Bernstein Inequalities for Polynomials

Robert “Dr. Bob” Gardner

March 8, 2013 (Revised 12/24/2017)

(Prepared in Beamer!)
In 1993, I was desperate to get out of Louisiana and find a university position in a mountainous region of the country. On May 8, 1993 I interviewed here at ETSU for an assistant professor position. I gave a presentation on “Bernstein Inequalities for Polynomials and Other Entire Functions.” This talk on the 20th anniversary of my interview reviews the polynomial results and gives some updates on my work here at ETSU.
The Complex Plane

The field of complex numbers consists of ordered pairs of real numbers, \(\mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\} \), with addition defined as
\((a, b) + (c, d) = (a + c, b + d)\) and multiplication defined as
\((a, b) \cdot (c, d) = (ac - bd, bc + ad)\). We denote \((a, b)\) as \(a + ib\). The modulus of \(z = a + ib\) is \(|z| = \sqrt{a^2 + b^2}\).
Analytic Functions

Definition
A function \(f : G \rightarrow \mathbb{C} \), where \(G \) is an open connected subset of \(\mathbb{C} \), is \textit{analytic} if \(f \) is continuously differentiable on \(G \).

Theorem
If \(f \) is analytic in \(|z - a| < R \) then \(f(z) = \sum_{n=0}^{\infty} a_n(z - a)^n \) for \(|z - a| < R \), where the radius of convergence is at least \(R \).
Maximum Modulus Theorem.

Theorem

Let G be a bounded open set in \mathbb{C} and suppose f is continuous on the closure of G, $\text{cl}(G)$, and analytic in G. Then

$$\max\{|f(z)| \mid z \in \text{cl}(G)\} = \max\{|f(z)| \mid z \in \partial G\}.$$

In addition, if $\max\{|f(z)| \mid z \in G\} = \max\{|f(z)| \mid z \in \partial G\}$, then f is constant.
The Maximum Modulus Theorem for Unbounded Domains.

Theorem

Let D be an open disk in the complex plane. Suppose f is analytic on the complement of D, continuous on the boundary of D, $|f(z)| \leq M$ on ∂D, and $\lim_{|z| \to \infty} f(z) = M$. Then $|f(z)| \leq M$ on the complement of D.

![Diagram of a complex plane with a disk labeled D, showing the real and imaginary axes.]
Lucas’ Theorem.

Theorem

If all the zeros of a polynomial P lie in a half plane in the complex plane, then all the zeros of the derivative P' lie in the same half plane.

Corollary

The convex polygon in the complex plane which contains all the zeros of a polynomial P, also contains all the zeros of P'.
Theorem

If all the zeros of a polynomial P lie in a half plane in the complex plane, then all the zeros of the derivative P' lie in the same half plane.

Corollary

*The convex polygon in the complex plane which contains all the zeros of a polynomial P, also contains all the zeros of P'.***

Fançois Lucas (1842–1891)
Mendeleev’s Data

Russian chemist Dmitri Mendeleev studied the specific gravity of a solution as a function of the percentage of dissolved substance. His data could be closely approximated by quadratic arcs and he wondered if the corners where the arcs joined were real, or due to errors of measurement. His question, after normalization is: “If $p(x)$ is a quadratic polynomial with real coefficients and $|p(x)| \leq 1$ on $[-1, 1]$, then how large can $|p'(x)|$ be on $[-1, 1]$?”

A graph similar to Mendeleev’s

Dmitri Mendeleev (1834–1907)
Markov’s Result

Mendeleev answered his own question and showed that $|p'(x)| \leq 4$ (and the corners were determined to be genuine). Mendeleev told A. A. Markov about his result, and Markov went on to prove the following.

Theorem

If $p(x)$ is a real polynomial of degree n, and $|p(x)| \leq 1$ on $[-1, 1]$ then $|p'(x)| \leq n^2$ on $[-1, 1]$. Equality holds only at ± 1 and only when $p(x) = \pm T_n(x)$, where $T_n(x)$ is the Chebyshev polynomial $\cos(n \cos^{-1} x)$.

Andrei Andreyevich Markov (1856–1922)
Markov’s Result

Mendeleev answered his own question and showed that $|p'(x)| \leq 4$ (and the corners were determined to be genuine). Mendeleev told A. A. Markov about his result, and Markov went on to prove the following.

Theorem

*If $p(x)$ is a real polynomial of degree n, and $|p(x)| \leq 1$ on $[-1, 1]$ then $|p'(x)| \leq n^2$ on $[-1, 1]$. Equality holds only at ± 1 and only when $p(x) = \pm T_n(x)$, where $T_n(x)$ is the Chebyshev polynomial $\cos(n \cos^{-1} x)$.***

Andrei Andreyevich Markov (1856–1922)
We want to address similar inequalities for polynomials over the complex field.

So we are interested in comparing the size of polynomial P over $|z| \leq 1$ to the size of P' over $|z| \leq 1$.
We want to address similar inequalities for polynomials over the complex field.

So we are interested in comparing the size of polynomial P over $|z| \leq 1$ to the size of P' over $|z| \leq 1$.

