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What is Chaos?

“Definition.” In the Proceedings of the IEEE in an arti-
cle entitled “Chaos: A Tutorial for Engineers” (75(8), 1987)
it is stated that “There is no generally accepted definition of
chaos. From a practical point of view chaos can be defined as...
bounded steady-state behavior that is not an equilibrium point,
not periodic, and not quasi-periodic.” They then go on to dis-

cuss “deterministic systems that exhibit random behavior.”

Note. In James Gleick’s book Chaos (1987), the following are

proposed as psuedo-definitions of “chaos:”

1. P. Holmes (mathematician): The complicated, aperiodic,
attracting orbits of certain dynamical systems.
2. H. Bao-Lin (physicist): A kind of order without periodicity.

3. H. B. Stewart (mathematician): Apparently random

recurrent behavior in a simple deterministic system.

4. R. Jensen (physicist): The irregular, unpredictable be-

havior of deterministic, nonlinear dynamical systems.
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Note. We will present a definition of chaos which will take into
consideration “random behavior” [or better: unpredicata-
bility| (in the form of sensitive dependence on initial condi-
tions), an element of order (in the form of density of periodic

points), and an element of “indecomposability.”

)

Figure 9.8 Bifurcation diagram of the logistic map (courtesy of J. P Cruichfield)



Some Matheriiatical Background

Definition. A function f defined on a set J such that f maps
J into J forms an iterated function system. We denote the

iterates of point ¢y € J as

Ty = f(fb'o)
22 = f(f(zo)) = f*(z0)

Deﬁmtlon An 1terated functlon system with functlon f and

set J has pomt z€Jasa perzodzc pomt of f if for some k
F*(z) = z. The smallest such k is called the period of 2 under
the action of f. If f(z) =  then & is said to be a fized point
of f. Notice that if z is a fixed point of f™ for some 7, then 2

is a periodic point of f.



Example. The function f(z) = 4z(1 — z) (which maps [0, 1]
into itself) has two fixed points (0 and 3/4) and two period two

points:
» y= x
Y = "F(?")
0 7
0 /

Definition. A set Y C X is dense in a set X if for any open
set U such that UnX # 0, then UnY # 0.

Note. If YV is dense in X, then every element of X is a limit

point of V.

Example. The rational numbers are dense in the real num-

bers.



Unpredictability: Sensitive

Dependence on Initial Conditions

Definition. A function f : J — J has sensitive dependence
on wnitial conditions if:

there exists 6 > 0 such that for all z € J and for any ¢ > 0,
there exists y € J and n > 0 such that |2 — y| < € and

/() — ()l = 6.

Note. Intuitively, this means that there is a constant distance
& such that for each z in J, no matter how close to z we look,
we can find a y € J which is seperated from z by a distance of

at least § under the action of f.



Example. Let S' denote the unit circle of all points whose
polar coordinates are (r,8) = (1,6). We measure the distance
between two points of S* as the angular distance between them.
Let g(@) = 20. Then for two points “close together,” the angu-

lar distance between these points is doubled under the action
?, ( P‘J-)

i» (%)

S~

Therefore, two points on S' which are close together can be

of g.

made “far apart” and f displays sensitive dependence on initial

conditions.



Indecomposability:

Topological Transitivity

Definition. A function f : J — J is topologically transitive
if for any pair of open sets U,V C J, there exists k£ > 0 such
that F*(U)NV # 0.

Note. Intuitively, this means that open sets are “spread out”
under the action of f. Therefore, the system cannot be decom-
posed into two smaller (open) sets which are invariant under f.
This means that you cannot study the behavior of f in some
little open subset of J without considering the behavior of f on
all of J.

Example. g(8) = 20 defined on S* displays topological tran-
sitivity. This can be easily seen since open arcs of S ! are (rather
fundafnental) open sets and an arc doubles in length under the
action of g. Therefore, for an open arc U and for some k,
gk(U) - g1 '



Regularity: Periodic Points

Note. If f : J — J then we want periodic points to be dense

in our definition of chaos.

