal{P}_n$ and $P(z) \neq 0$ for |z| < 1 then (1.4) holds for $p \in [0, 1)$ as well. This result is best possible with equality holding for $P(z) = (1 + z)^n$.

As a generalization of an inequality due to Govil and Labelle [5] and of inequality (1.4) due to DeBruijn [3], Gardner and Govil [4] proved:

THEOREM A. If $P(z) = a_n \prod_{v=1}^n (z - z_v)$, $a_n \neq 0$ is a polynomial of degree n, $|z_v| \geq K_v \geq 1$, $1 \leq v \leq n$, then

$$||P'||_p \le \frac{n}{||t_0 + z||_p} ||P||_p, \qquad 1 \le p \le \infty,$$
 (1.5)

)

where

$$t_0 = \begin{cases} 1 + n / \sum_{v=1}^{n} \frac{1}{(K_v - 1)} & \text{if } K_v > 1 \text{ for all } v, 1 \le v \le n \\ 1 & \text{if } K_v = 1 \text{ for some } v, 1 \le v \le n. \end{cases}$$

The result is best possible in the case $K_v = 1$, $1 \le v \le n$, and equality holds for the polynomial $(z + 1)^n$.

The aim of this paper is to prove that the above inequality (1.5) in fact holds for $0 \le p \le \infty$. We prove:

THEOREM. Under the hypotheses of Theorem A,

$$||P'||_p \le \frac{n}{||t_0 + z||_p} ||P||_p, \qquad 0 \le p \le \infty,$$
 (1.6)

4

where t_0 is as in Theorem A. The result is best possible in the case $K_v = 1$, $1 \le v \le n$, and equality holds for the polynomial $(z + 1)^n$.

2. Lemmas

The following lemmas will be needed.

LEMMA 1. If $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in a closed or open circular region D, then

$$nP(z) - (z - \zeta)P'(z) \neq 0$$
 (2.1)

for $z \in D$ and $\zeta \in D$. Here, by a closed circular region, we mean the closed interior (or exterior) of a circle or a closed half-plane. An open circular region is analogously defined.

The above lemma is due to Laguerre [6].

For
$$\gamma = (\gamma_0, \gamma_1, ..., \gamma_n) \in \mathbb{C}^{n+1}$$
 and

$$P(z) = \sum_{v=0}^{n} a_v z^v \in \mathcal{P}_n$$

define

$$\Lambda_{\gamma}P(z) = \sum_{v=0}^{n} \gamma_{v} a_{v} z^{v}.$$

The operator Λ_{γ} is said to be *admissible* if it preserves one of the following properties:

- (i) P(z) has all its zeros in $\{z \in \mathbb{C} : |z| \le 1\}$,
- (ii) P(z) has all its zeros in $\{z \in \mathbb{C} : |z| \ge 1\}$.

LEMMA 2 [1, Theorem 4]. Let $\Phi(x) = \Psi(\log x)$, where Ψ is a convex nondecreasing function on \mathbf{R} . Then for all $P \in \mathcal{P}_n$ and each admissible operator $\Lambda_{\mathbf{v}}$,

$$\int_{0}^{2\pi} \Phi(|\Lambda_{\gamma} P(e^{i\theta})|) d\theta \le \int_{0}^{2\pi} \Phi(c(\gamma, n)|P(e^{i\theta})|) d\theta, \tag{2.2}$$

where $c(\gamma, n) = \max(|\gamma_0|, |\gamma_n|)$.

In particular, Lemma 2 applies with $\Phi: x \to x^p$ for every $p \in (0, \infty)$ and with $\Phi: x \to \log x$ as well. Therefore, we have

$$\|\Lambda_{\lambda} P\|_{p} \le c(\gamma, n) \|P\|_{p}, \qquad 0 \le p < \infty. \tag{2.3}$$

We also need the following result due to Gardner and Govil [4, Lemma 2].