That is, how large is $\max_{|z| \leq 1} |P'(z)|$ in terms of $\max_{|z| \leq 1} |P(z)|$?
We want to address similar inequalities for polynomials over the complex field.

So we are interested in comparing the size of polynomial P over $|z| \leq 1$ to the size of P' over $|z| \leq 1$.

That is, how large is $\max_{|z| \leq 1} |P'(z)|$ in terms of $\max_{|z| \leq 1} |P(z)|$?

In this direction, we prove the following lemmas.
We want to address similar inequalities for polynomials over the complex field.

So we are interested in comparing the size of polynomial P over $|z| \leq 1$ to the size of P' over $|z| \leq 1$.

That is, how large is $\max_{|z| \leq 1} |P'(z)|$ in terms of $\max_{|z| \leq 1} |P(z)|$?

In this direction, we prove the following lemmas.
Bernstein’s Lemma 1.

Theorem

Rate of Growth, Bernstein. *If p is a polynomial of degree n such that $|p(z)| \leq M$ on $|z| = 1$, then for $R \geq 1$ we have*

$$\max_{|z|=R} |p(z)| \leq MR^n.$$

Proof. For $p(z) = \sum_{k=0}^{n} a_k z^k$ we have $r(z) = z^n p(1/z) = \sum_{k=0}^{n} a_k z^{n-k}$. Notice that for $|z| = 1$ (and $1/z = \bar{z}$) we have $\|r\| = \|p\|$ where $\|p\| = \max_{|z|=1} |p(z)|$. By the Maximum Modulus Theorem, for $|z| \leq 1$ we have $|r(z)| \leq \|r\| = \|p\| \leq M$. That is, $|z^n p(1/z)| \leq M$ for $|z| \leq 1$. Replacing z with $1/z$, we have $|(1/z^n)p(z)| \leq M$ for $|z| \geq 1$, or $|p(z)| \leq M|z|^n$ for $|z| \geq 1$.

\[\square\]
Bernstein’s Lemma 1.

Theorem

Rate of Growth, Bernstein. *If p is a polynomial of degree n such that $|p(z)| \leq M$ on $|z| = 1$, then for $R \geq 1$ we have*

$$\max_{|z|=R} |p(z)| \leq MR^n.$$

Proof. For $p(z) = \sum_{k=0}^n a_k z^k$ we have $r(z) = z^n p(1/z) = \sum_{k=0}^n a_k z^{n-k}$. Notice that for $|z| = 1$ (and $1/z = \bar{z}$) we have $\|r\| = \|p\|$ where $\|p\| = \max_{|z|=1} |p(z)|$. By the Maximum Modulus Theorem, for $|z| \leq 1$ we have $|r(z)| \leq \|r\| = \|p\| \leq M$. That is, $|z^n p(1/z)| \leq M$ for $|z| \leq 1$. Replacing z with $1/z$, we have $|(1/z^n) p(z)| \leq M$ for $|z| \geq 1$, or $|p(z)| \leq M|z|^n$ for $|z| \geq 1$.

\square
Bernstein’s Lemma 2.

Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then $|P'(z)| \leq |Q'(z)|$ for $|z| = 1$.

Proof. Define $f(z) = P(z)/Q(z)$. Then f is analytic on $|z| > 1$, $|f(z)| \leq 1$ for $|z| = 1$, and $\lim_{|z| \to \infty} |f(z)| \leq 1$. So by the Maximum Modulus Theorem for Unbounded Domains,

$$|f(z)| \leq 1 \text{ for } |z| \geq 1. (*)$$
Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

Proof. Define $f(z) = P(z)/Q(z)$. Then f is analytic on $|z| > 1$, $|f(z)| \leq 1$ for $|z| = 1$, and $\lim_{|z| \to \infty} |f(z)| \leq 1$. So by the Maximum Modulus Theorem for Unbounded Domains,

$$|f(z)| \leq 1 \text{ for } |z| \geq 1. \quad (*)$$

Let $|\lambda| > 1$ and define polynomial $g(z) = P(z) - \lambda Q(z)$. If $g(z_0) = P(z_0) - \lambda Q(z_0) = 0$ and if $Q(z_0) \neq 0$ then

$$|P(z_0)| = |\lambda||Q(z_0)| > |Q(z_0)|.$$
Bernstein’s Lemma 2.

Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then

$$|P'(z)| \leq |Q'(z)| \quad \text{for} \quad |z| = 1.$$

Proof. Define $f(z) = P(z)/Q(z)$. Then f is analytic on $|z| > 1$, $|f(z)| \leq 1$ for $|z| = 1$, and $\lim_{|z| \to \infty} |f(z)| \leq 1$.

