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2.1 VECTOR SPACES AND HILBERT
SPACES - NORMS

Definition. A real function || - || on a vector space
H is a norm if

(a) ||z|]| > 0 for all z € V and ||z|| = 0 if and only if
x =0

(b) ||Az]| = |A|||z]| for all z € V and X € F

(©) llz+yll < ||zl + |ly]| for all z,y € V (triangle
inequality).

Note. If || - || is a norm on a vector space, then
d(z,y) = ||z—y|| defines a metric on the vector space

with which we can measure distance.

Example. A norm on R” is

lzl| = yaf + a3+ +a)

where = (x1,29,...,2,) €R" This is the Eu-
clidean norm and can be used to define the Fuclidean
metric on R". Notice that for » = 1 this is simply

absolute value.



Example. Another norm on R” is
2] = @] + || + - - - + |

where x = (x1, ©9,...,%,) €ER™ For n = 2 the unit
“ball” {z | ||z|| < 1} is:

R
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Example. A norm on the vector space of all func-

tions continuous on [0, 1] is

IF]l = max [f(z)]

Another norm on this space is

171l = (i 1£ () da}

Example. A norm on C” is

2] = V|22 + |z + - - + |22

where z = (21, 29,..., 2,) €C".



2.2 VECTOR SPACES AND HILBERT
SPACES - COMPLETENESS

Note. We now need to explore the difficult subject

of completeness.

Definition. A sequence of vectors {x,} in a normed
space 1s a Cauchy sequence if for every € > 0, there
exists a number M such that ||z,, — z,|| < € for all
m,n > M.

Note. A sequence of real numbers is Cauchy if and

only if it is convergent.

Definition. A vector space is complete if every

Cauchy sequence converges.



Geometric Note. When you hear the term “com-

plete,” think “no holes.” The rational numbers

Q= {p/qlp,g€Z,q# 0}

is not a complete vector space (here we take the

scalar field to be Q itself) since the sequence
{1,1.4,1.41,1.414,...)

is Cauchy but does not converge in this space (since
the limit is v/2). In some sense, Q is not complete
since it has holes! In particular, it has a hole at /2.

Definition. A complete normed vector space is a

Banach space.

Note. The real numbers are complete (in fact, this
is part of the definiton of R) and so form a Ba-
nach space. More generally, R" and C" form Banach

spaces.



Example. The vector space of all square summable

sequences of complex numbers
I’ = {(z1,22, ...) | 2 € C and _%1 |z < oo}
with the norm
o0 ) 1/2
I(or, 22, )l = (& Il

is a (very fundamental) Banach space. This is a
somewhat difficult result and it is not even clear that

this space is closed under addition.



2.3 VECTOR SPACES AND HILBERT
SPACES - INNER PRODUCTS

Note. We are ultimately interested in generalizing
the idea of dot product in R™ (or C") to the setting

of infinite dimensional spaces.

Definition. Let V be a vector space over the field

of scalars C. A mapping
(,): VxV->C

is an nner product in V if for any z,y,z € V and
o, 3 € C, the following hold:

(a) (x,y) = (y,x) (the bar represents complex con-
jugate),

(b) (az + By, 2) = a(z, 2) + B(y, ),

(¢) (z,2) > 0 and (z,z) = 0 implies z = 0.

A vector space with an inner product is an inner

product space (or pre-Hilbert space).



Example. An inner product can be put on the real

vector space R" as follows: for x = (z1,29,...,2,)

and vy = (y1,¥Y2,...,Yn), define
(2,y) =2 -y = 1 ziy;.

Example. An inner product can be put on the com-

plex vector space C" as follows: for x = (1, %9, ..., T,)

and y = (y1,¥2,...,Ys), define
(35', y) — ,il:l Cl?‘z@

Example. An inner product can be put on the

vector space [* as follows: for z = (z1,29,...) and

y = (Y1,¥2,...) define
(,y) =
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1—=1

Notice. In each of the three inner product spaces
above, the inner product can be used to define a
norm: ||z|| = /(z,z). In fact, in each case the norm
determined by the inner product is the norm on the
vector space we mentioned when these spaces were

originally introduced.



Example. The space L?([a, b]) of all square (Lebesgue)

integrable functions on the real interval [a, b]:
fy 1f ()2 dz < oo
has as an inner product defined by

(£,9) = |, f(2)9(w) dax.

THIS IS AN IMPORTANT INNER PROD-
UCT SPACE!

L*([a, b)) = {f : [a,8] = C

Definition/Theorem. An inner product space has

a norm || - || induced by the inner product as follows:

]l = /(z, z).

Note. From the definition of inner prOduct, it is
clear that ||z|| > 0 and [|Az|| = |A|||z]| for all scalars
A and vectors . To establish the triangle inequality

is a bit harder.



