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Liouville’s Theorem and the Maximum Modulus Theorem

Liouville’s Theorem and the
Maximum Modulus Theorem
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Liouville’s Theorem and the Maximum Modulus Theorem

Recall. A function is analytic if it has a power series representation. A
function of a complex variable, f (z), is analytic (and therefore has a power
series representation) at point z0 if f is continuously differentiable at z0.
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Liouville’s Theorem and the Maximum Modulus Theorem

Theorem

If f is analytic in a neighborhood of z0 and C is a positively oriented
simple closed curve in the neighborhood with z0 as an interior point, then

f (n)(z0) =
n!

2πi

∫
C

f (z) dz

(z − z0)n+1
.

Augustin Cauchy (1789–1857)
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Liouville’s Theorem and the Maximum Modulus Theorem

Note. If we let C be a circle of radius R with center z0, then Cauchy’s
Formula allows us to put a bound on derivatives of f :

|f (n)(z0)| =
∣∣∣∣ n!

2πi

∫
C

f (z) dz

(z − z0)n+1

∣∣∣∣
≤

∣∣∣∣ n!

2πi

∣∣∣∣ ∫
C

∣∣∣∣ f (z) dz

(z − z0)n+1

∣∣∣∣ ≤ n!

2π|i |

∫
C

|f (z)| |dz |
|z − z0|n+1

≤ n!

2π

MR2πR

Rn+1
=

n!MR

Rn
,

where MR is an upper bound of |f (z)| over C . This is called Cauchy’s
Inequality.
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Liouville’s Theorem and the Maximum Modulus Theorem

Theorem

Liouville’s Theorem. If f is a function analytic in the entire complex
plane (f is called an entire function) which is bounded in modulus, then f
is a constant function.

Proof. Let M be a bound on |f (z)|. Then by Cauchy’s Inequality with
n = 1, |f ′(z0)| ≤ M/R. This is true for any z0 and for any R since f is
entire. Since we can let R →∞ then we see that |f ′(z0)| = 0 and f must
be constant.

Joseph Liouville (1809–1882)
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Liouville’s Theorem and the Maximum Modulus Theorem

Question. The only bounded entire functions of a complex variable are
constant functions. Is this the case for functions of a real variable?

Answer. NO! Consider f (x) = sin x and g(x) = e−x2
.

From Wolfram Alpha.
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Liouville’s Theorem and the Maximum Modulus Theorem

The Maximum Modulus Theorem

Theorem

The Maximum Modulus Theorem. Let G be a bounded open set in C
and suppose f is continuous on the closure of G, cl(H), and analytic in G.
Then

max{|f (z)| | z ∈ cl(G )} = max{|f (z)| | z ∈ ∂G}.

Also, if max{|f (z)| | z ∈ G} = max{|f (z)| | z ∈ ∂G}, then f is constant.
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The Fundamental Theorem of Algebra

The Fundamental Theorem of
Algebra

Carl Friedrich Gauss (1777–1855)
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The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra

Theorem

The Fundamental Theorem of Algebra. Any complex polynomial

p(z) = anz
n + an−1z

n−1 + · · ·+ a2z
2 + a1z + a0 (an 6= 0)

of degree n (n ≥ 1) has at least one complex zero. That is, there exists at
least one point z0 such that p(z0) = 0.

Note. It follows that p can be factored into n (not necessarily distinct)
linear terms:

p(z) = an(z − z1)(z − z2) · · · (z − zn−1)(z − zn),

where the zeros of p are z1, z2, . . . , zn.
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The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra, Proof

The Fundamental Theorem of Algebra. Any complex polynomial

p(z) = anz
n + an−1z

n−1 + · · ·+ a2z
2 + a1z + a0 (an 6= 0)

of degree n (n ≥ 1) has at least one complex zero. That is, there exists at
least one point z0 such that p(z0) = 0.

