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Abstract

The classical Enestrém-Kakeya Theorem states that if p(z)=> . _,a,z" is a polynomial satisfying 0 < ap <
a) < -+ < ay, then all of the zeros of p(z) lie in the region |z| < | in the complex plane. Many generalizations
of the Enestrom-Kakeya theorem exist which put various conditions on the coefficients of the polynomial (such
as monotonicity of the moduli of the coefficients). We will introduce several results which put conditions on
the coefficients of even powers of z and on the coefficients of odd powers of z. As a consequence, our results
will be applicable to some polynomials to which these related results are not applicable.
© 2003 Elsevier Science B.V. All rights teserved.

1. Introduction

There are numerous results concerning the location of zeros of a polynomial in the complex plane.
A classical result which puts no restriction on the coefficients is due to Cauchy:

Theorem 1.1. All the zeros of p(z)=) | ,a,z", where a, # 0, lie in the circle |z| < 1+ M, where
M = maxg<j<m-1)| -

The Enestrom—Kakeya theorem is also a classical result, but only applicable to a specialized class
of polynomials, namely those with real, nonnegative and monotone increasing cocfficients:

Theorem 1.2 (Enestrém-—Kakeya). If p(z) =37 ,a,z" is a polynomial of degree n with real coef-
ficients, satisfying 0 < ap < a; < - < a,, then all the zeros of p(z) lie in 2] < 1.
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There are several generalizations {5] of Theorem 1.2, We only mention the results relevant to our
study. In particular, the restriction of monotonicity of coefficients has been significantly softened.
The following result is due to Gardner and Govil [3] and puts a condition on the real and imaginary

parts of the coefficients.

Theorem 1.3. Let p(z) =3 | a2’ be a polynomial of degree n. If Rea; = o; and lma; = f; for
J=0,1,2,....n, a, # 0 and for some k and v and for some t = 0, '

o <ty < Py - oy = Moy = > ey,
and
Posth << <Pzt Pz 21"
then p(z) has all its zeros in Ry < |z| < Ry, where
Ry = min{(z]ao| /(2(¢ o + ' B,) — (o0 + Bo) — 1"(ctn + Pu — laal))s 1}

and

Ry = max { [ laolt™ ' — " Yoo + o) — 10t + o) + (F 4+ 1) oy + 771B,)
k—1 r—1 '
HE DY Ty Y T,
J=1 =1

n—1 n—1
, . 1
1— t2 tn—j—l . tnwj»ul ) o .
+A =2 D a5+ ) B J/lalt}

J=k+1 J=r+l

Notice that if each ; =0, a0 = 0, £=1 and k = in Theorem 1.3, then we get Theorem 1.2.
Govil and Rahman [4] introduced a restriction on the arguments of the coefficients (along with
a monotonicity-type condition on the moduli) to generalize Theorem 1.2. A related result is the

following [1]:

Theorem 1.4. If p(z)=} _,a,z" is a polynomial such that |arga;— B| < a« < § for je {0,1,...,n}
and for some real 3, and if for some positive number t and some nonnegative integer k,

laa| < tlay—1| < S Hlawi] 2 awioa| 2 - = e,
then all the zeros of p(z) lie in |z| < R where

R — max { (2|an—i|t* — |an|) cosa + |a,|sine -+ 2sin o E;:ll |an—o|t” -+ £"|ao|(1 + sine — cos ) l}

2

la,|t t
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Notice that if #==1 and &k = n, then p(z) has all its zeros in |z| < R where

2sino

n—1
|a,|

R =cosao + sine -+
Ia"' =0

(this is the result of Govil and Rahman [4]).
Motivated by Theorems 1.3 and 1.4, we give results concerning the locations of zeros of a poly-

nomial by putting hypotheses on the coefficients of the even powers of z and on the odd powers of z.

2. The main results and applications

Motivated by Theorem 1.3, we put restrictions on the real and imaginary parts of the
coefficients.

Theorem 2.1. Let p(z) =) , az®, where a, # 0, be a polynomial and Re(a;) = o, Im(a;) = f;
for j=0,1,...,n such that for some positive number t and some nonnegative iniegers k and s, and
positive integers | and g

2k+2 =

oy < ot S out® < < ot = gt Zeee 2 Otzln/zjtzL"/ZJ,

o < ot < ocst4 oo Loy t¥ e azmtz! > 0‘2[(;:+1)/2JA1IZL"”2J,
o < Bor® < Pat® - K Bogt™ = Pasiat® T = o 2 Byt

20—
ﬁl < ﬁ3t2 < ﬁ5t4 SRR ABZq-lt =2 = 62q+lt2q = 2 ﬁzl-(”{»l)szA_MIZZI'nIZJ.