So by the Maximum Modulus Theorem for Unbounded Domains,

$$|f(z)| \leq 1 \quad \text{for} \quad |z| \geq 1. \quad (\ast)$$

Let $|\lambda| > 1$ and define polynomial $g(z) = P(z) - \lambda Q(z)$. If $g(z_0) = P(z_0) - \lambda Q(z_0) = 0$ and if $Q(z_0) \neq 0$ then

$$|P(z_0)| = |\lambda||Q(z_0)| > |Q(z_0)|.$$
Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

Therefore $|f(z_0)| = |P(z_0)/Q(z_0)| > 1$ and so $|z_0| < 1$ by (\ast).
Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

Therefore $|f(z_0)| = |P(z_0)/Q(z_0)| > 1$ and so $|z_0| < 1$ by (*). Now if $Q(z_0) = 0$, then $|z_0| \leq 1$. So all zeros of g lie in $|z| \leq 1$. So by Lucas’ Theorem, g' has all its zeros in $|z| \leq 1$.
Bernstein’s Lemma 2 (continued).

Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

Therefore $|f(z_0)| = |P(z_0)/Q(z_0)| > 1$ and so $|z_0| < 1$ by (\ast). Now if $Q(z_0) = 0$, then $|z_0| \leq 1$. So all zeros of g lie in $|z| \leq 1$. So by Lucas’ Theorem, g' has all its zeros in $|z| \leq 1$. So for no $|\lambda| > 1$ is

$$g'(z) = P'(z) - \lambda Q(z) = 0 \text{ where } |z| > 1;$$

or in other words, $P'(z)/Q'(z) = \lambda$ where $|\lambda| > 1$ has no solution in $|z| > 1$.

Bernstein’s Lemma 2 (continued).

Lemma

Let \(P \) and \(Q \) be polynomials such that (i) \(\lim_{|z| \to \infty} \left| \frac{p(z)}{q(z)} \right| \leq 1 \), (ii) \(|P(z)| \leq |Q(z)| \) for \(|z| \leq 1 \), and (iii) all zeros of \(Q \) lie in \(|z| \leq 1 \). Then

\[
|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.
\]

Therefore \(|f(z_0)| = \left| \frac{P(z_0)}{Q(z_0)} \right| > 1 \) and so \(|z_0| < 1 \) by \((*)\). Now if \(Q(z_0) = 0 \), then \(|z_0| \leq 1 \). So all zeros of \(g \) lie in \(|z| \leq 1 \). So by Lucas’ Theorem, \(g' \) has all its zeros in \(|z| \leq 1 \). So for no \(|\lambda| > 1 \) is

\[
g'(z) = P'(z) - \lambda Q(z) = 0 \text{ where } |z| > 1;
\]

or in other words, \(P'(z)/Q'(z) = \lambda \) where \(|\lambda| > 1 \) has no solution in \(|z| > 1 \). Hence \(|P'(z)| \leq |Q'(z)| \) for \(|z| > 1 \). By taking limits, we have \(|P'(z)| \leq |Q'(z)| \) for \(|z| \geq 1 \), and the result follows.
Lemma

Let P and Q be polynomials such that (i) $\lim_{|z| \to \infty} |p(z)/q(z)| \leq 1$, (ii) $|P(z)| \leq |Q(z)|$ for $|z| \leq 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. Then

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

Therefore $|f(z_0)| = |P(z_0)/Q(z_0)| > 1$ and so $|z_0| < 1$ by (\ast). Now if $Q(z_0) = 0$, then $|z_0| \leq 1$. So all zeros of g lie in $|z| \leq 1$. So by Lucas' Theorem, g' has all its zeros in $|z| \leq 1$. So for no $|\lambda| > 1$ is

$$g'(z) = P'(z) - \lambda Q(z) = 0 \text{ where } |z| > 1;$$

or in other words, $P'(z)/Q'(z) = \lambda$ where $|\lambda| > 1$ has no solution in $|z| > 1$. Hence $|P'(z)| \leq |Q'(z)|$ for $|z| > 1$. By taking limits, we have $|P'(z)| \leq |Q'(z)|$ for $|z| \geq 1$, and the result follows. □
Bernstein’s Lemma was proved (as stated) by Sergei Bernstein [Leçons sur les propriétés extrémales (Collection Borel) Paris, 1926]. A generalization was proven by Nicolaas de Bruijn [Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. [Proceedings of the Royal Dutch Academy of Sciences] 50 (1947), 1265–1272; Indagationes Mathematicae, Series A 9 (1947), 591–598] where $|z| < 1$ is replaced with a convex domain D (a domain is an open connected set) and $|z| = 1$ is replaced with the boundary of D, ∂D.

Sergei N. Bernstein (1880–1968) Nicolaas de Bruijn (1918–2012)
Bernstein’s Theorem.

Theorem

Let P be a polynomial of degree n. Then

$$\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|.$$

Proof. Let $M = \max_{|z|=1} |P(z)|$ and define $Q(z) = Mz^n$.

Robert “Dr. Bob” Gardner () Bernstein Inequalities for Polynomials

March 8, 2013 (Revised 12/24/2017) 15 / 36
Bernstein’s Theorem.

