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AnsTrRacT. If f(z) is an asymmetric entire function of exponential type v,
/M= sup [f(x),
QX 0D
then according to a well-known result of R. P. Boas,
T
< S0

and
eyl
If\+ry)|< Ilfil —co < X <oo, —oa<y<0.

Both of these 1m,qualll:cs are sharp. ln this paper we generalize the above
two inequalities of Boas by proving a sharp incquality which, besides giving as
special cases the above (wo mcquahl:ca of Boas, yiclds some other results as

well,

1. INTRODUCTION AND _STATEMENT OF RESULTS

An entire function is said to be of exponential type v if it is of order less
than ! oritis of order 1 and type less'than or equal to 7. We will denote this
class of functions by &,. For f € &, define ||f|| = SUP_ocxcoo IS(X)|. The
indicator function hp(8) of [ is defined by

. lo i@
hy(8) = limsup -—M——)-I- .

r—co r

A classical result of Bernstein (see Boas [1, p. 206]) states that if f € & and
if {|f]l=1, then
(1.1) Woh<e.

It is a simple consequence of the Phragmen-Lindel6f principle that (see Boas
[1, Theorem 6.2.4, p. 82])
(1.2) flx+ip)<e™ - —co<x<oo,—0<y<o0.
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It was proved by Boas [2] that if hf(-g-) =0 and f(x+iy)#0 for y >0,
then (1.1) can be replaced by ) - -

(1.3 - /IS 5
and (1.2) b
(1.4) |f(,r+iy)|5(iﬁﬂz—+—1), —0o<x <00, —0<y<0.

For [ € & , we define with .respect to a complex number {, the function

Di[f] as
Delf1=r1f(z)+i(1 = {)S"(2).
The above definition is due to Rahman and Schmeisser [5].

Note that limy_ ., =<5 L [f( ) —if'(z). _
In this paper we generahze inequalities (1.3) and (1.4). In fact, as we will
see, both these inequalities will turn out to be special cases of our theorem.

We prove

Theorem. Let f € &, hy(}) =0, ||'f|] =1 and f(zY = f(x + iy) # 0 for
Im(z) > 0. Then

(1.5) 1Dl f(2)1] < (ICIE"”' +1)

for y =1Im(z) <0 and |{| = 1. This result is best possible and the inequality
reduces to an equality for [(z) = L;:P.L when { isrealand { > 1.
For { = 1, the above theorem clearly reduces to the inequality (1.4) of Boas

(2}
If we divide both sides in the inequality (1.5) of our theorem by |{] and

make [{| — oo, we get

Corollary 1. Let f € &, hp(3)=0, ||/l =1 and f(z)#0 for Im(z) > 0.
Then :

(1.6) A/ +ip)] s__%e"_’", —c0 < X <00, =00 <y <0,

. This result is best possible as is shown by the example given in the theorem.
Taking ¥ = 0 in our theorem, gives
Corollary 2. Let f€ &, hp(3) =0, ||fl=1 and f(z) #0 Jor Im(z) > 0.
Then for |L] 2 1, _
: T
(1.7) (DI W+, -
This result is best possible as is shown by the example given in the theorem.

Corollaries I and 2, besides being of mdependent interest, provide general-
izations of inequality (1.3). As is clear, (1.3) is a special case of Corollary I
when y =0, and to obtain (1.3) from Corollary 2, simply divide both sides of

(1.7) by |{| and make || — co .
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' . LEMMAS
For the proof of our theorem, we will need the following lemmas.

Lemma 1. Let f € & where 1 >0 and hp(5)=0. If H denotes the (Open or
closed) upper half-plane, f(z) # 0 for z € H then De(f(z)] #0 for z € H
and |{} < 1.

The above lemma is due to Rahman and Schmeisser [5].

If we apply the above lemma to the function e/** (%), we will get

Lemma 2. Ler f € & where © > 0,-and let hy(5E) = ©. If L denotes the
(open or closed) lower half-plane and f(z) # 0 for z € L, then D¢[f(z)] # 0
Jor ze L and |[{] > 1.

Lemma 3. I/ f(z) is an entire function of exponential type t and | f(x)| < M
for —co < x< o0, then -

(2.1) Ifx+iy)]| < MeWl, —co<x<o0,—c0<y<co.

This lemma is a simple consequence of the Pragmen-Lindelf principle (see
Govil [3, Lexﬁma 1, p. 226]).

Lemma 4. Let f€ &, f(z)# 0 for Im(z) > 0, and let hs(a) > hf( «) for
some o, O <a<m. Then |f(2)] 2 |/(Z)] for y =1m(z) > 0.