Then all the zeros of p(z) lie in R < |z| < Ry where

. | t|aol } {Mz 1}
Ry =min<{ —,1 and Rp;=max<{ —,— .
: {M1 2 || 1

Here
My = —(ap + Bo) + (] + [Bi1]Df — (ay + Bt + 2[oeaut™ + g 1227 + Boyt™ + Bag—1£247"]

= (@t + Bae) DT = (0 A B)E A ([0t | A 1Bam1 DETH o (el + 1Bal)e",

My = 1" (lag| — oo — Po) + (Jar| — o — B1)e™ 2 + (£ + Dot ™ 7 + agyy ™™™

+ ﬁz;tn~l—zs + ﬁ2q~1tn_2q) - (‘xn—l + Bn—l) + 'an——ll - (OC” + ﬁn)t_]
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2k—2, 213 2s—2

4 —1—j —1=j —1-j
TRGES Y D P2t R Y- Lt N A S VA
j=0,jeven Jj=1,jodd =0, jeven

2q—3 2[n/2] 2|(n+1)/2] -t
n—1—j =1 b
T Sl T T SRR s
j=1,jodd J=2k+2, jeven J=2+1, jodd
2|2 2L (+1)/2)—1
a—1—j n—1—j
SN e S e
J=25+2, jeven J=2g+1, 7 odd

Due to the flexible condition on the coefficients of p(z), Theorem 2.1 is applicable to a rather
large class of polynomials. We can also extract some more concise corollaries by choosing specific
values for the parameters involved. For example, if £ = |n/2}, =1, t=1 and the polynomial p(z)
has real coefficients, then we have the following,

Corollary 2.1. Let p(z}=> . _,a,2z" be a polynomial with real coefficients such that,

(y S a3 S Ay S K Ay

ay Z a3 2ds 2 Z Gr1)y2) -1

Then all the zeros of p(z) lie in Ry < |z] < Ry where

RI:min{%ﬂ,l} and R, = max{M2 1}

| |an |
and

Ml =—ap + lal| +a + 2a2[n/2j + |an——1| — Qp1 T Ian| — Ay,

M2 = |a0| —ap+ |CI1| +a -+ 2a2[n/2J + Ian—ll — Ay—] — da.

We now apply this corollary to a specific polynomial.

Example 2.1. Consider p(z)=1—z+3z% — z° + 3z*. Then according to Corollary 2.1, the zeros of
p(z) lie in 1/7 < |z| < 5/3. By Theorem 1.1, p(z) has all its zeros in |z| < 2. Theorems 1.2, 1.3

and 1.4 do not apply to p(z).
With Theorem 1.4 as our inspiration, we now consider restrictions on the moduli of the coefficients.

Theorem 2.2. Let p(z) = > _,a,z" be a polynomial such that larga; — B| < a < w/2 for j =
0,1,2...,n and for some real B, and for some positive number t and some nonnegative integer k
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and positive integer [

lao| < |l < laalt® < -+ < Jan|* > |agaa|?* 2 = - 2 |y |21,

lai| < las]® < as|t? <o < ag |72 2 ag | = - 2 |a2{(n+1)/2jfiIIZWZJ-

Then all zeros of p(z) lie in Ry < |z| < Ry where

) I|CIOI My 1
R =min< —,¢ and Ry, = — ~ 3.
R O R (T

Here

My =)t + |a,z_1|t"_' + |a, |t

-+ COS [~|4.10| — Ia]It -+ 2|a2k|t2k + 2'(121_1'1‘2!*1 — |a,,~1 If"ﬁl _— Ia,,|t”]
n—2
+sine (2> lalt + lag| + Janlt + g [0 4 @]
=2
and
_ 2k—2
My = aglt"™ + |ai| ™ + |ay |+ cosa S (= 1) | Y aylet
J=0,jeven
23 2|n/2] 2| (n+13/2]—1
+ D el = > gl - YT el
J=1,jodd J=2k+2, jeven J=2i+1, jodd