Proof. Suppose not. ASSUME p is never zero. Define the function
f (z) = 1/p(z). Then f is an entire function.

Now |p(z)| → ∞ as

|z | → ∞. Therefore
1

p(z)
→ 0 as |z | → ∞. So for some R,

1

|p(z)|
≤ 1 for

|z | ≥ R. Now by the Extreme Value Theorem, for some M,∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ M for |z | ≤ R.

But then, p is bounded for all z by max{1,M}. So by Liouville’s Theorem,
p is a constant CONTRADICTING the fact that p is a polynomial.
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The Centroid Theorem

The Centroid Theorem
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The Centroid Theorem

The Centroid Theorem

Theorem

The Centroid Theorem. The centroid of the zeros of a polynomial is the
same as the centroid of the zeros of the derivative of the polynomial.

Proof. Let polynomial p have zeros z1, z2, . . . , zn. Then
p(z) =

∑n
k=0 akzk = an

∏n
k=1(z − zk). Multiplying out, we find that the

coefficient of zn−1 is an−1 = −an(z1 + z2 + · · ·+ zn).

Therefore the
centroid of the zeros of p is

z1 + z2 + · · ·+ zn

n
=

(
1

n

) (
−an−1

an

)
=
−an−1

nan
.

Let the zeros of p′ be w1,w2, . . . ,wn−1. Then

p′(z) =
n∑

k=1

kakzk−1 = nan

n−1∏
k=1

(z − wk).
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The Centroid Theorem

The Centroid Theorem (continued)

Theorem

The centroid of the zeros of a polynomial is the same as the centroid of
the zeros of the derivative of the polynomial.

Proof (continued). Multiplying out, we find that the coefficient of zn−2

is
(n − 1)an−1 = −nan(w1 + w2 + · · ·+ wn−1).

Therefore the centroid of the zeros of p′ is

w1 + w2 + · · ·+ wn−1

n − 1
=

(
1

n − 1

) (
−(n − 1)an−1

nan

)
=
−an−1

nan
.

Therefore the centroid of the zeros of p′ is the same as the centroid of the
zeros of p.
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The Centroid Theorem

The Lucas Theorem

François A. E. Lucas (1842–1891)
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The Centroid Theorem

Note. Recall that a line in the complex plane can be represented by an
equation of the form Im((z − a)/b) = 0 where the line is “parallel” to the
vector b and translated from the origin by an amount a (here we are
knowingly blurring the distinction between vectors in R2 and numbers in
C).
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The Centroid Theorem

Note. We can represent a closed half-plane with the equation
Im((z − a)/b) ≤ 0. The represents the half-plane to the right of the line
Im((z − a)/b) = 0 when traveling along the line in the “direction” of b.
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The Centroid Theorem

The Lucas Theorem

Theorem

The Lucas Theorem (1874). If all the zeros of a polynomial p lie in a
half-plane in the complex plane, then all the zeros of the derivative p′ lie in
the same half-plane.

Proof. By the Fundamental Theorem of Algebra, we can factor p as
p(z) = an(z − r1)(z − r2) · · · (z − rn). So

log p(z) = log an + log(z − r1) + log(z − r2) + · · ·+ log(z − rn)

and differentiating both sides gives

p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
=

n∑
k=1

1

z − rk
. (1)
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The Centroid Theorem

The Lucas Theorem (continued 1)

Proof (continued). Suppose the half-plane H that contains all the zeros
of p(z) is described by Im((z − a)/b) ≤ 0. Then

Im((r1 − a)/b) ≤ 0, Im((r2 − a)/b) ≤ 0, . . . , Im((rn − a)/b) ≤ 0.

Now let z∗ be some number not in H. We want to show that p′(z∗) 6= 0
(this will mean that all the zeros of p′(z) are in H). Well,
Im((z∗ − a)/b) > 0. Let rk be some zero of p.