Lemma 4 is due to Levin [4] (see [1, Theorem 7.8.11).
Lemma 5. Let fe€ &, hy(3E) =1, hp(5) <0, and f(z)#0 for Im(z) <0.
Then |f(z)| > 1g(2)| for Im(z) <0 where g(z) = e’**f(Z).
Proof. Let fi(z)=e™*/2f(Z). Then fi(z) # 0 for Im(z) > 0. Also, h;(3E) <
7 and 25(5) = 7. Hence by Lemma 4, |fi(2)} > |/1(Z)| for Im(z) > 0, which

2 :
1s equivalent to

(2.2) Cle~ i f(2)| 2 | f(Z)| for Im(z) <0,
from which the result follows., [0

Lemma 6. If f € & and hy(}) <0, then g € & where g(z)=e""*f(Z). |
Proof. Since f € & and h (%) < 0,it is clear that Ag(£%) < 7. Hence it
follows from a resuit (see Boas [1, p. 82]) that Ay (8) < t, which implies that

ge&. o

Lemma 7. Let f € &, hp(5f)' =1, he(3) <0, and let |f(z)| = |g(z)| Jor
Im(z) <0, where g(z) =e"%f(Z). Then for |a| >, hgzy—apin(FE) =7
Proof’. Since |f(z)} > |g(z)| for Im(z) < 0, we have |f(-iy)| > |g(=iy)] for
y > 0. Therefore

lg(=ip) = af(=ip)] > 1/ (=i)] (lrrl - %j—i[)

for y > 0 and so

})

o\ g (lr=inl {Jel - |5224})
Rg(z)=asizy { =~ ) 2 limsup y

Y=o
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because M <1 and |a| > 1. Thus

-7

(2.3) hg(%)—af(z) (7) 2T

On the other hand, the facts that f € & and, by Lemma 6, fhat g € &
imply that g(z)—af(z) being a linear combination of f and g isalsoin &,
which implies that

(2.4) hyar-artn (5) < T

The lemma now follows upon combining (2.3) with (2.4). O

Lemma 8. Let f € & with |f]| =1 and hp(3) =0. Then for any z with
Im(z) =y <0 and |{| 2 |, we have

\DLf (] + IDelg ()] < <lde™ +71), -

where g(z) = e’ [(Z).
Proof. Let F(z) = f(z)— Be'™* where || > 1. Then by Lemma 3, |f(z)| <
e for y =1Im(z) and so /(z) #£0 iny=1Im(z) 0. Also, -

(2.5) [F(—iy)| =2 e™ (|8l - 1)
and therefore i
hr (__;) = lim supw >t by (2.5)

y—rco

implying that 2p(5%) = 7. Further, since Ag(}) = 0, it follows from the
Phragmen-Lindeldf Principle (see Boas [, Theorem 6.2.4, p. 82]) that |f(2)] £
{ for Im(z) > 0. Hence for y=1Im(z) 2 0, we have |F(iy)| < 1+|8], which
implies that (%) <0, : ~

Now, let G(z) = ¢/“F(z). Then G(z) = el*f(Z) — B = g(z) — B where
g(z) = ¢**f(Z). Applying Lemma 5 to F(z) we get |F(z)] 2 |G(z)| for
Im(z) < 0 and therefore by Lemma 7 when applied to F(z) gives that
hGizy—ar(z)(F) =T where |af > 1. If we now apply Lemma 2 to the function
G(z) — aF(z), which is nonzero for Im(z) <0, we get Dg[G(z) — aF(z)]#0
for Im(z) <0 and [{] 21, which implies '
(2.6) ID([G(2)]] < | De[F(2)]]
for Im(z) <0 and [{[>1. :

Similarly, if we apply Lemma 2 to the function F(z) = f(z)—B€'**, |1B1> 1,
we will get D¢[F(z)]#0 for Im(z) <0 and |{| > [, which implies
(2.7) |De[/(2)]] & | Dele™ ]

for Im(z):< 0 and [{]| = 1.
Therefore

\D;g(2)1] = 7| Bl < |1D([G(2)]
' < IDF ()1 by (2.6)
(28) — |Dc[f(z) . ﬁeitz] l
= | D¢le™*1] = |Dc[/(2)]]
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by suitable choice of the argument of § and by (2.7). We therefore get from
(2.8)

(29) DN+ Dela(D1< BI(x + D™ 1)) = |Bi(e 4 <lCle=),
for y = Im(z) < 0 and |{| > 1, and this is clearly equivalent to

(2.10) 1D [f(2)]] +|Delg(2)]] < [Bl(L + |Lle™VD),

for y=Im(z) <0 and [{| > 1.
If we now let |#] — | in (2.10), the resuit follows. 0O

3. PROOF OF THE THEOREM

First, suppose [ is precisely of type v. Since /p(3) =0 and [|f]| =1, we
have A,(3%) = v and so hyg(5f) = v and Ay(§) = 0. Applying Lemma 5 to
-g(z) weget |g(z)| = (2} for Im(z) < 0. So it |81 > 1, then f(z)—pg(z) #
0 for Im(z) < 0 and hence by Lemma 7, Agzy_pey(=*) = t. If we now apply
Lemma 2 to the function f(z) — fg(z), we get D¢[f(z) ~ fg(z)] # 0 for
Im(z) <0, |f|'>1 and |{} 2 1, which. is equivalent to

(3.1 ID([f(2)]] < 1D[g(2)]1,

for Im(z) <0 and |{| > 1. The inequality (1.5) in our theorem now follows
upon combining (3.1) with Lemma 8.
~Since T(|¢‘|e‘|)’| + 1) is an increasing function of 7, the result trivially holds

if [ is of type less than 7. O
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