Theorem

Let P be a polynomial of degree n. Then

$$\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|.$$

Proof. Let $M = \max_{|z|=1} |P(z)|$ and define $Q(z) = Mz^n$. Then

(i) $|P(z)| \leq R^n M$ for $|z| = R$ by Bernstein’s Lemma 1, and so

$$\lim_{|z|=R \to \infty} \frac{|P(z)|}{|Q(z)|} \leq \lim_{|z|=R \to \infty} \frac{(R^n M)/(R^n M)} = 1,$$

(ii) $|P(z)| \leq |Q(z)| = M$ for $|z| = 1$, and (iii) all zeros of Q lie in $|z| \leq 1$.

Robert “Dr. Bob” Gardner ()
Bernstein’s Theorem.

Let P be a polynomial of degree n. Then

$$\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|.$$

Proof. Let $M = \max_{|z|=1} |P(z)|$ and define $Q(z) = Mz^n$. Then

(i) $|P(z)| \leq R^n M$ for $|z| = R$ by Bernstein’s Lemma 1, and so

$$\lim_{|z| \to \infty} \left| \frac{P(z)}{Q(z)} \right| \leq \lim_{R \to \infty} \frac{R^n M}{(R^n M)} = 1,$$

(ii) $|P(z)| \leq |Q(z)| = M$ for $|z| = 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. So

by Bernstein’s Lemma 2

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$
Bernstein’s Theorem.

Let P be a polynomial of degree n. Then

$$\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|.$$

Proof. Let $M = \max_{|z|=1} |P(z)|$ and define $Q(z) = Mz^n$. Then

(i) $|P(z)| \leq R^n M$ for $|z| = R$ by Bernstein’s Lemma 1, and so

$$\lim_{|z|=R \to \infty} |P(z)/Q(z)| \leq \lim_{|z|=R \to \infty} (R^n M)/(R^n M) = 1,$$

(ii) $|P(z)| \leq |Q(z)| = M$ for $|z| = 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. So by Bernstein’s Lemma 2

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

This implies that

$$\max_{|z|=1} |P'(z)| \leq \max_{|z|=1} |Q'(z)| = \max_{|z|=1} |nMz^{n-1}| = nM = n \max_{|z|=1} |P(z)|.$$
Bernstein’s Theorem.

Let P be a polynomial of degree n. Then

$$\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|.$$

Proof. Let $M = \max_{|z|=1} |P(z)|$ and define $Q(z) = Mz^n$. Then

(i) $|P(z)| \leq R^n M$ for $|z| = R$ by Bernstein’s Lemma 1, and so

$$\lim_{|z| \to \infty} \frac{|P(z)|}{|Q(z)|} \leq \lim_{|z| \to \infty} \frac{(R^n M)}{(R^n M)} = 1,$$

(ii) $|P(z)| \leq |Q(z)| = M$ for $|z| = 1$, and (iii) all zeros of Q lie in $|z| \leq 1$. So by Bernstein’s Lemma 2

$$|P'(z)| \leq |Q'(z)| \text{ for } |z| = 1.$$

This implies that

$$\max_{|z|=1} |P'(z)| \leq \max_{|z|=1} |Q'(z)| = \max_{|z|=1} |nMz^{n-1}| = nM = n \max_{|z|=1} |P(z)|.$$
Max Norms

For reasons to be made apparent later, we introduce the following notation:

\[\| P \|_\infty = \max_{|z|=1} |P(z)|. \]

Bernstein’s Theorem can then be stated as:

Theorem

Let \(P \) be a polynomial of degree \(n \). Then

\[\| P' \|_\infty \leq n \| P \|_\infty. \]
Max Norms

For reasons to be made apparent later, we introduce the following notation:

\[\| P \|_\infty = \max_{|z|=1} |P(z)|. \]

Bernstein’s Theorem can then be stated as:

Theorem

Let P be a polynomial of degree n. Then

\[\| P' \|_\infty \leq n \| P \|_\infty. \]
Erdős-Lax Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < 1$. Then

$$\|P'\|_\infty \leq \frac{n}{2} \|P\|_\infty.$$

Note. This result was conjectured by Erdős and proved by Lax. It is sharp for $P(z) = \alpha z^n + \beta$ where $|\alpha| = |\beta|$.
Erdős-Lax Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < 1$. Then

\[\|P'\|_{\infty} \leq \frac{n}{2} \|P\|_{\infty}. \]

Note. This result was conjectured by Erdős and proved by Lax. It is sharp for $P(z) = \alpha z^n + \beta$ where $|\alpha| = |\beta|$.

Paul Erdős (1913–1996)

Peter D. Lax (1926–)
Erdős-Lax Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < 1$. Then

$$\|P'\|_\infty \leq \frac{n}{2} \|P\|_\infty.$$

Note. This result was conjectured by Erdős and proved by Lax. It is sharp for $P(z) = \alpha z^n + \beta$ where $|\alpha| = |\beta|$.

Paul Erdős (1913–1996)
Peter D. Lax (1926–)
Malik’s Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < K$, where $K \geq 1$. Then

$$\|P'\|_\infty \leq \frac{n}{1 + K} \|P\|_\infty.$$

Malik’s Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < K$, where $K \geq 1$. Then

$$\|P'\|_\infty \leq \frac{n}{1 + K} \|P\|_\infty.$$

Note. This result is sharp for $P(z) = \left(\frac{z + K}{1 + K}\right)^n$.

