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3.1 LINEAR OPERATORS ON HILBERT
SPACES - LINEAR OPERATORS AND
OPERATOR NORMS

Definition. An operatoris a mapping from one vec-
tor space to another (not necessarily different) vector

space.

Definition. A linear operator L which maps one
vector space to another (where the vector spaces

have the same scalar field) is an operator satisfying
L(ax + By) = aL(z) + BL(y)

for all scalars o and # and for all vectors xz and v.

Note. We will see that in the quantum theory, ob-
servables (such as position, momentum and energy)

are represented by a certain type of linear operator.



Theorem. Every linear operator on R" (or C") is

- represented by an n x n real (or complex) matrix.

Proof. Let A be a linear operator and C" have

“standard” orthonormal basis {ej,es,...,¢e,}. Then
7
for x = X a;e; € C", we have
j=1

A:U = A ( % ajej) = % ajA(ej).
j=1 j=1
Therefore
(ACB,GZ') = (% ajAej,ei) = f: a,j(Aej,ez-) = % a;a; ;
j=1 j=1 J=1
where a;; = (Aej,e;). Therefore A can be repre-

sented by the n x n matrix (a; ;). I



Example. Consider the vector space
Ci([a,b]) = {f : [a,b] — C | f' is continuous}.

Then Ci([a,b]) is a subspace of L?*([a,b]) and the
operator D defined as

D(f(1)) = S1F(0)] = 7't

is a linear operator (in fact, D : Ci([a, b]) — Cy([a, b])
where Cy([a, b]) is the vector space of all continuous
functions on [a, b]). D is called the differential oper-

ator.

Example. Let z € Cy([a,b]) and define operator A
on L*([a,b]) by

A(z(t)) = z(t)z(t).

A is called a multiplication operator.

Definition. An operator on a vector space V is
bounded if there exists a nonegative real K such that
|Az|| < K||z|| for all z € V. The norm of a bounded
linear operator is the “smallest” such value K, or

equivalently ||A|| = sup ||Az]|.
l)|=1
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Example. The identity operator Z on a vector space
V is defined as Z(z) = x for all x € V. Notice that
7 is bounded and ||Z|| = 1.

Note. A multiplier operator A is bounded:

?T@”x%@;{“/lﬂp LA () 2dt = [0 |2(8)m(t)]dt

‘—f 2(t)|*|2(t) |dt < max |2(¢)]? f |z (t)|2dt

t€[a,b]

— (max |2(1)] ) ]|”.

t€[a,b]
Notice that if z(t) = K € C then ||4|| = |K]|.



Note. The differential operator D is not bounded.
Consider the sequence of functions f,(t) = sin(nt)

forn=1,2,3,..., as elements of L*([—7, x]). Then

I£all = /7 (sin(nt))2dt = /7

and

I D = |[1(n cos(nt)2dt = n/x.
Therefore || D( f,)|| = n|| f.|| and we see that sup ||D(z)||

llz]|=1

can be made arbitrarily large by taking z, = ~= =

NG

in(nt
Sln(:: ) (then ||:L'n|| = 1 a,I]_d ||D(xn)|| = n, therefore
sup [ID(@)]] = o)

Definition. The product of operators A and B on
vector space V' is defined as AB(z) = A(Bx) for all
recV. It AB= BA then A and B are commuting

operators.

Example. The differential operator D = % and the

multiplier operator A(x(t)) = tz(¢) do not commute.



Example. The identity operator commutes with all

operators.

Theorem. The product AB of bounded linear op-

erators A and B is a bounded linear operator and
IAB|| < [|A]l || B]|-

Theorem. A bounded linear operator on a sepera-
ble infinite dimensional Hilbert space can be repre-

sented by an infinite matrix.

Example. The operator Axr = ax where « is a fixed

scalar and z € [? is represented by the infinite matrix

‘a0 0
0 a O
00 « ...




3.2 LINEAR OPERATORS ON HILBERT
SPACES - ADJOINT AND
SELF-ADJOINT OPERATORS

Definition. Let A be a bounded linear operator
on a Hilbert space H. The operator A* : H — H
defined by

(Az,y) = (x,A%y) for all z,y € H

is the adjoint operator of A.