+ (" Dol % + an |72 = laglt"™ — Jan| e+ — Jayi] — |ault™"}

n—2
+sina (1 +1) Z la "V A |t b a7 a1 |6+ |a|f
=2

157

Again we can choose specific values for & and [ to get corollaries. In particular, with £ = 0,

I=|(n+1)/2], t=1 and « = =0, we have:

Corollary 2.2. Let p(z) =), _, a2, where a, # 0, be a polynomial with real, nonnegative coeffi-

cients such that

Ao Z ay = dg Z - 2 gy =0,

O<ai a3 <as < S Bjusnp)-1-
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Then all the zeros of p(z) lie in R| < |z] € R, where

M-
Rlzmin{—%,l} and Rgzmax{ﬁl,l}
Ml ay

My = ag + 2a3|(pe1y2) 1>

and

My =2ap + 285y 1y2)—1 — @

Corollary 2.2 also follows from Theorem 2.1.

Example 2.2. Consider again p(z)=1+5z° + 2% + 52°. Then according to Corollary 2.2, the zeros
of p lie in 1/11 < |z| € 7/5. By Theorem 1.1, p(z) has all its zeros in |z| < 2. Theorems 1.2, 1.3

and 1.4 do not apply to p{(z).

We mention that our results can be easily generalized by putting the monotonicity-like condition
on the coeflicients a; for each equivalence class of index j modulo N (in this paper, our hypotheses
are based on the case N =2). The method of proof of these types of generalizations will be evident

from the content of the next section.

3. Proofs of the results

Proof of Theorem 2.1. We consider the following polynomial:
9(z) = (& — 22) p(z) = tap + art’z + Z (2 — aj2) — ay1z™ — a,2"*? = Pag + Gi(2).
j=2
On fz| =t

"
1G] < |l + D lag® — ap o -+ |an-r | + |
=2

H
< (ol +1BDE + D (loyt® — ayalt! + 18,8 — Bi-2lt’)
=2
+ (ot ] 4 [ Ba—t DI (o] + | Bl )"
s (Jau| + [B1])E — (o0 + Bo)e* — (o + B
+2[0€2k52k+2 +0€21_1t2[+i + ﬁ2st2s+2 +ﬁ2q_]t2q+l]
e (Ot + B D = (ot + B+ (ot |+ [Bumt DEFY -+ (Jot] -+ 18 )

= tle.
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We apply Schwarz’s Lemma [6, p. 168], to Gi(z), and we get

t2M1 IZI
)

|G1(Z)| < :IM1|Z| for IZI <,
which implies
l9(z)] = [£2a0 + Gi(2)| = Plag| — |G1(2)| 2 Plao] — tMilz]  for [2] <&

Hence, if [z| < Ry = min{¢t|ag|/M), ¢}, then g(z) # 0 and so p(z) # 0.
We consider g(z) again,

n
9(z) = (t* — 2)p(z) = tPag + a1’z + Z (@t — a;2)2 — ap 12" — a2
_ “

= —g, 2" + Gy(z).

Zn-l-le (l)
Z

and on |z| = ¢,

Then

A
— t‘ZaOzn-l—l + 011‘22” + E :(ajIZ _ ajmz)zmi—lm] -y,
j=2

it
"G, (—I-)I < " ag| + |ai |2 + Z la;t? — ;2| " + |an i
zZ
=2

14
< Plao| +lar[e? + D oyt — | + 87 — B2 + -]
j=2

= ""(|ao| — % — Bo) -+ (a1 | — o — Br)e"*?
-|'-(t4 A 1)(a2ktn—l——2k + 052[—-1tn_2[ + ﬁzstn—l—h

+ ﬁ2q~[tn~2q) ~ (g A Bu1) + jan| — (0 + )Bn)t—]

2k—2 2i—3 252
+@ -0 Y e e Y gt Y gt
/=0, jeven j=1,7odd =0, jeven
2q—3 2 ny2] 2| (r+1)2)—1
+ Z ﬁjtn—l_j _ Z Otjfn_l_j _ Z Otjtn—l_j
j=1,jodd J=2k+2, jeven F=21+1, jodd
20n/2] 2 +1)/2) —1

_ Z ﬁjl‘"gl%j - Z ﬁjl‘nmluj = Mz.