Then

Im

(
z∗ − rk

b

)
= Im

(
z∗ − a− rk + a

b

)
= Im

(
z∗ − a

b

)
−Im

(
rk − a

b

)
> 0.

(Notice that Im((z∗ − a)/b) > 0 since z∗ is not in H and
−Im((rk − a)/b) ≥ 0 since rk is in H.) The imaginary parts of reciprocal
numbers have opposite signs, so Im(b/(z∗ − rk)) < 0.
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The Centroid Theorem

The Lucas Theorem (continued 2)

Theorem

The Lucas Theorem (1874). If all the zeros of a polynomial p lie in a
half-plane in the complex plane, then all the zeros of the derivative p′ lie in
the same half-plane.

Proof (continued). Recall

p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
=

n∑
k=1

1

z − rk
. (1)

Applying (1),

Im

(
bp′(z∗)

p(z∗)

)
=

n∑
k=1

Im

(
b

z∗ − rk

)
< 0.

So p′(z∗)/p(z∗) 6= 0 and p′(z∗) 6= 0. Therefore if p′(z) = 0 then
z ∈ H.
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The Centroid Theorem

The Lucas Theorem (continued 2)
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The Centroid Theorem

Corollary to The Lucas Theorem

Note. With repeated application of the Lucas Theorem, we can prove the
following corollary.

Corollary

The convex polygon in the complex plane which contains all the zeros of a
polynomial p also contains all the zeros of p′.

Note. For example, we might have zeros of p and its derivatives as
follows. . .
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The Centroid Theorem

The Lucas Theorem, Pictures
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The Centroid Theorem
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The Centroid Theorem

The Lucas Theorem, Pictures
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The Eneström-Kakeya Theorem

The Eneström-Kakeya Theorem

Gustav Eneström (1852–1923) Sōichi Kakeya (1886–1947)
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The Eneström-Kakeya Theorem

Eneström-Kakeya Theorem

Note. Gustav Eneström while studying the theory of pensions was the
first to publish a result concerning the location of the zeros of a
polynomial with monotone, real, nonnegative coefficients. He published his
work in 1893 in Swedish. Sōichi Kakeya published a similar result in 1912
in English.

Theorem

Eneström-Kakeya Theorem. If p(z) =
∑n

j=0 ajz
j is a polynomial of

degree n with coefficients satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the
zeros of p lie in |z | ≤ 1.
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The Eneström-Kakeya Theorem

Eneström-Kakeya Theorem

Proof. Define f by the equation
p(z)(1−z) = a0 +(a1−a0)z +(a2−a1)z

2 + · · ·+(an−an−1)z
n−anz

n+1 =
f (z)− anz

n+1. Then for |z | = 1, we have

|f (z)| ≤ |a0|+ |a1 − a0|+ |a2 − a1|+ · · ·+ |an − an−1|
= a0 + (a1 − a0) + (a2 − a1) + · · ·+ (an − an−1) = an.

Notice that the function znf (1/z) =
∑n

j=0(aj − aj−1)z
n−j (where we take

a−1 = 0) has the same bound on |z | = 1 as f . Namely, |znf (1/z)| ≤ an

for |z | = 1. Since znf (1/z) is analytic in |z | ≤ 1, we have |znf (1/z)| ≤ an

for |z | ≤ 1 by the Maximum Modulus Theorem. Hence, |f (1/z)| ≤ an/|z |n
for |z | ≤ 1.

