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SOME GENERALIZATIONS
OF THE ENESTROM-KAKEYA THEOREM

R. B. GARDNER (Johnson City) and N. K. GOVIL (Auburn)

1. Introduction and statement of results

A classical result due to Enestrém [3] and Kakeya [7] concerning the
bounds for the moduli of the zeros of polynomials having positive real coef-
ficients is often stated as (see Marden [9, p. 136]):

n
THEOREM A (Enestrom-Kakeya). Let p(z) = Zavz” be a polynomial
y=0
of degree n whose coefficients satisfy 0 S ag S a1 £ +++ S an. Then p(z) has
all its zeros in the closed unit disk |2| £ 1.

An equivalent, but perhaps more useful statement of the above theorem,
due in fact to Enestrom [3], is the following:

n
TuroREM B. Let p(z2) = Zavz", n 2 1, be a polynomial of degree n
v=0

with a, >0 for all0 S v n. If

a=alp] = ogiign{au/%ﬂ}, 8= plp}:= Ofélﬁfn{av/%ﬂ},

then all the zeros of p(z) are contained in the annulus o £ |z| < 8.

In the literature, there exists several generalizations of this result (see
(1], [2], [4], [5], [6] and [8]).

In this paper we give some generalizations of this result for polynomials
with complex coefficients when we have information only about the real or
only the imaginary parts of the coefficients. As corollaries we obtain sharp-
ened forms of several known results including those of Joyal, Labelle and
Rahman [6], Kovaéevié¢ and Milovanovié (8], and of course the Enestrém-
Kakeya Theorem.
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k)
THEOREM 1. Suppose p(z) = Zauz”, Re a; = a; and Im a; = §; for
v=0

J=0,1,...,n, a, # 0 and for some k,

ag Stag StPay < Stfay 2 "oy 2 F oy 2 -0 2 Pan

for some positive t. Then p(z) has all its zeros in Ry £ |2| £ R, where
n~1 '
Ry = tlaol/ (2tkak - oy —t"a, - t"|an] + Iﬂol + l,@n,tn 4 22 |ﬂjltj)
i=1

and

Ry = max { (]ao[tﬂ“ + (4 D)y — 1" o - tay,

k-1 n=1
HE2 =) o+ (1~ 12) Y iy
j=1 j=k+1

+3 (a1 480 [l ).

We do not know if this result is best possible, however if we take k =
n,t=1,0,=0for 0L v < n, and ap 2 0, we get that all the zeros of the
polynomial p(z) lie in the annulus % < |2 £ 1, which is best possible

adn — Qo
in the sense that the inner and outer radii of the annulus here cannot be
improved (as is seen by considering the polynomial p(z) = 2z + z*=1 + ...
+z41).

If we take £ = n in Theorem 1, we get:

n
COROLLARY 1. Suppose p(z) = Zaﬂz", Re aj = aj and Im a; = f; for

v=0

7=0,1,...,n,ay, # 0 and

A

L tay,

ap < tay £ Py

Jor some positive t. Then p(z) has all its zeros in Ry < |2} £ Ry where
n—1 '
Ry = 1t|.:ao|/(:t"a71 — ag + t"|an] + |Bo| + |Bn|t™ + 22 fﬁj]tﬂ)
i=1
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and

n—1
Ry = max { ([aoltn“ I R 1) Z " gy,
j=1

+ Z (185-11 +2185]) t“-f) / |an, tl}

i=1

In particular, taking ¢ =1 and 8, = 0 for 0 £ v < n in Corollary 1, we
n

get that if p(z) = Zavz” is a polynomial with real coefficients satisfying

v=0
ag S a1 S+ £ a, then p(2) has all its zeros in

(1.1)

