BERNSTEIN INEQUALITIES FOR POLYNOMIALS AND ENTIRE FUNCTIONS

ROBERT GARDNER

presented at

East Tennessee State University

March 8, 1993

INTRODUCTION

Definition. A complex number is one of the form z = a + ib where a and b are real and $i^2 = -1$. a is called the real part of z, denoted Re(z), and b is called the imaginary part of z, denoted Im(z). The modulus of z = a + ib is $|z| = \sqrt{a^2 + b^2}$.

Note. We can plot z = a + ib in the *complex plane*:

Note. The graph of $|z| \leq 1$ is:

Note. The graph of $Im(z) \ge 0$ is:

HISTORY

Note. Mendeleev studied the specific gravity of a solution as a function of the percentage of the dissolved substance. After plotting data, he asked the question:

If p(x) is a real polynomial function of degree two and $|p(x)| \le 1$ on [-1,1], how large can |p'(x)| be on [-1,1]?

Answer: $|p'(x)| \le 4$. The result is "sharp" (or best possible) as is shown by the example $p(x) = 1 - 2x^2$.

In general:

Theorem (Markov). If p(x) is a real polynomial of degree n, and $|p(x)| \leq M$ on [-1,1] then $|p'(x)| \leq Mn^2$ on [-1,1].

Note. This result is sharp for the n^{th} Chebyshev polynomial, $p(x) = \pm T_n(x) = \pm \cos(n\cos^{-1}(x))$.

RESULTS FOR COMPLEX POLYNOMIALS

Definition. Let \mathcal{P}_n denote the class of all polynomials of degree less than or equal to n. For $P \in \mathcal{P}_n$, define the $norm ||P|| = \max_{|z|=1} |P(z)|$.

Theorem (Bernstein). If $P \in \mathcal{P}_n$, then $||P'|| \le n||P||$.

Note. This result is sharp if and only if $P(z) = \alpha z^n$.

Theorem (Erdös-Lax). If $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in |z| < 1 then

$$||P'|| \le \frac{n}{2}||P||.$$

Note. This result is sharp for $P(z) = \alpha z^n + \beta$ where $|\alpha| = |\beta|$.

Theorem (Malik). If $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in $|z| < K, K \geq 1$, then

$$||P'|| \le \frac{n}{1+K} ||P||.$$

Note. This result is also sharp, as is shown by the example $P(z) = \left(\frac{z+K}{1+K}\right)^n$.

Note. With K = 1, Malik's theorem reduces to the Erdös-Lax theorem.

Theorem (Govil and Labelle). If

$$P(z) = a_n \Pi_{v=1}^n (z - z_v) \in \mathcal{P}_n$$

and $|z_v| \ge K_v \ge 1$ then

$$||P'|| \le \frac{n}{2} \left(1 - \frac{1}{1 + \frac{2}{n} \sum_{v=1}^{n} \frac{1}{K_v - 1}} \right) ||P||.$$

Note. This result reduces to Malik's theorem if $K_v \geq K \geq 1$ for all v, and reduces to the Erdös-Lax result if $K_v = 1$ for some v.

Definition. For $P \in \mathcal{P}_n$, define the L^p norm of P as

$$\|P\|_p = \left\{ rac{1}{2\pi} \int_0^{2\pi} \left| P(e^{i heta})
ight|^p d heta
ight\}^{1/p}.$$

Theorem (DeBruijn). If $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in |z| < 1 then for $p \geq 1$,

$$||P'||_p \le \frac{n}{||1+z^n||_p} ||P||_p.$$

Note. If we let $p \to \infty$, DeBruijn's theorem reduces to the Erdös-Lax result.

Theorem (Gardner and Govil). Suppose $P(z) = a_n \prod_{v=1}^n (z - z_v) \in \mathcal{P}_n \text{ and } |z_v| \geq K_v \geq 1.$ Then for $p \geq 1$,

$$||P'||_p \le \frac{n}{||t_0 + z^n||_p} ||P||_p$$

where

$$t_0 = \left(\frac{\sum_{v=1}^n \frac{K_v}{K_v-1}}{\sum_{v=1}^n \frac{1}{K_v-1}}\right) = 1 + \frac{n}{\sum_{v=1}^n \frac{1}{K_v-1}}.$$

Note. If $K_v = 1$ for any v, this result reduces to DeBruijn's theorem. If $p \to \infty$, this result reduces to the Govil-Labelle theorem.

Note. Each of the above results involving L_p norms can be extended to the case $p \in [0, 1)$ where

$$||P||_0 = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log \left| P(e^{i\theta}) \right| d\theta\right).$$

Definition. For $P \in \mathcal{P}_n$ define polar derivative of P with respect to the pole ζ as

$$D_{\zeta}[P(z)] = nP(z) + (\zeta - z)P'(z).$$

Theorem (Laguerre). Let $P \in \mathcal{P}_n$ and suppose that all the zeros of P lie in a generalized circular region C. If z is any zero of $D_{\zeta}[P]$ then not both points z and ζ lie outside of C.

