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I. VECTOR SPACES - INTRODUCTION

Note. A vector space consists of two things: scalars
and vectors. We take as our scalar field either the

real numbers R or the complex numbers C.

Example. n—dimensional Euclidean space R” is a
vector space. With n =2 or 3, this yields the famil-
iar idea of vectors as “arrows” which represent posi-
tion, velocity, or acceleration in introductory physics
and engineering classes. In general, elements of R
look like x = (z1,%9,...,2,) where each z; €R (we
take the scalar field to be R).

Example. C" = {(z1,29,...,2,) | 2 €C} forms a
complex vector space (we take the scalar field to be
C). Notice that the “arrows” interpretation is more
difficult here (at least for n > 1).



II. VECTOR SPACES - DIMENSION

Example. The collection of all polynomials of de-
gree n or less forms a vector space of dimension n+1

(we can take real or complex polynomials) denoted
Pr.

Notice. There is a “natural relationship” between
P, and R"™"!. For Example, we can associate with
the polynomial p(z) = a¢ + a1z + asx® € P, the

element (ag, ai, ay) ERS.

Definition. The span of a finite set of vectors

{z1,29,..., 21}

is the collection of all possible linear combinations of

the vectors:
span({z1, g, ..., 21}) = {0121 + @es + - -+ + gy |

a1, 0, ..., 0 € F(the scalar field)}.



Definition. A set of vectors B C V is a basis of V if
B is linearly independent and span B = V. If a vec-
tor space has a finite basis, it is finite dimensional.

Otherwise, it is infinite dimensional.

Note. The vector space R? has as a basis

{(1,0,0),(0,1,0),(0,0,1)}.

The vector space Py has as a basis {1,z,z?}. In

general, a basis for R" is
{(1,0,0,0,...,0),(0,1,0,0,...,0),(0,0,1,0,...,0),

...,(0,0,0,0,...,0,1)}.

Note. The set of all sequences
{(z1,29,...) | 2z; € R}
forms an infinite dimensional vector space with basis
{(1,0,0,0,...),(0,1,0,0,...), (0,0,1,0,. . )}.

(...we have not defined the term “basis” for an infi-

‘nite dimensional vector space, though!)



I1I. VECTOR SPACES - ISOMORPHISM

Note/Definition. An isomorphism between vec-
tor spaces V; and V,, both over the scalar field F,
is a function m which maps the vectors of V; to
the vectors of V5 such that the operations of vec-
tor addition and scalar multiplication are preserved.
We say Vi is isomorphic to V,, denoted V] = Vi.
For example, R®> = P,. An isomorphism between
R? and P, is the mapping 7 :R® — P, defined as

7((ag, a1, a2)) = ag + a1z + asx?.

Theorem. “Fundamental Theorem of Linear
Algebra”
An n dimensional vector space over the field R, (or

F'in general) is isomorphic to R™ (or F™ in general).



IV. VECTOR SPACES - NORMS

Definition. A real function || - || on a vector space
H is a norm if

(a) ||z|| > 0 for all z € V and ||z|| = 0 if and only if
z =0

(b) ||Az]| = |Al||z]| for all z € V and A € F

(c) llz+yll < |lz|| + |ly|| for all z,y € V (triangle
inequality).

Note. If || - || is a norm on a vector space, then
d(z,y) = ||z —y|| defines a metric on the vector space

with which we can measure distance.

Example. A norm on R"” is

||| = yai + 23+ - + 22

where z = (x1,%9,...,2,) €R" This is the Fu-
clidean norm and can be used to define the Fuclidean
metric on R". Notice that for n = 1 this is simply

absolute value.



Example. A norm on C" is

) 2]l = Vlza® + 2ol + - - + | 2a]?

where 2z = (21, 29,...,2,) €C". With n = 1 this is

just the familiar modulus of a complex number.



V. BANACH SPACES - COMPLETENESS

Note. We now need to explore the difficult subject

of completeness. We do so very informally.

Geometric Note. When you hear the term “com-

plete,” think “no holes.” The rational numbers

Q= {p/q|p,q € Z,q+# 0}

is not a complete vector space (here we take the

scalar field to be Q itself) since the sequence
{1,1.4,1.41,1.414,...}

is Cauchy but does not converge in this space (since
the limit is v/2). In some sense, Q is not complete

since it has holes! In particular, it has a hole at /2.

Definition. A complete normed vector space is a

Banach space.



Note. The real numbers are complete (in fact, this
is part of the definiton of R) and so form a Ba-
nach space. More generally, R" and C" form Banach

spaces.