IGOI <|zl < la0|+an_aﬂ
an—Go+|a,] = T ||

This result sharpens a result due to Joyal, Labelle and Rahman [6]. The
Enestrom-Kakeya Theorem is implied by (1.1) when ag > 0.
Similarly if we take & = 0 in Theorem 1, we get:

n
COROLLARY 2. Suppose p(z) = Zavz”, Re a¢; = o; and Im a; = 3, for

=0

J=0,1,...,n, a, # 0 and

v

...>tnan

ag 2 toy 2 oy

Jor some positive t. Then p(z) has all its zeros in Ry € |2| S Ry where

n—1
Ry = t[aol/(ao — t"an + "an| + |Bo| + [Balt™ + QZ [[J’jltj)

i=1

and

n-1
R = max { (Iaolt”+1 + "o — ta, + (1-17) ) "1,
j=1

+§ (185-11 + 11851) i“—j) /""“" %}
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] n
In particular, if p(z) = Z a,2" is with real coefficients satisfying ap 2 a1
v=0
2 ++- 2 an then it has all its zeros in

|ao| < o] < |lao] + a0 —
Go — s +[an]| T |

By applying Theorem 1 to the polynomial 2"p(1/ z) one easily gets:

TEEOREM 2. Suppose p(z) = Z%Z , Rea; = o; and Im a; = B; for
=0
i=0,1,...,n, a, # 0 and for some k,
t"ap S "oy S " 2oy g+ = tkan-k 2 tknlan-—k+1 2 2 tom—1 .z_.an

for some positive t. Then p(z) has all its zeros in Ry < |z| € Ry where

R, = min {|cm|/(|an|t”””""1 + (4 e — " la, —tag

n—1

+(t2-—1)2t""3 Lop_j+(1=%) ) " an-

i=k+1
F3 (Buciirl +18051) 87 )t
j=1
and
7 n—1 )
Ry = (ztkan—k —a, —t"ag+1"|ao| + lﬁoltn +16a]+2 Z lﬁn——jltj) /(tla’nl)"
=1

In particular, if we take k =0 and 8, = 0 for 0 < v £ n, we get that if
n

p(z) = E a,2" is a polynomial of degree n with real coefficients satisfying
v=0

f"ag St"lay £+ Stagoy San

for some positive t, then all the zeros of p(z) lie in

min a0l t
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— T
<1zl < an — t"ag + |aolt
tlan|

This result sharpens a recent result due to Kovaéevié and Milovanovié [8].
For ¢ = 1, this further reduces to {1.1) which, when ag = 0, reduces to the
Enestrom —Kakeya Theroem.

If we have information only about the imaginary parts of the coefficients,
we have the following theorem which is of interest and follows by applymg
Theorem 1 to —ip(z).

n
THEOREM 3. Suppose p(z) = ) _a,7", Re a; = aj and Im a; = §; for

v=0
i=0,1,...,n, a, # 0 and for some k,

BoStB1 St2By £+ S t*B 2 tF Bhyy 2 5280 2 - 2 178,

for some positive t. Then p(z) has all its zeros in Ry £ |2| £ R, where
n-1 )
Ry = tlaol/ (Ztkﬁk = Bo— 1" B + t"|an| + |eo| + onlt” +2) ]aj|t3>
7=1

and

R = max { (|ao|t”+1 + (2 4+ )R8 — 1y — 48,

+(i2 _ I)Ztn-ﬁ lﬂj + (1 . t2) Z tn—gnlﬁj

j=k+1
+3° (Jayoa] + tlag]) t”“’)/lanl, }
j=1

By making suitable choices of t and & in the above theorems, one can also
obtain the following corolla,nes which appear to be interesting and useful. In

each of these, p(z) = Zavz Rea; =a;andIm a; = 8, for j = 0,1,.

=0
and @, # 0.

COROLLARY 3. If ag S a1 £+ S vy then all the zeros of p(z) lie in
Ry £ |2| £ R, where

n—1
:'a, Qp — +|n|+lﬂ|+lﬁn|+2 Iﬁ
of (a0 =cot 1+ 1 25 1)
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and

n—1
Ry = (faol — ap + an + |Bo] + |8.] + 22 |ﬁjf)/|anl-
i=1

COROLLARY 4. If g 2 a1 2 -+ 2 @y, then all the zeros of p(z) lie in

Ry £ |2| £ Ry where

n—1
Ry = Jaol / (ao ~ n + Jan] + o] + |a] + 22])63")

j=1
and

n-—1
By = (Iaol auan kIl I8 423 |ﬁ,-|) / 4l

CorOLLARY 5. If o S 1 £ -+ £ B, then all the zeros of p(z) lie in

Ry £ |2| £ Ry where

n-—-1
By = |aol / (ﬁn ~ fo+ |an] + lao] + lan] + 22!%1)

3=1
and

Ry = (ﬁn — Bo + laol + |eof + la] +2§|ajl)/lanl.