With $K = 1$, Malik’s Theorem reduces to the Erd˝ os-Lax Theorem.
Malik’s Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < K$, where $K \geq 1$. Then

$$\|P'\|_{\infty} \leq \frac{n}{1 + K} \|P\|_{\infty}.$$

Note. This result is sharp for $P(z) = \left(\frac{z + K}{1 + K}\right)^n$.

Note. With $K = 1$, Malik’s Theorem reduces to the Erdős-Lax Theorem.
Malik’s Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < K$, where $K \geq 1$. Then

$$
\|P'\|_{\infty} \leq \frac{n}{1 + K} \|P\|_{\infty}.
$$

Note. This result is sharp for $P(z) = \left(\frac{z + K}{1 + K} \right)^n$.

Note. With $K = 1$, Malik’s Theorem reduces to the Erdős-Lax Theorem.
Govil-Labelle Theorem

Theorem

If \(P(z) = a_n \prod_{v=1}^{n} (z - z_v) \) (\(a_n \neq 0 \)), and \(|z_v| \geq K_v \geq 1 \). Then

\[
\|P'\|_\infty \leq \frac{n}{2} \left(1 - \frac{1}{1 + \frac{2}{n} \sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) \|P\|_\infty.
\]

Theorem

If \(P(z) = a_n \prod_{v=1}^{n} (z - z_v) \) (\(a_n \neq 0 \)), and \(|z_v| \geq K_v \geq 1 \). Then

\[
\|P'\|_\infty \leq \frac{n}{2} \left(1 - \frac{1}{1 + \frac{2}{n} \sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) \|P\|_\infty.
\]

Note. This result reduces to Malik’s Theorem if \(K_v \geq K \geq 1 \) for all \(v \), and reduces to the Erdős-Lax Theorem if \(K_v = 1 \) for some \(v \).
Govil-Labelle Theorem

Theorem

If \(P(z) = a_n \prod_{v=1}^{n} (z - z_v) \) \((a_n \neq 0)\), and \(|z_v| \geq K_v \geq 1\). Then

\[
\|P'\|_\infty \leq \frac{n}{2} \left(1 - \frac{1}{1 + \frac{2}{n} \sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) \|P\|_\infty.
\]

Note. This result reduces to Malik’s Theorem if \(K_v \geq K \geq 1 \) for all \(v \), and reduces to the Erdős-Lax Theorem if \(K_v = 1 \) for some \(v \).
Govil, Malik, and Labelle are each Ph.D. students of Professor Qazi I. Rahman of the University of Montreal: Mohammad Malik (Ph.D. 1967), Narendra Govil (Ph.D. 1968), and Gilbert Labelle (Ph.D. 1969).

Narendra Govil, Qazi Rahman, and Robert Gardner at the 2005 Fall Southeast Section AMS Meeting, October 2005, at ETSU.
Normed Linear Spaces

Definition
Let \(X \) be a set of [equivalence classes of] functions. Then \(X \) is a *linear space* if for all \(f, g \in X \) [or for all equivalence classes \([f], [g] \in X\)] and \(\alpha, \beta \in \mathbb{R} \), \(\alpha f + \beta g \in X \) [or \(\alpha[f] + \beta[g] \in X \)].

Definition
Let \(X \) be a linear space. A real-valued functional (i.e., a function with \(X \) as its domain and \(\mathbb{R} \) as its codomain) \(\| \cdot \| \) on \(X \) is a *norm* if for all \(f, g \in X \) and for all \(\alpha \in \mathbb{R} \):

1. \(\| f + g \| \leq \| f \| + \| g \| \) (Triangle Inequality).
2. \(\| \alpha f \| = |\alpha| \| f \| \) (Positive Homogeneity).
3. \(\| f \| \geq 0 \) and \(\| f \| = 0 \) if and only if \(f = 0 \).
Real L^p Spaces

Definition

A normed linear space is a linear space X with a norm $\| \cdot \|$.

Definition

Let E be a measurable set of real numbers and let $1 \leq p < \infty$. Define $L^p(E)$ to be the set of [equivalence classes of] functions for which
\[\int_E |f|^p < \infty. \]

Definition

For measurable set E, $L^p(E)$ is a normed linear space with norm
\[\|f\|_p = \left(\int_E |f|^p \right)^{1/p} \]
In fact, $L^p(E)$ is a complete normed linear space (i.e., a Banach space).
L^p Norm

Definition

Let P be a complex polynomial. For $p \geq 1$ the L^p norm of P is

$$\|P\|_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p \, d\theta \right\}^{1/p}.$$

Theorem

If we let $p \to \infty$, then we find that

$$\lim_{p \to \infty} \|P\|_p = \lim_{p \to \infty} \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p \, d\theta \right\}^{1/p} = \max_{|z|=1} |P'(z)| \equiv \|P\|_\infty.$$
Theorem

Let P be a polynomial of degree n. Then for $1 \leq p \leq \infty$, $\|P'\|_p \leq n\|P\|_p$.