Theorem (Aziz). If $P \in \mathcal{P}_n$, and $P(z) \neq 0$ in |z| < K where $K \geq 1$ then for $|\zeta| \geq 1$

$$||D_{\zeta}[P]|| \le n \left(\frac{K + |\zeta|}{1 + K}\right) ||P||.$$

Note. If $\zeta \to \infty$ then this result implies Malik's theorem.

Corollary (to Laguerre's Theorem). Suppose all the zeros of the polynomial \dot{P} lie in $|z| \leq 1$. Then all the zeros of P' lie in $|z| \leq 1$.

proof. Choose ζ such that $|\zeta| > 1$. Then all the zeros of $D_{\zeta}[P]$ and $\frac{D_{\zeta}[P]}{\zeta}$ lie in $|z| \leq 1$. Therefore all the zeros of

$$\lim_{\zeta \to \infty} \left(\frac{D_{\zeta}[P]}{\zeta} \right) = \lim_{\zeta \to \infty} \frac{nP(z) + (\zeta - z)P'(z)}{\zeta} = P'(z)$$
 lie in $|z| \le 1$.

Conjecture (Illief-Sendov). Suppose all the zeros of the polynomial P(z) lie in $|z| \leq 1$ and let α be one such zero. Then there is a zero, say β , of P'(z) such that $|\alpha - \beta| \leq 1$.

ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

Definition. Let \mathbb{C} represent the complex plane and suppose $F: \mathbb{C} \to \mathbb{C}$. Then F is analytic at a point if it is differentiable in an open neighborhood of that point. A function analytic at all points of \mathbb{C} is an entire function.

Note. Some facts about entire functions:

- 1. If F(z) has a finite number of zeros then F(z) = P(z)g(z) where P(z) is a polynomial, g(z) is entire and g(z) is never 0.
- 2. (Weierstrass) Every entire function F (not identically 0) can be represented as

$$F(z)=z^me^{g(z)}\prod_{n=1}^{\infty}\left(1-rac{z}{z_n}
ight)e^{P_n(z)}$$

where the product is taken over the zeros of F(z) other than z = 0, g(z) is entire and P_n is a polynomial.

Definition. An entire function F is said to be of exponential type if the inequality $|F(z)| \leq Ae^{B|z|}$ holds for some positive A and B and for all z.

Definition. Let $M(F,r) = \max_{|z|=r} |F(z)|$. The order ρ of F is

$$\rho = \limsup_{r \to \infty} \frac{\log \log M(F, r)}{\log r}.$$

An entire function of positive order ρ is of type τ if

$$au = \limsup_{r o \infty} rac{\log M(F, r)}{r^{
ho}}.$$

Definition. An entire function is said to be of exponential type τ if either it is of order 1 and type
less than or equal to τ , or it is of order less than 1.
Denote the class of all such functions by \mathcal{E}_{τ} .

Definition. For $F \in \mathcal{E}_{\tau}$, let the *norm* of F be $||F|| = \sup_{x \in R} |F(x)|$. Define the *indicator function* of F as

$$h_F(heta) = \limsup_{r o \infty} rac{\log |F(re^{i heta})|}{r}.$$

Example. The function $F(z) = e^{\tau z^{\rho}}$ is of order ρ and type τ .

Example. Consider $F(z) = \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$. Then

$$\frac{e^R - 1}{2} \le \max_{|z| = R} |\sin(z)| \le \frac{e^R + 1}{2}.$$

So $F(z) = \sin(z)$ is of order $\rho = 1$ and type $\tau = 1$. Also $h_F\left(\frac{\pi}{2}\right) = 1$. **Note.** Some facts about \mathcal{E}_{τ} :

1. The Phragmen-Lindelöf Theorem is, in a sense, a generalization of the Maximum Modulus Theorem. From it, we have:

Theorem. If $F \in \mathcal{E}_{\tau}$, $h_F\left(\frac{\pi}{2}\right) \leq c$ and $||F|| \leq M$ then for every z with $y = Im(z) \geq 0$,

$$|F(z)| \leq Me^{cy}$$
.