Replacing z with 1/z , we see that |f (z)| ≤ anz
n for |z | ≥ 1,

and making use of this we get, |(1− z)p(z)| = |f (z)− anz
n+1| ≥

an|z |n+1 − |f (z)| ≥ an|z |n+1 − an|z |n = an|z |n(|z | − 1). So if |z | > 1 then
(1− z)p(z) 6= 0. Therefore, all the zeros of p lie in |z | ≤ 1.
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p(z)(1−z) = a0 +(a1−a0)z +(a2−a1)z

2 + · · ·+(an−an−1)z
n−anz

n+1 =
f (z)− anz

n+1. Then for |z | = 1, we have

|f (z)| ≤ |a0|+ |a1 − a0|+ |a2 − a1|+ · · ·+ |an − an−1|
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a−1 = 0) has the same bound on |z | = 1 as f . Namely, |znf (1/z)| ≤ an
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The Eneström-Kakeya Theorem

Eneström-Kakeya Theorem Related Results

Theorem. (Joyal, Labell, Rahman 1967) If p(z) =
∑n

j=0 ajz
j is a

polynomial of degree n with real coefficients satisfying a0 ≤ a1 ≤ · · · ≤ an,
then all the zeros of p lie in |z | ≤ (an − a0 + |a0|)/|an|.

Theorem. (Gardner, Govil 1994) If p(z) =
∑n

j=0 ajz
j , where Re(aj) = αj

and Im(aj) = βj for j = 0, 1, 2, . . . , n. If

α0 ≤ α1 ≤ · · · ≤ αn and β0 ≤ β1 ≤ · · · ≤ βn,

then all the zeros of p lie in |z | ≤ (|a0| − (α0 + β0) + (αn + βn))/|an|.

ETSU Students with Papers in This Area: Atif Abueida (2007),
Jiencheng Cao (2003, 2004), Ty Frazier (“in the year 2525”).
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Number of Zeros Results

Number of Zeros Results

My Hero, Zero (January 13, 1973)
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Number of Zeros Results

Titchmarsh’s Number of Zeros Theorem

Jensen’s Formula. (From Conway’s Function’s of One Complex Variable
I, page 280.)
Let f be an analytic function on a region containing B(0;R) and suppose
that a1, a2, . . . , an are the zeros of f in B(0,R), repeated according to
multiplicity. If f (0) 6= 0 then

log |f (0)| = −
n∑

k=1

log
R

|ak |
+

1

2π

∫ 2π

0
log |f (Re iθ)| dθ.

Titchmarsh’s Number of Zeros Theorem. (Titchmarsh’s The Theory
of Functions, page 171.)
Let f be analytic in |z | < R. Let |f (z)| ≤ M in the disk |z | ≤ R and
suppose f (0) 6= 0. Then for 0 < δ < 1 the number of zeros of f (z) in the
disk |z | ≤ δR is less than

1

log 1/δ
log

M

|f (0)|
.
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Number of Zeros Results

Titchmarsh’s Theorem, Proof

Proof. Let f have n zeros in the disk |z | ≤ δR, say a1, a2, . . . , an. Then

for 1 ≤ k ≤ n we have |ak | ≤ δR, or
R

|ak |
≥ 1

δ
. So

n∑
k=1

log
R

|ak |
= log

R

|a1|
+ log

R

|a2|
+ · · ·+ log

R

|an|
≥ n log

1

δ
. (∗)

By Jensen’s Formula, we have
n∑

k=1

log
R

|ak |
=

1

2π

∫ 2π

0
log |f (Re iθ)| dθ − log |f (0)|

≤ 1

2π

∫ 2π

0
log M dθ − log |f (0)|

= log M − log |f (0)|

= log
M

|f (0)|
. (∗∗)

Combining (∗) and (∗∗) gives. . .
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Number of Zeros Results

Titchmarsh’s Theorem, Proof

Titchmarsh’s Number of Zeros Theorem. (Titchmarsh’s The Theory
of Functions, page 171.)
Let f be analytic in |z | < R. Let |f (z)| ≤ M in the disk |z | ≤ R and
suppose f (0) 6= 0. Then for 0 < δ < 1 the number of zeros of f (z) in the
disk |z | ≤ δR is less than

1

log 1/δ
log

M

|f (0)|
.

Proof. . . . Combining (∗) and (∗∗) gives

n log
1

δ
≤

n∑
k=1

log
R

|ak |
≤ log

M

|f (0)|
,

or

n ≤ 1

log 1/δ
log

M

|f (0)|
.