Note. In R?, this implies:

w )
¥

~\

~<}
i

Az -y=z- A%y



Theorem. Properties of Adjoint.
1.(A+ B)*= A*+ B*

2. (aA)* = aA*
3. (A)*=A
4.7 =7

5. (AB) = B*A*

Theorem. Suppose A is a bounded linear operator.
Then A* is bounded and ||A| = ||A*|| and ||A*A| =
|A||?. (Notice that in general | AB|| < ||A]|||B]|.)

Definition. If A = A* then A is a self adjoint (or

Hermetian) operator.



Example. Let A be the operator on L?([a,b]) de-
fined by
A(z(t)) = tas(t).

Then A is self-adjoint since

(Az,y) = [ ta(t)y(@) dt = [} 2()ty (D) dt = (z, Ay).

Example/Theorem. If A is an operator on C”,
then A is represented by an n x n matrix A = (a;;)

(as above) and A* is represented by the matrix A* =
(@5)-

Proof. Let {ej,es,...,e,} be the standard orthonor-
mal basis for C" (i.e., e; has ith entry 1 and all other
entries 0). Suppose A* is represented by (¥; ;). Then

we have

Qi 5 = (Aej, 87;) = (Bj, A*B?;) — (A*éj, 67;) = E;,_z
Therefore A* = (b; ;) = (a;;). |

b
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Note. If A is a self-adjoint operator on C™ and A is
represented by the n x n matrix A = (a;;), then A*
is represented by an n X n matrix, the (¢, j) entry of
which is @;;. So a; ; = @;; and A equals its “conjugate

transpose.”

Note. The previous result holds in separable Hilbert
spaces as well. That is, if A is a bounded self-adjoint
operator on a se@)arable (infinite dimensional) Hilbert
space and A is represented by the infinite matrix
(a;;), then A* is represented by (@;;) and we have

Qij = Qji-

Theorem. Let A be a bounded operator on a Hilbert
space. Then A*A and A + A* are self-adjoint.
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Theorem. The product of two self-adjoint opera-
tors is self-adjoint if and only if the operators com-

mute.

Proof. Let A and B be self-adjoint. Then
(ABz,y) = (Bz, A'y) = (z, B*A™y) = (z, BAy).

So it AB = BA then AB is self-adjoint. Conversely,
if AB is self-adjoint, then (AB)* = AB and from the
above, (AB)* = BA, therefore AB = BA. i
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3.3 LINEAR OPERATORS ON HILBERT
SPACES - INVERSES AND UNITARY
OPERATORS

Definition. Let A be an operator with range R(A).
An operator B is the inverse of A if ABx = x for
all x € R(A) and BAz = x for all x € D(A) where
D(A) is the domain of A. Operator A is said to be

invertible and B is denoted as A~!.

Some Properties of A1
1. If A is linear, then A~ is linear.

2. Ais invertible if and only if Az = 0 implies z = 0.

3.1t A is invertible and x1,2,...,, are linearly
independent, then Ax;, Ax,,..., Az, are linearly
independent.

4.If A and B are invertible, then AB is invertible
and (AB)™! = B~14-1,
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Definition. A bounded operator T on a Hilbert
space 1s unitary if 7T = TT* = 7. That is, T is
unitary if and only if 771 = T™*.

Example. Define T on L%([0,1]) as

T(z(t)) = z(1 — t).
Then
T(T(x(t)) =T(z(l-1t) = 2(1 - (1 —1) = z(t)
and T = T, Also
(Tz,y) = f 2(1 — t)y(t) dt = — ["z(w)y(1 — v) du
= L a( l—u)du—(;cTy)

and so 1" = T™. Therefore, T* = T-! and T is uni-
tary.

Definition. Let S be a non-empty subspace of a
Hilbert space H. An element x € H is orthogonal to
S, denoted z L S, if (x,y) = 0 for every y € S. The
set of all elements of H orthogonal to S, denoted S+,
is the orthogonal complement of S.
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Example. In C° with S = {(2,0,0) | z € C}
(clearly a subspace), S* = {(0, 21, 22) | 21, 22 € C}.

Definition. Let S be (topologically) closed sub-
space of a Hilbert space H. The operator P defined

as
Plz)=yforz=y+2z,ycSand z € St

is the projection operator onto S. The vector y is the

projection of x onto S.

