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Let P(2) = a, ;=1 (z - z,), a, # 0 be a polynomial of degree #. It is known
that if [z = K, = 1, l s v =< n, thenforp = 1,

i . Hp . w . 1ip
UO ]P'(e'”)["de) < nF, (fo ]P(e‘”)lpd()) ,

where

I ) lip
F,= {211' / [+ ee de} ,
0

and

v=1 (Ku - 1)

{l+n 2-—I—— ifK,>1foraliv,l=sv=n
IU=
1 ifX,= 1forsomev,l =v=n,

This inequality is best possible in the case K, = 1, | < y < 5 and equality holds
for the polynomial (z + 1)”. In this paper, we extend the above inequality to values
of p € [0, 1) and thus conclude that this inequality in fact holds for ail p=0.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let &, be the set of all polynomiais (over the complex field) of degree
less than or equal to n. For P € @, , define

1P = max [P,

i 27 ) iip
17l = (oL [ lpep o) " tor0 < p <o,

2170

and [P, = exp (% fo i log | P(e") de) .
A classical result of Bernstein [2] states that if P € P, then
121 = 7|1 (1.
Also it is known (see Zygmund [9] and Arestov [1]) that if P € @, then
1Pl =nlPl,, O0=p=e (1.2)
with equality if and only if P(z) = Az", A € C.
If a restriction is put on the location of the zeros of P, then the bound

in (1.1) and (1.2) can be improved. If P € P, and P(z) # 0 for |z] < 1 then
(see Lax [7] and DeBruijn [3])

' H
127l = 1P (1.3)
and
o el
1P ||p:-£—————"1+z:”p, |=p=w, (1.4)

Rahman and Schmeisser [8] proved that if » € &, and P(z) # 0 for
lz} < 1 then (1.4) holds for p € [0, 1) as well. This result is best possible
with equality holding for P(z) = (1 + z)".

As a generalization of an inequality due to Govil and Labelle [5] and
of inequality (1.4) due to DeBruijn [3], Gardner and Govil [4] proved:

THEOREM A. If P(z) = a, II}_; (z — z,), a, # 0 is a polynomial of
degree n, |z, 2 K, = 1, | = v =< n, then

' _I’l_ <=p=<
I1P "p = ”to n Z”p ”P”p’ l=p=w, (1.5)
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where

f 1 .

+ > sSU=

t0='1 n/u=§l(Ku_1) ifK,>1forallv,1=v=n
1

ifK,=1forsomev,l=v=n,

The result is best possible in the case K, = 1, 1 = v = n, and equality
holds for the polynomial (z + 1)".

The aim of this paper is to prove that the above inequality (1.5) in fact
holds for (0 = p = . We prove:

THEOREM. Under the hypotheses of Theorem A,

, n
P ||p5m||f’||p, 0=p=o, (1.6)

where ty is as in Theorem A. The result is best possible in the case
K, =1, 1 = v = n, and equality holds for the polynomial (z + 1)".

2. LEMMAS

The following lemmas will be needed.

LEMMA 1. IfP € @, and P(z) # 0 in a closed or open circular region
D, then

nP(2}— - P +0 (2.1)

for z € D and { € D. Here, by a closed circular region, we mean the
closed interior (or exterior) of a circle or a closed half-plane. An open
circular region is analogously defined.

The above lemma is due to Laguerre [6].
For y = (¥g, Y1, «oes ¥n) € C**! and
PR)=> a,’€P,
v=0

define

A,P(z) == Zo Vo, 27
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The operator A, is said to be admissible if it preserves one of the follow-
ing properties:

(i) P(z) has all its zeros in {z € C: lz| =

(i) P(2) has all its zeros in {z € C:|z| = 1}

LEMMA 2 [1, Theorem 4]. Let ®(x) = ¥(log x), where ¥ is a convex
nondecreasing function on R. Then for all P € P, and each admissible

operator A,

2w 2w
jo DA, P(?))) db = fo B(cly, B)|P®)) df, 2.2)

where c(y, n) = max(|yl, pA2

In particular, Lemma 2 applies with ®: x — x? for every p E ©, =) and
with @: x — log x as well. Therefore, we have '

”AAP”p = Ch’ﬁ n) "P“p H 0 Sp < ®, (23)

We also need the following resuit due to Gardner and Govil [4,
Lemma 2].