Since n is the number of zeros of f in |z | ≤ δR, the result follows.
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Number of Zeros Results

Number of Zeros, Students

Theorem

Pukhta 2011. Let p(z) =
∑n

j=0 ajz
j be such that

|arg(aj)− β| ≤ α ≤ π/2 for all 1 ≤ j ≤ n and some real α and β, and

0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |an−1| ≤ |an|.

Then the number of zeros of p in |z | ≤ δ, 0 ≤ δ < 1, does not exceed

1

log 1/δ
log

|an|(cos α + sin α + 1) + 2 sinα
∑n−1

j=0 |aj |
|a0|

.

ETSU Students with Papers in This Area: Brett Shields (2013, 2015),
Derrick Bryant (2016).

() Complex Analysis December 24, 2017 38 / 62



Rate of Growth Results

Rate of Growth Results

Sergei Bernstein (1880–1968)

() Complex Analysis December 24, 2017 39 / 62



Rate of Growth Results

Application of the Maximum Modulus Theorem

Theorem

Rate of Growth, Bernstein. If p is a polynomial of degree n such that
|p(z)| ≤ M on |z | = 1, then for R ≥ 1 we have

max
|z|=R

|p(z)| ≤ MRn.

Proof. For p(z) =
∑n

k=0 akzk we have r(z) = znp(1/z) =
∑n

k=0 akzn−k .
Notice that for |z | = 1 (and 1/z = z) we have ‖r‖ = ‖p‖ where
‖p‖ = max|z|=1 |p(z)|. By the Maximum Modulus Theorem, for |z | ≤ 1
we have |r(z)| ≤ ‖r‖ = ‖p‖ ≤ M. That is, |znp(1/z)| ≤ M for |z | ≤ 1.
Replacing z with 1/z , we have |(1/zn)p(z)| ≤ M for |z | ≥ 1, or
|p(z)| ≤ M|z |n for |z | ≥ 1.
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Rate of Growth Results

Ankeny and Rivlin, Students

Theorem

Ankeny and Rivlin, 1955. If p is a polynomial of degree n such that
p(z) 6= 0 for |z | < 1 and |p(z)| ≤ M on |z | = 1, then for R ≥ 1 we have

max
|z|=R

|p(z)| ≤ Rn + 1

2
M.

Theorem

Aziz and Dawood, 1988. If p is a polynomial of degree n such that
p(z) 6= 0 for |z | < 1 and |p(z)| ≤ M on |z | = 1, then for |z | = R ≥ 1 we
have

max
|z|=R

|p(z)| ≤ Rn + 1

2
M − Rn − 1

2
min
|z|=1

|p(z)|.

ETSU Students with Papers in This Area: Amy Weems (2004, 2004).
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Bernstein’s Theorem

Bernstein’s Inequality

Sergei Bernstein (1880–1968)
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Bernstein’s Theorem

Definition. For a polynomial p, define the norm ‖p‖ = max
|z|=1

|p(z)|. This is

sometimes called the “sup norm” or “infinity norm” denoted ‖p‖∞.

Note. Bernstein’s Inequality in the complex setting states: “If p is a
polynomial of degree n, then ‖p′‖ ≤ n‖p‖. Equality holds if and only if
p(z) = λzn for some λ ∈ C.”

Note. Bernstein’s original result (in 1926) concerned trigonometric
polynomials, which are of the form

∑n
v=−n ave ivθ. The version presented

here is a special case of Bernstein’s general result. There is a lengthy
history of the so-called “Bernstein’s Inequality” (there is also a different
result in statistics with the same name).
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Bernstein’s Theorem

Lemma

Let p and q be polynomials such that (i) lim|z|→∞ |p(z)/q(z)| ≤ 1, (ii)
|p(z)| ≤ |q(z)| for |z | = 1, and (iii) all zeros of q lie in |z | ≤ 1. Then
|p′(z)| ≤ |q′(z)| for |z | = 1.