Example. g(0) = 20 defined on S has dense periodic points.
- This can be seen from the fact that the points of the form

2k
(r,6) = (1, 5]

for natural number n and for some integer & where 0 < k < 27

are periodic. This can be seen from the fact that

g(0) = g”( 2k )

2 —1

o [ 2km
- 2 (213.._..]_)

= 2kn + 0 = 6(mod 2r).

2 —1

Ok e



CHAOS!

Definition. Consider the iterated function system with

f : J — J. This iterated function system is chaotic if

1. f is topologically transitive,
2. f has sensitive dependence on initial conditions, and

3. periodic points of f are dense in J.

(Reference: An Introduction to Chaotic Dynamical Sys-
tems, R. L. Devaney (1989).)

Note. It has been shown that, in fact, if we have topological
transitivity and denseness of periodic points, then we must nec-

essarily have sensfmve dependence on 1n1t1al conditions (Banks_
et al Math. Monthly, April 1992)

Example. g(f) = 20 on S! is chaotic.
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A Detailed Example

Note. The differential equation j—f = z(K — ) is called the
logistic equation. It describes the growth of a population (of
size ¢) with carrying capacity K. When treated as a difference
equation, we have Zp4; = x,(K — z,). In the terminology of

iterated function systems, we have the iterates of the function
flz) =2(K — z).

Theorem. f(z)=4z(1 — z) is chaotic on [0, 1].

Proof. Define h; : S* — [—1,1] as hy(6) = cos 6.
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Since h; and hg are continuous, inverse images of open sets are ,_

open. Let U be an open interval in [0,1]. Then h;}(U) is an

- open interval in [—1,1].

-1+ 0

If neither —1 nor 1 are in h3'(U) then h7'(hz*(U)) is two

disjoint open arcs in S*.

Al - '
C-—-—p
&~ ~— -
T+ -
Therefore if U is an open interval in [0, 1] (we may assume that

* neither 0 nor 1 are in U), then there is an open arc w in' S such
that hy o hy maps u one-to-one and onto U (in fact, there are

two such u’s).

1 —cosé
Also, if heohy(6y) = %—ﬁ = x (that is, 8y “corresponds”

to aq) then
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hg 8 hl (91) = h2 0 hl (g(é‘o))
= hg 0 hl (290)
= hy(cos(26y))

= 1(1 — cos(26y))

_ 3,

and
21 = f(xo) = f(hg o h1(6))
— f(hlg(cosgo)) 9
=/ (5( 2 0)

| Therefore h20h1(91) =21 (tha,t is, 0 “corresponds” to ar:l) By
'mathema,tlcal 1nduct10n Ty = f”(a:g) corresponds to g (90)

0, for all integers n > 0. So we have

(a) if # = hy o hy(#) and if 6 has period & under g, then z has
period & under f, and
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(b) if hg o hy(u) = U (with the notation above) then
hy o by o g*(u) = FH¥(U) (that is, gF(u) “corresponds” to

FEU)).

1. f is topologically transitive

Let U and V be open sets in [0, 1]. Since every open set of real
numbers is a countable union of disjoint open intervals, we may
assume that U and V are open intervals. Then there are open
arcs in $*, u and v, such that hgohy maps u onto U and v onto
V. As seen above, g(6) = 20 is topologically transitive on S1,
therefore there exists k such that g¥(u)nv # 0. Now hg o by
maps ¢*(u) onto f*(U) and v onto V. Therefore FRU)NV #
0.
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2. f has sensitive dependence on initial conditions.
Let § = £ and let U be an open subset of [0,1] Then there is
an open arc v in S' “corresponding” to U. Since there is a n
such that g"(u) = S*, for this same n we have f*(U) = [0, 1].
Therefore there is y € U with |f*(z) — f*(y)| > 6 = 1.

3. Periodic points of f are dense in [0, 1].

Let U be an op-en interval in [0,1] and let u be as above. Since
periodic points of g are dense in S*, there exists (1,0) € S*
which is periodic under g. Then hyo hi(8) = z € U is periodic
under f.

Therefore, f is chaotic on [0, 1]. - I
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