DeBruijn’s Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < 1$. Then for $1 \leq p \leq \infty$,

$$\|P'\|_p \leq \frac{n}{\|1 + z\|_p} \|P\|_p.$$

Note. If we let $p \to \infty$, DeBruijn’s Theorem reduces to the Erdös-Lax Theorem.
DeBruijn’s Theorem.

Theorem

Let P be a polynomial of degree n with $P(z) \neq 0$ in $|z| < 1$. Then for $1 \leq p \leq \infty$,

$$\|P'\|_p \leq \frac{n}{\|1 + z\|_p} \|P\|_p.$$

Note. If we let $p \to \infty$, DeBruijn’s Theorem reduces to the Erdös-Lax Theorem.
Gardner-Govil Theorem

Theorem

If \(P(z) = a_n \prod_{v=1}^{n}(z - z_v) \) (\(a_n \neq 0 \), and \(|z_v| \geq K_v \geq 1 \). Then for \(p \geq 1 \),

\[
\| P' \|_p \leq \frac{n}{\| t_0 + z \|_p} \| P \|_p
\]

where \(t_0 = \left(\frac{\sum_{v=1}^{n} K_v}{\sum_{v=1}^{n} K_v - 1} \right) = 1 + \frac{n}{\sum_{v=1}^{n} \frac{1}{K_v - 1}}. \)

Theorem

If \(P(z) = a_n \prod_{v=1}^{n} (z - z_v) \) (\(a_n \neq 0 \)), and \(|z_v| \geq K_v \geq 1 \). Then for \(p \geq 1 \),

\[
\| P' \|_p \leq \frac{n}{\| t_0 + z \|_p} \| P \|_p
\]

where \(t_0 = \left(\frac{\sum_{v=1}^{n} \frac{K_v}{K_v - 1}}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) = 1 + \frac{n}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \).

Note. If \(K_v = 1 \) for any \(v \), this result reduces to Debruijn's Theorem. If \(p \to \infty \), then this result reduces to the Govil-Labelle Theorem.
Gardner-Govil Theorem

Theorem

If \(P(z) = a_n \prod_{\nu=1}^{n}(z - z_{\nu}) \) (\(a_n \neq 0 \)), and \(|z_{\nu}| \geq K_{\nu} \geq 1 \). Then for \(p \geq 1 \),

\[
\| P' \|_p \leq \frac{n}{\| t_0 + z \|_p} \| P \|_p
\]

where \(t_0 = \left(\frac{\sum_{\nu=1}^{n} K_{\nu}}{\sum_{\nu=1}^{n} \frac{1}{K_{\nu} - 1}} \right) = 1 + \frac{n}{\sum_{\nu=1}^{n} \frac{1}{K_{\nu} - 1}} \).

Note. If \(K_{\nu} = 1 \) for any \(\nu \), this result reduces to Debruijn’s Theorem. If \(p \to \infty \), then this result reduces to the Govil-Labelle Theorem.
L^p “Quantities”, $0 \leq p < 1$

Definition

Let P be a polynomial. For $0 < p < 1$ define the “L^p quantity” of P as

$$\|P\|_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p \, d\theta \right\}^{1/p}.$$

Note. In the event that we let $p \to 0^+$, we find that

$$\lim_{p \to 0^+} \|P\|_p = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| \, d\theta \right).$$

We define this as the “L_0 quantity” of P, denoted $\|P\|_0$.
Definition

Let P be a polynomial. For $0 < p < 1$ define the “L^p quantity” of P as

$$
\|P\|_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p \, d\theta \right\}^{1/p}.
$$

Note. In the event that we let $p \to 0^+$, we find that

$$
\lim_{p \to 0^+} \|P\|_p = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| \, d\theta \right).
$$

We define this as the “L_0 quantity” of P, denoted $\|P\|_0$.

Note. For $0 \leq p < 1$, the L^p quantity of a polynomial does not satisfy the Triangle Inequality. In fact (see Halsey Royden’s Real Analysis, 3rd Edition, page 120): $\|f + g\|_p \geq \|f\|_p + \|g\|_p$.
L^p “Quantities”, $0 \leq p < 1$

Definition

Let P be a polynomial. For $0 < p < 1$ define the “L^p quantity” of P as

$$\|P\|_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p \, d\theta \right\}^{1/p}.$$

Note. In the event that we let $p \to 0^+$, we find that

$$\lim_{p \to 0^+} \|P\|_p = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| \, d\theta \right).$$

We define this as the “L_0 quantity” of P, denoted $\|P\|_0$.

Note. For $0 \leq p < 1$, the L^p quantity of a polynomial does not satisfy the Triangle Inequality. In fact (see Halsey Royden’s *Real Analysis*, 3rd Edition, page 120): $\|f + g\|_p \geq \|f\|_p + \|g\|_p$.
Other Types of Bernstein Inequalities

Theorem

If \(P(z) = a_n \prod_{v=1}^{n} (z - z_v) \) \((a_n \neq 0)\), and \(|z_v| \geq K_v \geq 1\). Then for \(0 \leq p < 1 \),

\[
\| P' \|_p \leq \frac{n}{\| t_0 + z \|_p} \| P \|_p
\]

where \(t_0 = \left(\frac{\sum_{v=1}^{n} \frac{K_v}{K_v - 1}}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) = 1 + \frac{n}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \).