Proof. Define f (z) = p(z)/q(z). Then f is analytic on |z | > 1, |f (z)| ≤ 1
for |z | = 1, and lim|z|→∞ |f (z)| ≤ 1. So by the Maximum Modulus
Principle for Unbounded Domains,

|f (z)| ≤ 1 for |z | ≥ 1. (∗)

Let |λ| > 1 and define polynomial g(z) = p(z)− λq(z). If
g(z0) = p(z0)− λq(z0) = 0 and if q(z0) 6= 0 then
|p(z0)| = |λ||q(z0)| > |q(z0)|. Therefore |f (z0)| = |p(z0)/q(z0)| > 1 and
so |z0| < 1 by (∗). Now if q(z0) = 0, then |z0| ≤ 1 and it could be that
|z0| = 1 in which case p(z0) = 0 and g(z0) = 0. So all zeros of g lie in
|z | ≤ 1.
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Bernstein’s Theorem

Lemma

Let p and q be polynomials such that (i) lim|z|→∞ |p(z)/q(z)| ≤ 1, (ii)
|p(z)| ≤ |q(z)| for |z | = 1, and (iii) all zeros of q lie in |z | ≤ 1. Then
|p′(z)| ≤ |q′(z)| for |z | = 1.

Proof (continued). By Lucas’ Theorem, g ′ has all its zeros in |z | ≤ 1. So
for no |λ| > 1 is g ′(z) = p′(z)− λq′(z) = 0 where |z | > 1; or in other
words, p′(z)/q′(z) = λ where |λ| > 1 has no solution in |z | > 1. Hence
|p′(z)| ≤ |q′(z)| for |z | > 1. By taking limits, we have |p′(z)| ≤ |q′(z)| for
|z | ≥ 1, and the result follows.

Note. This lemma as stated was proved by Bernstein. A generalization
was proven where “|z | < 1” is replaced with a convex domain D and
“|z | = 1” is replaced with the boundary of D, ∂D.
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Bernstein’s Theorem

Bernstein’s Inequality

Theorem

Bernstein’s Inequality. Let p be a polynomial of degree n. Then

max
|z|=1

|p′(z)| ≤ n max
|z|=1

|p(z)|.

Proof. Let M = max|z|=1 |p(z)| and define q(z) = Mzn. Then
(i) |p(z)| ≤ RnM for |z | = R by Bernstein’s Rate of Growth Theorem, and
so lim|z|=R→∞ |p(z)/q(z)| ≤ limR→∞(RnM)/(RnM) = 1,
(ii) |p(z)| ≤ |q(z)| = M on |z | = 1, and (iii) all zeros of q lie in |z | ≤ 1.
So, by the lemma, |p′(z)| ≤ |q′(z)| for |z | = 1.

This implies that

max
|z|=1

|p′(z)| ≤ max
|z|=1

|q′(z)| = max
|z|=1

|nMzn−1| = nM = n max
|z|=1

|p(z)|.
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Bernstein’s Theorem

Theorem

Erdös-Lax Theorem 1944. Let p be a polynomial of degree n where
p(z) 6= 0 for |z | < 1. Then ‖p′(z)‖∞ ≤ n

2‖p(z)‖∞.

Theorem

de Bruijn’s Theorem 1947. Let p be a polynomial of degree n where
p(z) 6= 0 for |z | < 1. Then for 1 ≤ δ ≤ ∞,

‖p′‖δ ≤
n

‖1 + z‖δ
‖p‖δ,

where ‖p‖δ =

{∫ 2π

0
|p(e iθ)|δ dθ

}1/δ

for 1 ≤ δ < ∞.

ETSU Students with Papers in This Area: Amy Weems (1998).