J=2s+2,j even j=2q+1,jodd

159
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Hence it follows by the Maximum Modulus Theorem [6, p. 165], that

1
Z’n+lG2 (—)’ < M, for IZI S
z

which implies
1
|Ga(2)] < Mole|"™ for [z = —
From this it follows that
1
l9(2)| =] — a2 + Ga(2)] = |an|z"™*? — Mola)™"  for |2] > n
= |2[" (|aulz] — ).
Thus, if [z] > Ry = max{iM>/la,|,1/t}, then g(z) # O and hence p(z) # 0, and the proof of the
theorem is complete. 0
Lemma 3.1. Let p(z) = ) _a.2° be a polynomial such that |arga; — f| <a < wf2 for j¢
{0,1,2,...,n} and for some real B, and if for positive t and nonnegative integer k,
lao] < ||t < |aof® < -+ < et 2 apn | = - 2 |ault”,
then for je{l,2,...,n}

|ta; — aj—1] < [tlay] ~ |aj—1]| cosa + (¢|a;] + |a;—1]) sine.

This lemma is due to Aziz and Mohammad [2]. Notice that this is just a triangle inequality
concerning complex numbers which lie in the same closed half-plane, but in our statement we quote

from [2].

Proof of Theorem 2.2. Consider

1]
g(z) = (> — 2) p(z) = tPay + ar1t*z + Z (ajz‘2 - aj_g)zf — p 2" — @z
=2

= *ay + Gi(2).

On |z| =1t
13
1GI(@)] < lar|£® + D lagt® = apalt) + |auey |6 + |ay |2
j=2

"
< el + Y [lale® ~ laj—ail ) cos & + (|| + |aj—a|) sin ] )¢
j=2

+ |t [T+ || (by Lemma 3.1)
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— |a1|t3—|~|an_1|t"+l+|a,,|t"+2

+cosa ["]aoltz _ |a[ ’f3 + 2|a2kltzk+2 + 2|a2l—1 |t21-|-l . |anw] II"H . |d,,,t”+2]

n—2
+sino (2 g b Jaole? + lan|e + |au— [+ a, )t
j=2
= tle.
Now since G1(0) =0, then it follows from Schwarz’s Lemma, that
M, )z
|Gi(z)| < tl’ | =tMyjz| for |z} < ¢,

which implies
l9(2)] = |Pa0 + Gi(2)|
> *|ag| — 1G1(2)]
> Elag| — tMy|z]  for |z] < .

Therefore, if |z| < Ry = min{¢|ag|/M;, ¢}, then g(z) # 0 and so p(z) £ 0.
In the following, we again consider the polynomial

2 2
g(z)=(t" —z°) p(z)
"
= t2a0 -} 611122 -+ Z (ajt?‘ Qi3 )Zj - a,,ﬁlz"“ — a,,z"”
Jj=2
= Go(2) — ap2" 2.

Then

1 " »
Z"+IG2 (_ — t2aozn+l —|—a1t2z" + § :(djtz _ajmz)zn-l-l ] _ -1,
Z
j=2

and on |z] =1,

zn+lG2 (l) ‘
Z

< |t2a0|t"+1 + |a1t2]tn + Z |ajt2 _ djmzlt"-i_l—j + |a,,_1[
j=2

"
< Iaolt"+3 + |d1|t”+2 + Z [|52|aj| - Iaj_2|| cosc + (t2|aj| -+ |aj_2|)sin O(] =) + |a’,,_41|
=2

by Lemma 3.1
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2k—2
=|ap|t" + |ag | + |ap—1| Feosa{ (¢ 1) Z |a;|e" !~/
j=0,jeven
21—3 2|n/2] 2)(n+1)2) ~1
DD 1 e St E D SN 7 et
j=1, jodd J=2k+2,jeven J=21+1, jodd

—|—(t4 4 1)(|agk|fn_l_2k + Iaﬂ_lliu_z.f) _ |a0|tn+3 _ ’alltn+2 . |an_1| . Ianlt—-l

n—2
+sina{ (¢ +1) Z la; |7 a7 @ | F @ ) F |
J=2
=M.
Then it follows by the Maximum Modulus Theorem [6, p. 165], that

1
G, ( )l <M, for|z]| <y,

z

which implies
1
|Ga(z)] < Mylz|™!  for |z| = —
From this it follows that

1
lg(z)| = |anzn+2 + Gy(z)| = Ian”z[HZ - 1;‘4r2l?*’|”Jrl for [z| = h

= |z (lau]|z] — M2).

Thué, if |z| = Ry = max{M,/|a,|, 1/t}, then g(z) # 0 and hence p(z) # 0, and the proof of the
theorem is complete. [J
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