Theorem

If \(P(z) = a_n \prod_{v=1}^{n}(z - z_v) \) \((a_n \neq 0)\), and \(|z_v| \geq K_v \geq 1 \). Then for \(0 \leq p < 1 \),

\[
\| P' \|_p \leq \frac{n}{\| t_0 + z \|_p} \| P \|_p
\]

where \(t_0 = \left(\frac{\sum_{v=1}^{n} \frac{K_v}{K_v - 1}}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) = 1 + \frac{n}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \).

Note. With some \(K_v = 1 \), we can extend DeBruijn to \(0 \leq p < 1 \): Let \(P \) be a polynomial of degree \(n \) with \(P(z) \neq 0 \) in \(|z| < 1 \). Then for \(0 \leq p \leq \infty \),

\[
\| P' \|_p \leq \frac{n}{\| 1 + z \|_p} \| P \|_p.
\]
Theorem
If \(P(z) = a_n \prod_{v=1}^{n} (z - z_{v}) \) (\(a_n \neq 0 \)), and \(|z_v| \geq K_v \geq 1 \). Then for \(0 \leq p < 1 \),
\[
\| P' \|_p \leq \frac{n}{\| t_0 + z \|_p} \| P \|_p
\]
where \(t_0 = \left(\frac{\sum_{v=1}^{n} \frac{K_v}{K_v - 1}}{\sum_{v=1}^{n} 1} \right) = 1 + \frac{n}{\sum_{v=1}^{n} \frac{1}{K_v - 1}} \).

Note. With some \(K_v = 1 \), we can extend DeBruijn to \(0 \leq p < 1 \): Let \(P \) be a polynomial of degree \(n \) with \(P(z) \neq 0 \) in \(|z| < 1 \). Then for \(0 \leq p \leq \infty \),
\[
\| P' \|_p \leq \frac{n}{\| 1 + z \|_p} \| P \|_p.
\]
A New Linear Space of Polynomials

Definition

Let $P_{n,m}$ denote the set of all polynomials of the form

$$P(z) = a_0 + \sum_{v=m}^{n} a_v z^v = a_0 + a_m z^m + a_{m+1} z^{m+1} + \cdots + a_n z^n.$$

Note. $P_{n,m}$ is a linear space and $P_{n,1} = P_n$.
A New Linear Space of Polynomials

Definition

Let $\mathcal{P}_{n,m}$ denote the set of all polynomials of the form

$$P(z) = a_0 + \sum_{v=m}^{n} a_v z^v = a_0 + a_m z^m + a_{m+1} z^{m+1} + \cdots + a_n z^n.$$

Note. $\mathcal{P}_{n,m}$ is a linear space and $\mathcal{P}_{n,1} = \mathcal{P}_n$.
Chan-Malik Theorem

Theorem

If $P \in \mathcal{P}_{n,m}$ and $P(z) \neq 0$ for $|z| < K$ where $K \geq 1$, then

$$\|P'\|_{\infty} \leq \frac{n}{1 + K^m} \|P\|_{\infty}.$$

Chan-Malik Theorem

Theorem

If $P \in \mathcal{P}_{n,m}$ and $P(z) \neq 0$ for $|z| < K$ where $K \geq 1$, then

$$\|P'\|_{\infty} \leq \frac{n}{1 + K^m} \|P\|_{\infty}.$$

Note. With $m = 1$, the Chan-Malik Theorem reduces to Malik’s Theorem.
Chan-Malik Theorem

Theorem

If $P \in \mathcal{P}_{n,m}$ and $P(z) \neq 0$ for $|z| < K$ where $K \geq 1$, then

$$\|P'\|_{\infty} \leq \frac{n}{1 + K^m} \|P\|_{\infty}.$$

Note. With $m = 1$, the Chan-Malik Theorem reduces to Malik’s Theorem.
Qazi’s Theorem

Theorem

If \(P(z) = a_0 + \sum_{v=m}^{n} a_v z^v \in \mathcal{P}_{n,m} \) and \(P(z) \neq 0 \) for \(|z| < K \) where \(K \geq 1 \), then

\[
\| P' \|_{\infty} \leq \frac{n}{1 + s_0} \| P \|_{\infty},
\]

where \(s_0 = K^{m+1} \left(\frac{m|a_m|K^{m-1} + n|a_0|}{n|a_0| + m|a_m|K^{m+1}} \right) \).

Qazi’s Theorem

Theorem

If \(P(z) = a_0 + \sum_{v=m}^n a_v z^v \in \mathcal{P}_{n,m} \) and \(P(z) \neq 0 \) for \(|z| < K \) where \(K \geq 1 \), then

\[
\|P'\|_\infty \leq \frac{n}{1 + s_0} \|P\|_\infty,
\]

where \(s_0 = K^{m+1} \left(\frac{m|a_m|K^{m-1} + n|a_0|}{n|a_0| + m|a_m|K^{m+1}} \right) \).