Example. The vector space of all square summable

sequences of complex numbers
O
[? = {(Zl, 29, . . ) | z; € C and 'Zl |Zz'|2 < OO}
2=

with the norm

o )\ 12
(o1, 20, ) = £ JaiP)

is a (very fundamental) Banach space. This is a
somewhat difficult result and it is not even clear that

this space is closed under addition.



VI. INNER PRODUCTS

Note. We are ultimately interested in generalizing
the idea of dot product in R™ (or C") to the setting

of infinite dimensional spaces.

Definition. Let V be a vector space over the field
of scalars C. A mapping

(,):VxV->C

18 an ¢nner product in V if for any z,y,z € V and
o, B € C, the following hold:

(a) (z,y) = (y,z) (the bar represents complex con-
jugate),

(b) (e + By, 2) = oz, 2) + B(y, 2),

(¢) (z,z) > 0 and (z,z) = 0 implies z = 0.

A vector space with an inner product is an inner

product space (or pre-Hilbert space).
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Example. An inner product can be put on the real

vector space R" as follows: for x = (x1,29,...,2,)

and y = (y1, 99, .., Yn), define
(z,9) =2y = 2wy

Example. An inner product can be put on the com-
plex vector space C" as follows: for x = (z1, 29, ..., z,)

and ¥y = (y1,¥2,...,Yn), define
(:C: y) — 'il LiYs-
1=

Example. An inner product can be put on the

vector space [* as follows: for z = (21,23,...) and

y = (y1,¥2, - ..) define
(.’L‘, y) - _§1 .’L'zm

Notice. In each of the three inner product spaces
above, the inner product can be used to define a
norm: ||z|| = /(z,z). In fact, in each case the norm
determined by the inner product is the norm on the
vector space we mentioned when these spaces were

originally introduced.
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Example. The space L*([a, b]) of all square (Lebesgue)

integrable functions on the real interval [a, b]:
b
L*([a,b]) = {f : [a,8] = C | ['|f(z)* dz < o)
has as an inner product defined by

(f,9) = [ f(z)g(x) dz.

Definition/Theorem. An inner product space has

a norm || - || induced by the inner product as follows:

]l = y(z, z).

Note. Since an inner product space necessarily has
a norm, it is of interest to know if this normed space

is a Banach space (i.e. if it is complete).
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Definition. Two vectors z and y in an inner prod-

uct space are orthogonal if (z,y) = 0.

Theorem (Pythagorean Formula.)
If x and y are orthogonal vectors in an inner product

space, then
lz + ylI* = ll=|I” + llylf*.

In R?, this is simply the Pythagorean Theorem.
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VII. HILBERT SPACES

Definition. A complete inner product space is a

Hilbert space.

Note. We have the following general inclusions:

Hilbert spaces C Banach spaces C vector spaces

Example. We have already seen several examples

of Hilbert spaces. Some of these are:

(a) C" = {(#1,22,...,¢) | 21 € C}.

(b) 12 = {(zl,ZQ, L) lzeCand §laf < oo}.

(¢) L([a,b]) = {f : [a,b] = C | ['|f(2)[Pdz < oo}
To establish that these are in fact Hilbert spaces, the
only difficult part is the establishment of complete-

11e58S.
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VII.1 Bases in Hilbert Spaces

Definition. A Schauder basis (or simply basis) of
an infinite dimensional Banach space is a set of vec-
tors {x1,Z,...} such that for any vector z in the
Banach space, there is a unique sequence of scalars

{aj,aq,...} such that z = %1 ;X5
1=

Note. Not every Banach space has a basis. We are

interested in Hilbert spaces which have bases.

VI1I.2 Seperable Hilbert Spaces

Note. We now need a few “mathy” definitions.

Definition. A set is countableif a complete “listing”

of the set can be made.
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Examples. |

The natural numbers are countable: {1,2,3,...}.
The integers are countable: {0,1,—1,2,-2,...}.
Surprisingly, the rational numbers are countable (even
though they are very different from the integers topo-
logically).

The real numbers are not countable!

Definition. Suppose X is a normed space. A set
D is dense in X if every open set in X includes an

element of D.

Example. The rational numbers are dense in the

real numbers. The integers are not dense in the reals.

Definition. A Hilbert space with a countable dense

subset is seperable.
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Note. Since Q is countable and dense in R, then R
forms a seperable Hilbert space (in fact, any finite
dimensional Hilbert space is seperable - and remem-
ber, a finite dimensional Hilbert space/vector space

is isomorphic to either R" or C" depending on the
scalar field).