() Complex Analysis December 24, 2017 47 / 62



Iliev-Sendov Conjecture

Iliev-Sendov Conjecture

Ljubomir Iliev (1913–2000) Blagovest Sendov (1932– )
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Iliev-Sendov Conjecture

Iliev-Sendov Conjecture

Note. The conjecture explored now is known variously as the Iliev
Conjecture, the Iliev-Sendov Conjecture, and the Sendov Conjecture
(making it particularly difficult to search for papers on the subject). It was
originally posed by Bulgarian mathematician Blagovest Sendov in 1958
(according to some references; sometimes the year 1962 is given), but
often attributed to Iliev because of a reference in Hayman’s Research
Problems in Function Theory in 1967. To muddle things further,
sometimes “Iliev” is spelled “Ilieff.”

Conjecture. The Iliev-Sendov Conjecture.
If all the zeros of a polynomial p lie in |z | ≤ 1 and if r is a zero of p, then
there is a zero of p′ in the circle |z − r | ≤ 1.
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Iliev-Sendov Conjecture

Iliev-Sendov Conjecture Picture

Note. Combining the Iliev-Sendov Conjecture with Corollary 3, we can
further restrict the conjectured location of the critical points of p.
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Iliev-Sendov Conjecture

Iliev-Sendov Conjecture Special Cases

Note. According to a paper by Michael Miller (2008), there have been
over 80 papers written on the conjecture. As a result, it has be
demonstrated in many special cases. Some of the special cases are:

1 3rd and 4th degree polynomials (Rubenstein 1968),

2 5th degree polynomials (Meir and Sharma 1969),

3 polynomials having a root of modulus 1 (Rubenstein 1968,
Schmeisser 1969),

4 polynomials with real and non-positive coefficients (Schmeisser 1971),

5 polynomials with at most three distinct zeros (Cohen and Smith 1988,
Saff and Twomey 1971),

6 polynomials with at most six distinct zeros (Borcea 1996),

7 polynomials of degree less than or equal to 6 (Brown 1991),

8 polynomials of degree less than or equal to 8 (Brown 1999), and

9 the circle |z − r | ≤ 1.08331641 (Bojanov, Rahman, Szynal 1985).
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Iliev-Sendov Conjecture

Goodman-Rahman-Ratti Conjecture

Note. A common approach to proving a difficult conjecture is to prove
something even more restrictive than the conjecture, and then the
conjecture falls as a corollary. In 1969, Goodman, Rahman, and Ratti (and
independently Schmiesser in 1969) conjectured that the Iliev-Sendov
Conjecture could be modified to the claim that (with the notation above)
the region |z − r/2| ≤ 1− |r |/2 must contain a zero of p′. This is the blue
region here:
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Iliev-Sendov Conjecture

Goodman-Rahman-Ratti Conjecture, continued

Note. However, this conjecture is not true as shown by Micheal Miller in
1990. The following eighth degree polynomial violates the Goodman,
Rahman, Ratti Conjecture:

p(z) = (z − 0.8)(z7 + 1.241776468z6 + 1.504033112z5 + 1.702664563z4

+1.702664563z3 + 1.504033112z2 + 1.241776468z + 1).

Miller also found degree 6, 10, and 12 polynomials violating the new
conjecture.
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Commercial Announcement

Complex Analysis 1 in Fall 2017!!!

The ETSU Department of Mathematics and Statistics will offer Complex
Analysis 1 (MATH 5510) in fall semester (TR 2:15–3:35). Topics to be
covered include analytic functions, Möbius transformations, power series,
zeros, complex integration, and the many versions of Cauchy’s Theorem.
Additional topics to be covered in Complex Analysis 2 will be the Open
Mapping Theorem, singularities, Laurent Series, the Argument Principle,
the Maximum Modulus Theorem, and Schwarz’s Theorem. Time
permitting, spaces of functions and analytic continuation will be covered.

The syllabus for the class online is at:
http://faculty.etsu.edu/gardnerr/
5510/sillab-fall17.htm
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