BUTT-HEAD Seminar

III. Linear Operators on Hilbert Spaces: Operators, Norms, Self Adjoint Operators

(From "Introduction to Hilbert Spaces with Applications" by L. Debnath and R. Mikusiński.)

Robert Gardner

East Tennessee State University
Department of Mathematics
Institute of Mathematical and Physical Sciences

Spring 1998

3.1 LINEAR OPERATORS ON HILBERT SPACES - LINEAR OPERATORS AND OPERATOR NORMS

Definition. An *operator* is a mapping from one vector space to another (not necessarily different) vector space.

Definition. A linear operator L which maps one vector space to another (where the vector spaces have the same scalar field) is an operator satisfying

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$$

for all scalars α and β and for all vectors x and y.

Note. We will see that in the quantum theory, observables (such as position, momentum and energy) are represented by a certain type of linear operator.

Theorem. Every linear operator on \mathbb{R}^n (or \mathbb{C}^n) is represented by an $n \times n$ real (or complex) matrix.

Proof. Let A be a linear operator and \mathbb{C}^n have "standard" orthonormal basis $\{e_1, e_2, \dots, e_n\}$. Then for $x = \sum_{j=1}^n a_j e_j \in \mathbb{C}^n$, we have

$$Ax = A\left(\sum\limits_{j=1}^n a_j e_j\right) = \sum\limits_{j=1}^n a_j A(e_j).$$

Therefore

$$A(Ax, e_i) = \left(\sum_{j=1}^{n} a_j A e_j, e_i\right) = \sum_{j=1}^{n} a_j (Ae_j, e_i) = \sum_{j=1}^{n} a_j a_{i,j}$$

where $a_{i,j} = (Ae_j, e_i)$. Therefore A can be represented by the $n \times n$ matrix $(a_{i,j})$.

Example. Consider the vector space

$$C_1([a,b]) = \{f : [a,b] \rightarrow \mathbf{C} \mid f' \text{ is continuous}\}.$$

Then $C_1([a,b])$ is a subspace of $L^2([a,b])$ and the operator D defined as

$$D(f(t)) = \frac{d}{dt}[f(t)] = f'(t)$$

is a linear operator (in fact, $D: C_1([a,b]) \to C_0([a,b])$ where $C_0([a,b])$ is the vector space of all continuous functions on [a,b]). D is called the differential operator.

Example. Let $z \in C_0([a,b])$ and define operator A on $L^2([a,b])$ by

$$A(x(t)) = z(t)x(t).$$

A is called a multiplication operator.

)

Definition. An operator on a vector space V is bounded if there exists a nonegative real K such that $||Ax|| \le K||x||$ for all $x \in V$. The norm of a bounded linear operator is the "smallest" such value K, or equivalently $||A|| = \sup_{||x||=1} ||Ax||$.

Example. The identity operator \mathcal{I} on a vector space V is defined as $\mathcal{I}(x) = x$ for all $x \in V$. Notice that \mathcal{I} is bounded and $||\mathcal{I}|| = 1$.

Note. A multiplier operator A is bounded:

$$||Ax||^2 = \int_a^b |A(x(t))|^2 dt = \int_a^b |z(t)x(t)|^2 dt$$

$$= \int_a^b |z(t)|^2 |x(t)|^2 dt \le \max_{t \in [a,b]} |z(t)|^2 \int_a^b |x(t)|^2 dt$$

$$= \left(\max_{t \in [a,b]} |z(t)|^2\right) ||x||^2.$$

Notice that if $z(t) = K \in \mathbb{C}$ then ||A|| = |K|.