Note. Since an inner product space necessarily has

a norm, it is of interest to know if this normed space

is a Banach space (i.e. if it is complete).

Note. A geometrically suggestive result is the fol-

lowing:

Theorem (Parallelogram Law).
For any two elements z and y of an inner product

space, we have
lz +ylI* + llz — ylI* = 4(l|=]1* + llyl*).

In R?, this implies:
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Definition. Two vectors x and ¥ in an inner prod-

uct space are orthogonal if (x,y) = 0.

Note. Another geometrically suggestive result is:

Theorem (Pythagorean Formula.)

If z and y are orthogonal vectors in an inner product

space, then
lz +ylI* = [l]|* + [ly]I>

In R?, this is simply the Pythagorcan Theorem.
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2.4 VECTOR SPACES AND HILBERT
SPACES - HILBERT SPACES

Definition. A complete inner product space is a

Hilbert space.

Note. We have the following general inclusions:

Hilbert spaces C Banach spaces C vector spaces

Example. We have already seen several examples

of Hilbert spaces. Some of these are:

(a) C" = {(z1,29,...,20) | 2z € C}

(b) 12 = {(21,22, )|z €C and z |zz|2 < oo}

(c) LQ([a,b]):{ f:la,b) = C |2d33<oo}.
To establish that these are in fact Hilbert spaces, the
only difficult part is the establishment of complete-

ness.
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2.4.1 Bases in Hilbert Spaces

Note. We now explore the idea of a basis of a
Hilbert space (the following two definitions are from

“An Introduction to Nonharmonic Fourier Series” by
R. Young).

Definition. A Hamel basis of an infinite dimen-
sional Banach space is a linearly independent set
that spans the space (this is the same as the defi-

nition of basis in finite dimensional vector spaces).

Note. If we have a Hamel basis H of a Banach space
B then each x € B can be written as z = z‘i o;h; for
some FINITE collection {h;} C H and for some set
of scalars {a;}. Unfortunately, such bases cannot in
general be constructed (and therefore are of limited
use). In fact, the proof of the existence of a Hamel
basis for an arbitrary Banach space requires the use
of the Axiom of Choice.
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Definition. A Schauder basis of an infinite dimen-
sional Banach space is a set of vectors {x,zs,...}
such that for any vector x in the Banach space, there
is a unique sequence of scalars {aj, as, ...} such that
=3 LT
i=1

Note. Not every Banach space has a Schauder ba-
sis. We are interested in Hilbert spaces which have

Schauder bases.

2.4.2 Seperable Hilbert Spaces

Note. We now need a few “mathy” definitions.

Definition. A set is countableif a complete “listing”

of the set can be made.
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Examples.

The natural numbers are countable: {1,2,3,...}.
The integers are countable: {0,1,—1,2,—-2,...}.
Surprisingly, the rational numbers are countable (even
though they are very different from the integers topo-
logically).

The real numbers are not countable!

Definition. Suppose X is a normed space. A set
D is dense in X if every open set in X includes an

element of D.

Example. The rational numbers are dense in the

real numbers. The integers are not dense in the reals.

Definition. A Hilbert space with a countable dense

subset is seperable.
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Note. Since Q is countable and dense in R, then R
forms a seperable Hilbert space (in fact, any finite
dimensional Hilbert space is seperable - and remem-
ber, a finite dimensional Hilbert space/vector space

is isomorphic to either R" or C” depending on the
scalar field).

Definition. A subset X of a Hilbert space is an
orthonormal setif ||z|| = 1for all zx € X and (z,y) =

0 (that is, z and y are orthogonal) for all z,y € X.

Note. As in R", a “nice” basis for a Hilbert space

would be orthonormal.

Theorem. A Hilbert space is seperable if and only
if it has an orthonormal Schauder basis. (From now
on, when we say “basis” it is understood that we

mean “Schauder basis.”)
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Definition. A Hilbert space H; is isomorphic to a
Hilbert space Hy if there exists a one-to-one linear
mapping T from H; onto Hy such that (T'(z), T(y)) =

(x,y) for every xz,y € Hj.

Note. Now for the BIG RESULT! Recall that the
“Fundamental Theorem of Linear Algebra” tells you

what a finite dimensional vector space “looks like.”

Theorem (Riesz-Fisher Theorem).
An infinite dimensional Hilbert space with scalar
field C (that is, a seperable Hilbert space that is

not isomorphic to some C") is isomorphic to

I’ = {(zl,z% ...) |z € C and izol |zi|* < oo}.

Note. An orthonormal basis for 2 is

{61, €9,€3, .. } — {(1, 0,0,0, .o .), (O, 1,0,0, . .),

(0,0,1,0,...),...}.
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