LEMMA 3. Let $P(z) = a_n \prod_{v=1}^n (z - z_v)$, $a_n \neq 0$, be a polynomial of degree n. If $|z_v| \geq K_v \geq 1$, $1 \leq v \leq n$ and $Q(z) = z^n \{\overline{P(1/\overline{z})}\}$, then for |z| = 1,

$$\left|\frac{Q'(z)}{P'(z)}\right| \ge t_0, \tag{2.4}$$

where t_0 is as defined in Theorem A. It is clear that $t_0 \ge 1$.

Lemma 4. Let z be complex and independent of α , where α is real. Then for p>0

$$\int_0^{2\pi} |1 + ze^{i\alpha}|^p d\alpha = \int_0^{2\pi} |e^{i\alpha} + |z||^p d\alpha.$$
 (2.5)

Proof. We can suppose that $z = re^{i\gamma}$ with r > 0 and γ real. Putting $\gamma + \alpha = \beta$, the left side of (2.5) is

$$= \int_0^{2\pi} |1 + re^{i(\gamma + \alpha)}|^p d\alpha = \int_{\gamma}^{2\pi + \gamma} |1 + re^{i\beta}|^p d\beta$$
$$= \int_0^{2\pi} |1 + re^{i\beta}|^p d\beta, \text{ because } (1 + re^{i\beta}) \text{ has period } 2\pi \text{ in } \beta$$

$$= \int_0^{2\pi} |e^{-i\beta} + r|^p d\beta = \int_0^{2\pi} |e^{i\beta} + r|^p d\beta,$$

from which (2.5) follows.

LEMMA 5. Let n be a positive integer and $0 \le p \le \infty$. Then for z complex,

$$||1 + zn||_p = ||1 + z||_p. (2.6)$$

Proof. Note that for 0 , the left side of (2.6) is

$$= \left(\frac{1}{2\pi} \int_0^{2\pi} |1 + e^{in\theta}|^p d\theta\right)^{1/p} = \left(\frac{1}{2n\pi} \int_0^{2n\pi} |1 + e^{i\theta}|^p d\theta\right)^{1/p}$$

$$= \left(\frac{1}{2n\pi} \sum_{k=0}^{n-1} \int_{2k\pi}^{2(k+1)\pi} |1 + e^{i\theta}|^p d\theta\right)^{1/p}$$

$$= \left(\frac{1}{2\pi} \int_0^{2\pi} |1 + e^{i\theta}|^p d\theta\right)^{1/p}, \text{ because } (1 + e^{i\theta}) \text{ has period } 2\pi \text{ in } \theta,$$

from which (2.6) follows for $0 . The case <math>p = \infty$ is trivial. To obtain (2.6) for p = 0, simply make $p \to 0+$.

3. Proof of the Theorem

Since by Lemma 5, $||1+z^n||_p = ||1+z||_p$ for $p \ge 0$, hence if $K_v = 1$ for some $v, 1 \le v \le n$, our theorem reduces to the result of Rahman and Schmeisser [8] which holds for $p \ge 0$. Therefore for the proof of our theorem it is sufficient to consider the case when all the zeros z_v of P(z) satisfy $|z_v| \ge K_v > 1$ for $1 \le v \le n$. This, in view of Lemma 1, implies that $nP(z) - (z - \zeta)P'(z) \ne 0$ for $|z| \le 1$ and $|\zeta| \le 1$. Now setting $\zeta = -ze^{-i\alpha}$, α real, one can easily verify that the operator Λ defined by

$$\Lambda P(z) = (e^{i\alpha} + 1)zP'(z) - ne^{i\alpha}P(z)$$

is admissible and so by Lemma 2,

$$\int_0^{2\pi} \left| (e^{i\alpha} + 1) \frac{d}{d\theta} P(e^{i\theta}) - ine^{i\alpha} P(e^{i\theta}) \right|^p d\theta \le n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \quad (3.1)$$

for p > 0, which is equivalent to

$$\int_0^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) + e^{i\alpha} \left\{ \frac{d}{d\theta} P(e^{i\theta}) - inP(e^{i\theta}) \right\} \right|^p d\theta \le n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta,$$

and which gives

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) + e^{i\alpha} \left\{ \frac{d}{d\theta} P(e^{i\theta}) - inP(e^{i\theta}) \right\} \right|^{p} d\theta d\alpha$$

$$\leq 2\pi n^{p} \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta.$$
(3.2)