- **2.** \mathcal{E}_{τ} is a Banach Space with our norm $\|\cdot\|$.
- 3. Consider

$$\mathbf{P} = \left\{ F \in \mathcal{E}_{\pi} : \int_{-\infty}^{\infty} |F(x)|^2 dx < \infty \right\}.$$

This is called the Paley-Wiener Space. If $F \in \mathbf{P}$ then there exists $\Phi \in L^2[-\pi, \pi]$ such that

$$F(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi(t) e^{izt} dt = \mathcal{F}^{-1} \{\Phi\} \text{ and }$$

$$\Phi(t) = \int_{-\infty}^{\infty} F(x)e^{-ixt} dx = \mathcal{F}\{F\}.$$

Since the Fourier transform \mathcal{F} is an isometry (preserves norms), \mathbf{P} is isometrically isomorphic to $L^2[-\pi,\pi]$. Also, \mathbf{P} is a Hilbert Space with the inner product $(f,g) = \int_{-\infty}^{\infty} f \overline{g} \, dx$. If $f \in \mathbf{P}$ then

$$f(z) = \sum_{n = -\infty}^{\infty} c_n \frac{\sin \pi (z - n)}{\pi (z - n)} \qquad (*)$$

with $\sum |c_n|^2 < \infty$. That is,

$$\left\{\frac{\sin \pi(z-n)}{\pi(z-n)}\right\}_{n\in\mathbb{Z}}$$

is an (orthonormal) Riesz basis for **P**. Setting z = n in (*), we have $c_n = f(n)$. So

$$f(z) = \sin \pi z \sum_{n=-\infty}^{\infty} (-1)^n \frac{f(n)}{\pi (z-n)}.$$

So if $f \in \mathbf{P}$ and f is known on the integers, then f is determined. This is called the Shannon Sampling Theorem.

Note. Consider the transformation $T: z \to e^{iz}$. This transformation satisfies the following properties:

1.
$$T: \mathbf{R} \rightarrow \{z \mid |z| = 1\}$$

2.
$$T: \{z \mid Im(z) > 0\} \rightarrow \{z \mid |z| < 1\}$$

3.
$$T: \{z \mid Im(z) < 0\} \rightarrow \{z \mid |z| > 1\}$$

Note. We want to consider Bernstein type results for the class \mathcal{E}_{τ} .

Theorem (Bernstein). If $F \in \mathcal{E}_{\tau}$ then

$$||F'|| \le \tau ||F||.$$

Note. Bernstein's theorem for polynomials can be derived from this result by considering $P(T(z)) = P(e^{iz}) \in \mathcal{E}_n$ where $P \in \mathcal{P}_n$.

Theorem (Boas). If $F \in \mathcal{E}_{\tau}$, $h_F\left(\frac{\pi}{2}\right) = 0$ and $f(z) \neq 0$ for Im(z) > 0 then

$$||F'|| \le \frac{\tau}{2}||F||.$$

Note. The Erdös-Lax theorem can be derived from this.

Definition. For $F \in \mathcal{E}_{\tau}$ define the polar derivative of F with respect to ζ as

$$D_{\zeta}[F(z)] = \tau F(z) + i(1-\zeta)F'(z).$$

Theorem (Rahman-Schmeisser). Let $F \in \mathcal{E}_{\tau}$ where $\tau > 0$ and $h_F(\frac{\pi}{2}) = 0$. Let H denote the (closed or open) upper half plane. If $F(z) \neq 0$ for $z \in H$ then $D_{\zeta}[F] \neq 0$ for $z \in H$ and $|\zeta| \leq 1$.

Note. Laguerre's theorem can be derived from this result.

Corollary. Let $F \in \mathcal{E}_{\tau}$ where $\tau > 0$ and $h_F(\frac{-\pi}{2}) = \tau$. Let L denote the (closed or open) lower half plane. If $F(z) \neq 0$ for $z \in L$ then $D_{\zeta}[F] \neq 0$ for $z \in L$ and $|\zeta| \geq 1$.

Note. If $\zeta \to \infty$ this means $F'(z) \neq 0$ for $z \in L$.

Theorem (Gardner and Govil). Let $F \in \mathcal{E}_{\tau}$, $h_F(\frac{\pi}{2}) = 0$ and $F(z) \neq 0$ in H. Then for $z \in L$ and $|\zeta| \geq 1$,

$$|D_{\zeta}[F(z)]| \le \frac{\tau}{2} \left(|\zeta| e^{\tau|y|} + 1 \right) ||F||$$

where y=Im(z).

Note. This result implies the Boas result for entire functions when $\zeta \to \infty$.

Theorem (Gardner and Govil). Let $F \in \mathcal{E}_{\tau}$, $h_F(\frac{\pi}{2}) = 0$ and suppose F(z) has all its zeros in $Im(z) \leq k \leq 0$. If $|\zeta| \geq 1$, $h_{D_{\zeta}[F]}\left(\frac{\pi}{2}\right) \leq -c < 0$ and $h_{D_{\zeta}[G]}\left(\frac{\pi}{2}\right) \leq -c < 0$ where $G(z) = e^{i\tau z}\overline{F(\overline{z})}$ then

$$||D_{\zeta}[F]|| \le \frac{\tau(|\zeta|+1)}{e^{c|k|}+1}||F||.$$

Note. Letting $\zeta \to \infty$, this theorem reduces to a result of Govil and Rahman.