Example. Let S be a closed subspace of a Hilbert
space H and let {ej,eq,...} be an orthonormal ba-

sis of S. Then the projection operator P onto S is
defined by

P(z) = %1(a;,en)en.
Iy ==
In particular, if S is of dimension 1 (of special in-
terest in quantum mechanics), then for v € S where

|v|| = 1, we have P(z) = (z,v)v.
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Y, Y
?}«3 LINEAR OPERATORS ON HILBERT

SPACES - EIGENVALUES AND
EIGENVECTORS

Definition. Let A be an operator on a complex
vector space E. A complex number A is an eigen-
value of A if there is a non-zero vector © € E such
that Au = Au. A vector satisfying this condition is
an eigenvector of A corresponding to eigenvalue A
(in a function space, an eigenvector is also called an

eigenfunction).

Definition. Let A be an operator on a normed

space /. The operator
A\ = (A — /\I)—l

is called the resolvent of A. The values of )\ for which
A, is defined on the whole space F and is bounded
are called the regular points of A. The set of all s

which are not regular is called the spectrum of A.
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The set of all eigenvalues (which are a subset of the
spectrum) is called the point spectrum. The remain-
ing part of the spectrum (that is, that set of all \s
for which A, exists but is unbounded) is called the

continuous spectrum.

Theorem. The collection of all eigenvalues corre-
sponding to one particular eigenvalue of an operator

18 a vector space.

Definition. The set of all eigenvectors correspond-
ing to one particular eigenvalue A is called the eigenspace
of A. The dimension of that space is called the mul-
tiplicity of A (this is consistent with the finite dimen-
sional idea where the multiplicity of an eigenvalue of

a matrix corresponds to its multiplicity as a zero of
the equation A — A\Z = 0).
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Theorem. All eigenvalues of a self-adjoint operator

on a Hilbert space are real.

Proof. Let A be an eigenvalue of a self-adjoint op-

erator A, and let v be an eigenvector of X, u # 0.
Then
Au,u) = (Au, u) = (Au, u)

= (u, Au) = (u, Au) = A(u, u).

Since (u,u) > 0, we have A = X, and therefore, )\ is

real. |

Theorem. Eigenvectors corresponding to distinct
eigenvalues of a self-adjoint or unitary operator on a,

Hilbert space are orthogonal.

Definition. An operator A in a Hilbert space H
is compact (or sometimes called completely continu-
ous) if for every bounded sequence {z,} in H, the

sequence {Az,} contains a convergent subsequence.
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Note. Every compact operator is bounded, but not
every bounded operator is compact (the identity op-
erator Z is bounded, but not compact... consider the

standard orthonormal basis in 1?).

Theorem. The Spectral Theorem for Self-
Adjoint Compact Operators.

Let A be a self-adjoint compact operator on an infi-
nite dimensional Hilbert space H. Then there exists
an orthonormal basis of H, {v,}, consisting of eigen-

vectors of A. Moreover, for every z € H,
o0
Az = 21 AT, Vp) Uy,
=

where A, is the eigenvalue corresponding to v,,.
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Theorem. For any two commuting self-adjoint com-
pact operators A and B on a Hilbert space H, there
exists an orthonormal basis of H consisting of vec-

tors which are eigenvalues of both A and B.

NOW THAT WE HAVE DEVELOPED THE
MATHEMATICAL BACKGROUND, WE
ARE READY FOR THE REAL REASON
WE ARE ALL HERE...

THE APPLICATIONS OF THIS STUFF
TO QUANTUM MECHANICS!

[Gardner exit stage right. Shanks enter stage left.]
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APPENDIX A - Unitary Operators

Recall. A bounded operator T is unitary if and only
if T is invertible and 7! = T™*.

Definition. A bounded operator T' is isometric if it

preserves lengths: ||[Tz|| = ||z|| for all z.

- Theorem. A unitary operator is isometric.

Proof.
|Tz|| = (Tz,Tx) = (x, T"Tx)
= (z,T7'Tz) = (z,2) = ||z].



Theorem. A unitary operator “preserves angles.”
v Thatis, (z,y) = (Tz,Ty).

Proof.

(z,9) = (z,Zy) = (z,T"Ty) = (Tz, Ty).