Note. The differential operator D is not bounded. Consider the sequence of functions $f_n(t) = \sin(nt)$ for $n = 1, 2, 3, \ldots$, as elements of $L^2([-\pi, \pi])$. Then

$$||f_n|| = \sqrt{\int_{-\pi}^{\pi} (\sin(nt))^2 dt} = \sqrt{\pi}$$

and

)

$$||D(f_n)|| = \sqrt{\int_{-\pi}^{\pi} (n\cos(nt))^2 dt} = n\sqrt{\pi}.$$

Therefore $||D(f_n)|| = n||f_n||$ and we see that $\sup_{\|x\|=1} ||D(x)||$ can be made arbitrarily large by taking $x_n = \frac{f_n}{\sqrt{\pi}} = \frac{\sin(nt)}{\sqrt{\pi}}$ (then $||x_n|| = 1$ and $||D(x_n)|| = n$, therefore $\sup_{\|x_n\|=1} ||D(x)|| = \infty$).

Definition. The product of operators A and B on vector space V is defined as AB(x) = A(Bx) for all $x \in V$. If AB = BA then A and B are commuting operators.

Example. The differential operator $D = \frac{d}{dt}$ and the multiplier operator A(x(t)) = tx(t) do not commute.

Example. The identity operator commutes with all operators.

Theorem. The product AB of bounded linear operators A and B is a bounded linear operator and $||AB|| \le ||A|| \, ||B||$.

Theorem. A bounded linear operator on a seperable infinite dimensional Hilbert space can be represented by an infinite matrix.

Example. The operator $Ax = \alpha x$ where α is a fixed scalar and $x \in l^2$ is represented by the infinite matrix

$$\begin{bmatrix} \alpha & 0 & 0 & \dots \\ 0 & \alpha & 0 & \dots \\ 0 & 0 & \alpha & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

3.2 LINEAR OPERATORS ON HILBERT SPACES - ADJOINT AND SELF-ADJOINT OPERATORS

Definition. Let A be a bounded linear operator on a Hilbert space H. The operator $A^*: H \to H$ defined by

$$(Ax, y) = (x, A^*y)$$
 for all $x, y \in H$

is the adjoint operator of A.

Note. In \mathbb{R}^2 , this implies:

$$Ax \cdot y = x \cdot A^*y$$

Theorem. Properties of Adjoint.

1.
$$(A+B)^* = A^* + B^*$$

2.
$$(\alpha A)^* = \overline{\alpha} A^*$$

3.
$$(A^*)^* = A$$

4.
$$\mathcal{I}^* = \mathcal{I}$$

5.
$$(AB) = B^*A^*$$

Theorem. Suppose A is a bounded linear operator. Then A^* is bounded and $||A|| = ||A^*||$ and $||A^*A|| = ||A||^2$. (Notice that in general $||AB|| \le ||A|| ||B||$.)

Definition. If $A = A^*$ then A is a self adjoint (or Hermetian) operator.

Example. Let A be the operator on $L^2([a,b])$ defined by

$$A(x(t)) = tx(t).$$

Then A is self-adjoint since

$$(Ax,y) = \int_a^b tx(t)\overline{y(t)} dt = \int_a^b x(t)\overline{ty(t)} dt = (x,Ay).$$

Example/Theorem. If A is an operator on \mathbb{C}^n , then A is represented by an $n \times n$ matrix $A = (a_{i,j})$ (as above) and A^* is represented by the matrix $A^* = (\overline{a_{j,i}})$.

Proof. Let $\{e_1, e_2, \ldots, e_n\}$ be the standard orthonormal basis for \mathbb{C}^n (i.e., e_i has *i*th entry 1 and all other entries 0). Suppose A^* is represented by $(b_{i,j})$. Then we have

$$a_{i,j} = (Ae_j, e_i) = (e_j, A^*e_i) = \overline{(Ae_j, e_i)} = \overline{b_{j,i}}.$$

Therefore $A^* = (b_{i,j}) = (\overline{a_{j,i}}).$

Note. If A is a self-adjoint operator on \mathbb{C}^n and A is represented by the $n \times n$ matrix $A = (a_{i,j})$, then A^* is represented by an $n \times n$ matrix, the (i,j) entry of which is $\overline{a_{j,i}}$. So $a_{i,j} = \overline{a_{j,i}}$ and A equals its "conjugate transpose."