Definition. A subset X of a Hilbert space is an
orthonormal setif ||z|| = 1for all z € X and (z,y) =
0 (that is, z and y are orthogonal) for all z,y € X.

Theorem. A Hilbert space is seperable if and only

if it has an orthonormal basis.

VI1I.3 Classification of Seperable Hilbert

Spaces

Definition. A Hilbert space H; is isomorphic to a
Hilbert space Hy if there exists a one-to-one linear
mapping I’ from H; onto Hy such that (T(x),T(y)) =

17



Note. Now for the BIG RESULT! Recall that the
“Fundamental Theorem of Linear Algebra” tells you

what a finite dimensional vector space “looks like.”

Theorem (Riesz-Fisher Theorem).
An infinite dimensional Hilbert space with scalar
field C (that is, a seperable Hilbert space that is

not isomorphic to some C") is isomorphic to

2 = {(21,22, .. ) | z; € C and ,§1 |273|2 < OO}

Note. An orthonormal basis for 12 is
{e1,e9,e3,...} ={(1,0,0,0,...),(0,1,0,0,...),

(0,0,1,0,...),...}.
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VIII. An Application

Definition. Suppose a flexible, elastic homogeneous
string of length [ lies along the x—axis from = = 0
to x = [. Displace the string by an amount ®(z)
at position z (initial position) and give the string
a velocity ¥(z) at position z (initial velocity). Let
u(z,t) represent the displacement of the string at

position x and time ¢{. Then u satisfies

2
Uy = C Ugy

where ¢ = /T'/p is the wave speed, T is the tension
in the string (a constant), and p is the density of the
string (mass per unit length). Therefore the wave

equation with initial and boundary conditions is

O%u ,0%u
?ﬁbcé;é_forxe((),l)
u(0,t) = u(l,t) = 0 (boundary conditions)

u(z,0) = ®(z) (initial position)

@(az,O) = W(z) (initial velocity).

19



Note. We look for a solution of the wave equa-
tion of the form u(z,t) = X (x)T(¢) (the method of
seperation of variables). Plugging this into the wave

equation yields:

X(z)T"(t) = X" (2)T(t)

_TH XH
O e T T x TN
oA O\
Notice that A is constant Sinceb =5 = 0. In fact,

A > 0. Let A = 8%, Then we ha\a;e the pair of ODEs:
X"+ 38X =0
and T" + ¢*B*T = 0.
These second order ODEs have solutions of the form

X(x) = Ccos(fz)+ Dsin(Bz)
T(t) = Acos(fBct) + Bsin(Bct)

respectively where A, B, C, and D are arbitrary

constants.
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Imposing the boundary conditions:

X(0) =C=0
X (1) = Dsin(gl) =0,

we see that ¢ = 0 and Sl = nr for some integer n

and so
_p2_ (N7
/\n—IB —(l

Therefore there are an infinite number of solutions of

, |
) where n =1,2,3,.....

the wave equation which satisfy the boundary con-

ditions, each of the form:

t
u(x,t) = (An COS (mrc ) + B, sin (mrct)) sin (@)

[ [ [
where n = 1,2,3.... Summing these solutions we
get

00 1
u(z,t) = 2_;1 (An COS (m;c ) + B, sin (m;CtJ) sin (gzr_a_c)

1s THE solution to the wave equation provided the

initial conditions are satisfied.
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This leads us to require that

u(x,0) = 521 A, sin (?) = ®(z) and
0o MTC (n'fr:c)

[
Therefore, we can solve the wave equation provided

ui(x,0) = X Tanin

that we can represent the initial conditions ®(z) and

U(zx) in the above form.

Theorem. The set
{g sin ('mmc
[ [

is an orthonormal basis for

)|n:1,2,3...}

LX([0,1) = {f : [0,]] = R | fy |f(z)]*dz < oo}.

Note. We see that the previous theorem tells us
that we can find a unique solution to the wave equa-
tion with initial and boundary conditions as long as
® U e L?([0,1]). That is, provided that ® and ¥ lie

in the unique infinite dimensional vector space.
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Theorem. With f as above,
=l g 1 _T_L_@
Az f(m){l sm( l )} dx.
These A,, are called the Fourier coefficients of f.

Notice. There is a very geometric interpretation of

the A,s as components of f “in the direction”

— SIN | ———

! !
Each A, is simply the inner product (“dot product”

if you like) of f with the nth basis “vector.”

2 ('mra:)
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