COROLLARY 6. If Bg 2 1 2 -+ 2 B then all the zeros of p(z) lie in
Ry £ |2| £ Ry where

= |00|/(/30 = Ba + |an| + |ao| + ax| + Qz |aj|>

and

o = (= i + Ll + el + e +2ZIaJ ) /el
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2, An example

In this section, we apply our results to a polynomial and compare the
sizes of the zero containing region given by our theorems to those given by
previously known results.

ExaMPLE. Consider p(z) = 1 + 10z + 2022 + 4023 4- 802% 4 502°. Notice
that the result of Joyal, Labelle and Rahman [6] is not applicable. The
result of Kovaéevi¢ and Milovanovié [8] says that the zeros of p(z) lie in |2
< 1.602. A theorem due to Cauchy (see p. 122 of [9]) gives that the zeros
of p(z) lie in .083 £ |z| £ 2.2096. Enestrém’s Theorem (Theorem B) gives
that the zeros of p(z) lie in .100 £ |z| £ 1.600. Applying Theorem 1, we find
that p(z) has all its zeros in .499 £ |2| £ .840. The inner radius is obtained
by letting ¢ = 4995031 and k = 0. The outer radius is obtained by letting
t = 1.190792 and k¥ = 3. In terms of area in the complex plane, Theorem 1
is an improvement over the Kovacevi¢ and Milovanovié¢ result by a factor of
about 5.6, an improvement over Cauchy’s Theorem by a factor of about 9.6,
and an improvement over Enestrom’s Theorem by a factor of about 5.6.

3. Proof of Theorem 1

Consider the polynomial

n
P(z)=(t— 2)p(z) = tap + Z(taj —a;1)% — 2" = —an 2™ 4 Ga(z).
=1

We first note that
(3.1) |aj-1 = tajl = |@j-1 = ta; + (81 ~ 16;)|

< ojo1 = o] + 18;-1) + t18;).-

o)

and on |z| = ¢, by (3.1),

Then

n
tagz™ + Z(ta_,— - aj1)2"

i=1

1 = :
"Gy (;)' < Itaglt" + Z |taj — aj._lltn—j

i=1
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n n
< laolt™ ! + ) ltay — g [t"F + Y (18j-a] + tl8;1) 7
i=1 j=1

k n
= ao|t™! + ) (ta; — o))" + Y (ajog — toy )"
J=1 Jj=k+1

+ > (I1Bj-1| + 21851t~
J=1

k-1
= laolt™™! + (£ + )" * oy — 1" Fap —tay + (2 - 1)) " ey
, p

n—1 n
H1=2%) Y g+ Y (Bl + B = M.

j=k+1 i=1

Hence, by the Maximum Modulus Principle,
o)
z

G2(2)| S Malel™ for |2 2 %

<M, for |7|<t

which implies

From this follows

|P(z)[ = l - anz”"'l +G2(2‘)|
n n 1
2 lanl|2[™*? = Ma|2|" = |2[*(|an|]2| - My) for |z| 2 7
So if |z} > max f—zf,% = Ry, then P(2) # 0 and in turn p(z) # 0, thus

establishing the outer radius for the theorem.
For the inner bound, consider

P(z) = (t - 2)p(2) = tag + Z(taj — aj-1)2 — an 2"t = tag + Gy (2).
i=1
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Then for |z| = t, by (3.1)

[G1(=)] £ Z |aj-1 — ta|t! + ag|t™t!

-y

<Y lajar = teglt + Y (1Bi—al + B 1) ¥ + lan|t™+

j=1 5=1
n-1 '
= —tag + 25 oy — 1" g +an | 4 (Bolt 4+ Bal VT 42D 18167 = My
i=1

Applying Schwarz’s Lemma (see, for example, p. 168 of Titchmarsh [10]) to
Gh(z), we get

|G1(Z)| < M for |z| £t.
So
M|z
|P(z)| = 'tao + G’1(z)| 2 tlag| — |G1(z)‘ > t|aq| — Itl |
Notice that I 2 St.Soif 2] < —— laol = R; then P(2) # 0 and in turn p(z)
M1 Ml

# 0.
Acknowledgment. The authors are grateful to the referee for his sug-
gestions. '
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