Note. The previous result holds in separable Hilbert spaces as well. That is, if A is a bounded self-adjoint operator on a serparable (infinite dimensional) Hilbert space and A is represented by the infinite matrix $(a_{i,j})$, then A^* is represented by $(\overline{a_{j,i}})$ and we have $a_{i,j} = \overline{a_{j,i}}$.

Theorem. Let A be a bounded operator on a Hilbert space. Then A^*A and $A + A^*$ are self-adjoint.

Theorem. The product of two self-adjoint operators is self-adjoint if and only if the operators commute.

Proof. Let A and B be self-adjoint. Then

$$(ABx, y) = (Bx, A^*y) = (x, B^*A^*y) = (x, BAy).$$

So if AB = BA then AB is self-adjoint. Conversely, if AB is self-adjoint, then $(AB)^* = AB$ and from the above, $(AB)^* = BA$, therefore AB = BA.

3.3 LINEAR OPERATORS ON HILBERT SPACES - INVERSES AND UNITARY OPERATORS

Definition. Let A be an operator with range $\mathcal{R}(A)$. An operator B is the *inverse* of A if ABx = x for all $x \in \mathcal{R}(A)$ and BAx = x for all $x \in \mathcal{D}(A)$ where $\mathcal{D}(A)$ is the domain of A. Operator A is said to be invertible and B is denoted as A^{-1} .

Some Properties of A^{-1}

)

- 1. If A is linear, then A^{-1} is linear.
- **2.** A is invertible if and only if Ax = 0 implies x = 0.
- **3.** If A is invertible and x_1, x_2, \ldots, x_n are linearly independent, then Ax_1, Ax_2, \ldots, Ax_n are linearly independent.
- 4. If A and B are invertible, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Definition. A bounded operator T on a Hilbert space is unitary if $T^*T = TT^* = \mathcal{I}$. That is, T is unitary if and only if $T^{-1} = T^*$.

Example. Define T on $L^2([0,1])$ as

$$T(x(t)) = x(1-t).$$

Then

)

)

$$T(T(x(t))) = T(x(1-t)) = x(1-(1-t)) = x(t)$$

and $T = T^{-1}$. Also

$$(Tx,y) = \int_0^1 x(1-t)y(t) dt = -\int_1^0 x(u)y(1-u) du$$
$$= \int_0^1 x(u)y(1-u) du = (x, Ty)$$

and so $T = T^*$. Therefore, $T^* = T^{-1}$ and T is unitary.

Definition. Let S be a non-empty subspace of a Hilbert space H. An element $x \in H$ is *orthogonal* to S, denoted $x \perp S$, if (x,y) = 0 for every $y \in S$. The set of all elements of H orthogonal to S, denoted S^{\perp} , is the *orthogonal complement* of S.

Example. In \mathbb{C}^3 , with $S = \{(z, 0, 0) \mid z \in \mathbb{C}\}$ (clearly a subspace), $S^{\perp} = \{(0, z_1, z_2) \mid z_1, z_2 \in \mathbb{C}\}$.

Definition. Let S be (topologically) closed subspace of a Hilbert space H. The operator P defined as

$$P(x) = y$$
 for $x = y + z, y \in S$ and $z \in S^{\perp}$

is the projection operator onto S. The vector y is the projection of x onto S.

Example. Let S be a closed subspace of a Hilbert space H and let $\{e_1, e_2, \ldots\}$ be an orthonormal basis of S. Then the projection operator P onto S is defined by

$$P(x) = \sum_{n=1}^{\infty} (x, e_n) e_n.$$

In particular, if S is of dimension 1 (of special interest in quantum mechanics), then for $v \in S$ where ||v|| = 1, we have P(x) = (x, v)v.

