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1.1 VECTOR SPACES - INTRODUCTION

Note. A vector space consists of two things: scalars
and vectors. We take as our scalar field either the

real numbers R or the complex numbers C.

Definition. A vector space consists of two nonempty
sets: a set V of vectors and a set F' of scalars. An
operation called vector addition is defined on E and
an operation called scalar multiplication allows us to
multiply a vector by a scalar. The set V is closed
under these operations. That is,

1. ifz,y €V then x +y €V, and

2. if A€ Fandx €V, then \x € V.



We also require the following conditions:

(a) s+y=y+axforallz,yeV

(b) (x+y)+z=x+(y+2z)forall z,y,z €V

(c) For all z,y € V, there exists z € V such that
r+z2=y |

(d) a(Bz) = (af)z forall o, € F and forallz € V
(e) (a+ B)x = ax + Pz for all o, 8 € F and for all
x eV |

(f) a(x +y) = az + ay for all @ € F and for all
x,y €V

(g) lx =z forallz e V.

Note Some consequences of the definition of vector
spaces are:

1. There exists a unique vector 0 called the zero
vector such that 0 +zx=zgforallz e V.

2. For each x € V, there exists a unique y € V such
that x + y = 0. This y is denoted —x and equals
—1x.

3. If A\x = 0 then either A =0 or x = 0.



1.2 VECTOR SPACES - EXAMPLES

Example. n—dimensional Euclidean space R" is a
vector space. With n = 2 or 3, this yields the famil-
iar idea of vectors as “arrows” which represent posi-
tion, velocity, or acceleration in introductory physics
and engineering classes. In general, elements of R®
lool like z = (1, %9,...,x,) where each x; €ER (we
take the scalar field to be R).

Example. C" = {(21,29,...,2,) | z; €C} forms a
complex vector space (we take the scalar field to be
C). Notice that the “arrows” interpretation is more
difficult here (at least for n > 1).

Note. You are probably most familiar with the vec-
tor spaces R™ and C” and their associated “arrows”
interpretations. To make the transition to Hilbert
spaces, you need to broaden your idea of what a

vector is!



1.3 VECTOR SPACES - DIMENSION

Example. The collection of all polynomials of de-
gree n or less forms a vector space of dimension n+1

(we can take real or complex polynomials) denoted
P

Notice. There is a “natural relationship” between
P, and R, For Example, we can associate with
the polynomial p(z) = a¢ + a1z + asz® € P, the

element (ag, a1, as) €ERS.

Example. The collection of all continuous functions
(on R) forms a vector space. Notice that if f and
g are continuous, then for all o, 8 €R, af + B¢ is
continuous. This is, in some sense, a much more
complicated vector space than a space of polynomi-

als.



Definition. Let V be a vector space and let
1,29, ...,2; € V.

A linear combination of these vectors is a sum of the

form
Q1T + Qoo + + + ¢+ QT

where oy, oo, . .., oy are scalars.

Definition. A finite collection of vectors
{z1,29,..., 2%}
is linearly independent if
Q1x1 + oy + -+ + apxr = 0

implies that a1 = a9 = -~ = 0. A collection of
vectors which is not linearly independent, is linearly

dependent.

Notice. The vectors (1,0,0),(0,1,0), (0,0,1) are
linearly independent vectors in R3. The vectors 1, z, 2

are linearly independent vectors in Ps.



Note. If a mass m is put on a spring (with spring
constant k) which is suspended vertically and dis-
placed, then its motion is described by the second
order linear differential equation

d’x k

dt? i m
There are two “fundamental” solutions to this DE:
z(t) = coswt and z(t) = sinwt, where w = \/k/m.
In fact, any linear combination of these two solu-

r = 0.

tions is again a solution and the general solution is
z(t) = c1coswt + cosinwt. In fact, the collection of
all solutions of the DE form a vector space which is
“generated” by the sin and cos. (Of course, this is

simple harmonic motion.)



Definition. The span of a finite set of vectors

{1, 29, ..., 21}

is the collection of all possible linear combinations of

the vectors:
span({x1, 2, ..., Zr}) = {on®1 + a®a + - - + oy |

a1, 0, . . ., af € F(the scalar field)}.

Note. The span of a set of vectors is a vector space
(algebraic properties are inherited from the “larger”
vector space, and closure follows from the definition

of span).

Note. The collection of all possible solutions of

d’z k , .
—-+—x = 0 is the vector space span(cos wt, sin wt).
dt?  m



Definition. A set of vectors B C V is a basis of V' if
B is linearly independent and span B = V. If a vec-
tor space has a finite basis, it is finite dimensional.

Otherwise, it is infinite dimensional.

Note. The vector space of all possible solutions of

d’z k& : :
Tt o= 0 has as a basis {coswt,sinwt} (no-
tice that this basis is not unique!). Therefore, this

second order linear homogeneous ODE has a two

dimensional vector space of solutions.

Note. The vector space R? has as a basis

{(1,0,0), (0,1,0), (0,0,1)}-.

The vector space P, has as a basis {1,z,z%}. In

general, a basis for R” is
{(1,0,0,0,...,0),(0,1,0,0,...,0),(0,0,1,0,...,0),

...,(0,0,0,0,...,0,1)}.



Note. The set of all sequences
{(z1,29,...) | z; € R}
forms an infinite dimensional vector space with basis
{(1,0,0,...),(0,1,0,...),(0,0,1,0,.. )}

(...we have not defined the term “basis” for an infi-

nite dimensional vector space, though!)

Note. It is tempting to think of the collection of
basis vectors as pointing in a bunch of different di-
rections. Well... give into the dark side! We still
need an idea of orthogonality to complete this geo-
‘metric interpretation, but that’s where we’re headed!
It may seem wierd to think of “the direction z2” or
the “direction coswt,” BUT DO IT!

LOT’S OF GEOMETRY TO FOLLOW!
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1.4 VECTOR SPACES - ISOMORPHISM

Note/Definition. An isomorphism between vec-
tor spaces Vi and V5, both over the scalar field F,
is a function m which maps the vectors of V; to
the vectors of V5 such that the operations of vec-
tor addition and scalar multiplication are preserved.
We say Vi is isomorphic to V,, denoted V] £ V..
For example, R> & P,. An isomorphism between
R3 and P is the mapping 7 :R® — P, defined as
7((ao, a1, a2)) = ag + a1z + asx?. Notice that

1. vector addition is preserved:

m((ao, a1, az) + (bo, b1,02)) = w((ag + bo, a1 + by, as + by))
= (CL() + bo) + (CLl + bl).cc
+(ag + by)x?
= (ag + a1z + ayz?)
+(by + by + boz?)
= m((ao, a1, az)) + m((bo, by, bs))
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2. scalar multiplication is preserved:

71‘(0&(0,0, ai, a’2)) — 71'((0!0,0, a, Oda,g))
= aag + otz + aasx?
— Of(ao + a1x + a2332)

= Odﬂ'(a,o, ai, ag).

Theorem. “Fundamental Theorem of Linear

Algebra”
An n dimensional vector space over the field R (or

F'in general) is isomorphic to R™ (or F™ in general).

Note. This theorem tells us that all finite dimen-
sional vector spaces “look like” R". So... what does

an infinite dimensional vector space “look like?”
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