Note that by hypothesis $n \ge 1$, so P(z) is not a constant, and thus $(d/d\theta)$ $P(e^{i\theta}) \ne 0$. Therefore the left side of (3.2) is

$$= \int_0^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) \right|^p \int_0^{2\pi} \left| 1 + e^{i\alpha} \left\{ \frac{\frac{d}{d\theta} P(e^{i\theta}) - inP(e^{i\theta})}{\frac{d}{d\theta} P(e^{i\theta})} \right\} \right|^p d\alpha d\theta$$

$$= \int_0^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) \right|^p \int_0^{2\pi} \left| e^{i\alpha} + \left| \frac{\frac{d}{d\theta} P(e^{i\theta}) - inP(e^{i\theta})}{\frac{d}{d\theta} P(e^{i\theta})} \right|^p d\alpha d\theta \text{ by Lemma 4}$$

$$=\int_0^{2\pi}\left|\frac{d}{d\theta}P(e^{i\theta})\right|^p\int_0^{2\pi}\left|e^{i\alpha}+\left|\frac{Q'(e^{i\theta})}{P'(e^{i\theta})}\right|^pd\alpha\,d\theta,$$

where Q(z) is as defined in Lemma 3

$$\geq \int_0^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) \right|^p \int_0^{2\pi} |e^{i\alpha} + t_0|^p d\alpha d\theta,$$

by Lemma 3 and the fact that $|e^{i\alpha} + r|$ is an increasing function of r for $r \ge 1$. The above inequality when combined with (3.2) gives

$$\left(\int_0^{2\pi} \left| \frac{d}{d\theta} P(e^{i\theta}) \right|^p d\theta \right) \left(\int_0^{2\pi} |e^{i\alpha} + t_0|^p d\alpha \right) \leq 2\pi n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta,$$

from which the theorem follows for p > 0.

To obtain the inequality when p = 0, simply make $p \to 0+$.

If $K_v = 1$ for some $v, 1 \le v \le n$, our theorem reduces to the theorem of Rahman and Schmeisser [8], which is best possible and for which equality holds for the polynomial $P(z) = (z + 1)^n$.

ACKNOWLEDGMENTS

The authors are grateful to Professor E. R. Love and to the referee for some very useful suggestions.

REFERENCES

- 1. V. V. Arestov, On inequalities for trigonometric polynomials and their derivatives, *Izv. Akad. Nauk SSSR Ser. Mat.* 45 (1981), 3-22 [in Russian]; *Math. USSR-Izv.* 18 (1982), 1-17 [in English].
- 2. S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle (Collection Borel), Paris, 1926.
- 3. N. DEBRUIJN, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. 50 (1947), 1265–1272; Indag. Math. 9 (1947), 591–598.
- 4. R. B. GARDNER AND N. K. GOVIL, Inequalities concerning the L^{ρ} norm of a polynomial and its derivative, J. Math. Anal. Appl. 179(1) (1993), 208-213.
- 5. N. K. Govil and G. Labelle, On Bernstein's inequality, J. Math. Anal. Appl. 126(2) (1987), 494-500.
- 6. E. LAGUERRE, Nouvelles Ann. Math. 17, 2 (1878); reprinted in "Oeuvres," Vol. 1, Chelsea, New York, 1971.
- 7. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
- 8. Q. I. RAHMAN AND G. SCHMEISSER, L^p inequalities for polynomials, J. Approx. Theory 53 (1988), 26-32.
- 9. A. ZYGMUND, A remark on conjugate series, *Proc. London Math. Soc.* (2) 34 (1932), 392-400.