Note. Qazi worked independently of Chan and Malik. Since \(m|a_m|K^m \leq n|a_0| \) (as Qazi explains in his paper), this result implies the Chan-Malik Theorem.
Qazi’s Theorem

Theorem

If \(P(z) = a_0 + \sum_{v=m}^{n} a_v z^v \in \mathcal{P}_{n,m} \) and \(P(z) \neq 0 \) for \(|z| < K\) where \(K \geq 1\), then

\[
\|P'|_\infty \leq \frac{n}{1 + s_0} \|P\|_\infty,
\]

where \(s_0 = K^{m+1} \left(\frac{m|a_m|K^{m-1} + n|a_0|}{n|a_0| + m|a_m|K^{m+1}} \right) \).

Note. Qazi worked independently of Chan and Malik. Since \(m|a_m|K^m \leq n|a_0| \) (as Qazi explains in his paper), this result implies the Chan-Malik Theorem.
Gardner-Weems Theorem

Theorem

If \(P(z) = a_0 + \sum_{v=m}^{n} a_v z^v \in \mathcal{P}_{n,m} \) and \(P(z) \neq 0 \) for \(|z| < K \) where \(K \geq 1 \), then for \(0 \leq p \leq \infty \)

\[
\|P'\|_p \leq \frac{n}{\|s_0 + z\|_p} \|P\|_p,
\]

where \(s_0 = K^{m+1} \left(\frac{m |a_m| K^{m-1} + n |a_0|}{n |a_0| + m |a_m| K^{m+1}} \right). \)

Gardner-Weems Theorem

Theorem

If \(P(z) = a_0 + \sum_{v=m}^{n} a_v z^v \in \mathcal{P}_{n,m} \) and \(P(z) \neq 0 \) for \(|z| < K \) where \(K \geq 1 \), then for \(0 \leq p \leq \infty \)

\[
\|P'\|_p \leq \frac{n}{\|s_0 + z\|_p} \|P\|_p,
\]

where \(s_0 = K^{m+1} \left(\frac{m|a_m| K^{m-1} + n|a_0|}{n|a_0| + m|a_m| K^{m+1}} \right) \).

Other Types of Bernstein Inequalities

Gardner-Weems Corollary

Note. With $p = \infty$, this reduces to Qazi’s Theorem, and further reduces to the Chan-Malik Theorem. If $p = \infty$ and $m = 1$ this reduces to Malik’s Theorem, and if in addition $K = 1$ then it reduces to the Erdős-Lax Theorem.

Corollary

If $P \in \mathcal{P}_{n,m}$ and $P(z) \neq 0$ for $|z| < K$ where $K \geq 1$, then for $1 \leq p \leq \infty$

$$\|P'\|_p \leq \frac{n}{\|K^m + z\|_p} \|P\|_p.$$
Gardner-Weems Corollary

Note. With \(p = \infty \), this reduces to Qazi’s Theorem, and further reduces to the Chan-Malik Theorem. If \(p = \infty \) and \(m = 1 \) this reduces to Malik’s Theorem, and if in addition \(K = 1 \) then it reduces to the Erdős-Lax Theorem.

Corollary

If \(P \in \mathcal{P}_{n,m} \) and \(P(z) \neq 0 \) for \(|z| < K \) where \(K \geq 1 \), then for \(1 \leq p \leq \infty \)

\[
\| P' \|_p \leq \frac{n}{\| K^m + z \|_p} \| P \|_p.
\]

Note. This corollary follows since \(m|a_m|K^m \leq n|a_0| \) (as Qazi explains). Of course, the corollary also holds for \(0 \leq p < 1 \) (though does not then involve norms).
Gardner-Weems Corollary

Note. With $p = \infty$, this reduces to Qazi’s Theorem, and further reduces to the Chan-Malik Theorem. If $p = \infty$ and $m = 1$ this reduces to Malik’s Theorem, and if in addition $K = 1$ then it reduces to the Erdős-Lax Theorem.

Corollary

If $P \in \mathcal{P}_{n,m}$ and $P(z) \neq 0$ for $|z| < K$ where $K \geq 1$, then for $1 \leq p \leq \infty$

$$
\|P'\|_p \leq \frac{n}{\|K^m + z\|_p} \|P\|_p.
$$

Note. This corollary follows since $m|a_m|K^m \leq n|a_0|$ (as Qazi explains). Of course, the corollary also holds for $0 \leq p < 1$ (though does not then involve norms).

ETSU will offer **Introduction to Functional Analysis** (MATH 5740) during Summer 2013 Term 1. Linear spaces and L^p norms will be a central topic. The prerequisite is Analysis 1 (MATH 4217/5217). During academic 2013–14, **Complex Analysis 1 and 2** (MATH 5510/5520) will be offered. Analytic functions and complex integration will be covered in part 1. The prerequisite is also Analysis 1 and no previous experience with complex variables is assumed. Complex Analysis 2 will cover the Maximum Modulus Theorem and analytic continuation.
Photographs of mathematicians are primarily from http://www-history.mcs.st-and.ac.uk/.