)

33 LINEAR OPERATORS ON HILBERT SPACES - EIGENVALUES AND EIGENVECTORS

Definition. Let A be an operator on a complex vector space E. A complex number λ is an eigenvalue of A if there is a non-zero vector $u \in E$ such that $Au = \lambda u$. A vector satisfying this condition is an eigenvector of A corresponding to eigenvalue λ (in a function space, an eigenvector is also called an eigenfunction).

Definition. Let A be an operator on a normed space E. The operator

$$A_{\lambda} = (A - \lambda \mathcal{I})^{-1}$$

is called the resolvent of A. The values of λ for which A_{λ} is defined on the whole space E and is bounded are called the regular points of A. The set of all λ s which are not regular is called the spectrum of A.

The set of all eigenvalues (which are a subset of the spectrum) is called the *point spectrum*. The remaining part of the spectrum (that is, that set of all λ s for which A_{λ} exists but is unbounded) is called the *continuous spectrum*.

Theorem. The collection of all eigenvalues corresponding to one particular eigenvalue of an operator is a vector space.

Definition. The set of all eigenvectors corresponding to one particular eigenvalue λ is called the *eigenspace* of λ . The dimension of that space is called the *multiplicity* of λ (this is consistent with the finite dimensional idea where the multiplicity of an eigenvalue of a matrix corresponds to its multiplicity as a zero of the equation $A - \lambda \mathcal{I} = 0$).

Theorem. All eigenvalues of a self-adjoint operator on a Hilbert space are real.

Proof. Let λ be an eigenvalue of a self-adjoint operator A, and let u be an eigenvector of λ , $u \neq 0$. Then

$$\lambda(u, u) = (\lambda u, u) = (Au, u)$$
$$= (u, Au) = (u, \lambda u) = \overline{\lambda}(u, u).$$

Since $(u, u) \geq 0$, we have $\lambda = \overline{\lambda}$, and therefore, λ is real.

Theorem. Eigenvectors corresponding to distinct eigenvalues of a self-adjoint or unitary operator on a Hilbert space are orthogonal.

Definition. An operator A in a Hilbert space H is compact (or sometimes called completely continuous) if for every bounded sequence $\{x_n\}$ in H, the sequence $\{Ax_n\}$ contains a convergent subsequence.

Note. Every compact operator is bounded, but not every bounded operator is compact (the identity operator \mathcal{I} is bounded, but not compact... consider the standard orthonormal basis in l^2).

Theorem. The Spectral Theorem for Self-Adjoint Compact Operators.

Let A be a self-adjoint compact operator on an infinite dimensional Hilbert space H. Then there exists an orthonormal basis of H, $\{v_n\}$, consisting of eigenvectors of A. Moreover, for every $x \in H$,

$$Ax = \sum_{n=1}^{\infty} \lambda_n(x, v_n) v_n$$

where λ_n is the eigenvalue corresponding to v_n .

Theorem. For any two commuting self-adjoint compact operators A and B on a Hilbert space H, there exists an orthonormal basis of H consisting of vectors which are eigenvalues of both A and B.

NOW THAT WE HAVE DEVELOPED THE MATHEMATICAL BACKGROUND, WE ARE READY FOR THE REAL REASON WE ARE ALL HERE...

THE APPLICATIONS OF THIS STUFF TO QUANTUM MECHANICS!!!

[Gardner exit stage right. Shanks enter stage left.]

APPENDIX A - Unitary Operators

Recall. A bounded operator T is unitary if and only if T is invertible and $T^{-1} = T^*$.

Definition. A bounded operator T is *isometric* if it preserves lengths: ||Tx|| = ||x|| for all x.

Theorem. A unitary operator is isometric.

Proof.

$$||Tx|| = (Tx, Tx) = (x, T^*Tx)$$

= $(x, T^{-1}Tx) = (x, x) = ||x||$.

Theorem. A unitary operator "preserves angles." That is, (x, y) = (Tx, Ty).

Proof.

$$(x,y) = (x, \mathcal{I}y) = (x, T^*Ty) = (Tx, Ty).$$