LEMMA 3. Let P(z) = a, [I)-1 (z — 2,), a, # 0, be a polynomial of

degree n. If |z,| = K, = 1, 1 < vy = n and Q(z) = 7" {P(1/27)}, then for
le| =
g =, 2.4

where 1y is as defined in Theorem A. It is clear that t; = 1.

LEMMA 4. Let z be complex and independent of a, where o is real.
Then for p > 0 '

2 2r
[ 11+ zeilp da = [ et + Il da 2.5)
0 0

Proof. We can suppose that z = re” with r > 0 and vy real. Putting
vy + a = B8, the left side of (2.5) is

2 . 2wty .
= [ 1+ retr o do = [+ retp dp
0

v

2ar ,
= J |1 + re®|? dB, because (1 + re™) has period 27 in 3
0



494 GARDNER AND GOVIL
2 . 2 .
= f le™® + 1P dB = f le® + #|P dgB,
0 0

from which (2.5) follows. |

LEMMA 5. Let n be a positive integer and 0 < p < o, Then for z
- complex,

I+ 271, =1t + 2. (2.6)

Proof. Note that for 0 < p < o, the left side of (2.6) is

1 ra= np 1ip 1 2nm 0 lip
—_ | — o p = — ol p
(27rfo 1+ ™| da) (anfo 1+ et da)
2k . lp
77 1+ e d@)

2 lip
= (ﬁ%:;f [1+ e¥P d{)) , because (1 + ¢%) has period 27 in 6,
0

from which (2.6) follows for 0 < p < . The case p = o is trivial. To
obtain (2.6) for p = 0, simply make p — 0+. |

3. PrROOF OF THE THEOREM

Since by Lemma 5, |[1 + 2", = |1 + Z||, for p = 0, hence if K, = 1 for
some v, 1 = v = n, our theorem reduces to the result of Rahman and
Schmeisser [8] which holds for p = 0. Therefore for the proof of our
theorem it is sufficient to consider the case when all the zeros z, of P(z)
satisfy |z,| = K, > [ for | = v < a. This, in view of Lemma 1, implies
that nP(z) — (z — {}P'(z) # 0 for |z] = 1 and |{| < 1. Now setting { =
~ze™, o real, one can easily verify that the operator A defined by

AP(z) = (e + DzP'(z) — ne™*P(z)

is admissible and so by Lemma 2,

fZW
0

. - . p zqr '
(e + I)Q%P(e‘e) = ine™P(e?)| do < n“’f [Pe)7do  (3.1)
0
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for p > 0, which is equivalent to

J»Z'rr
0

and which gives

J-Z'rr J»Z'rr
0 0

2
< 2mn? f |P(e®)P db.
0

iP(e"") + e {;1% P(e) — inP(e"e)}

p 2r
P inlp
= 4o <n fo |P(®) do,

P
dé da (3.2)

d 50 i i) 4 peoigy s it
dﬂP(e Y+e {dGP(e ) — inP(e )}

Note that by hypothesis n = 1, so P(z) is not a constant, and thus (d/d#)
P(e) # 0. Therefore the left side of (3.2) is

A piey i
dBP(e ) = inP(e")

da df
d .
a5 )

d " L .
— i 1_|_ I
dBP(e ) jo e

J~21r
0

P
£ P(e®) - inP(e”)
do d6 by Lemma 4

eia +

P f21r
0

g ___d_ i6
207"

d i
d&P(e )

2 P te o i0
"1 peiny| [ [ 4 |29
— o i i _
J; dGP(e ) fo e

where Q(z) is as defined in Lemma 3

2 d . P o
) if ior
ZJ;) 7 P(e®®) fo le? + t,|P da d8,

by Lemma 3 and the fact that |e® + 7| is an increasing function of r for
r = 1, The above inequality when combined with (3.2) gives

18

from which the theorem follows for p > 0.

d " P 2r 2 .
1 e P P i P
S P(e) de) ([G leie + 4 da) = 2mn fg |P(e®)? do,
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' To obtain the inequality when p = 0, simply make p — 0+.
If K, = 1 for some v, | = v = n, our theorem reduces to the theorcm
of Rahman and Schmeisser [8], which is best possible and for which

equality holds for the polynomial P(z) = (z + ).
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