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HISTORY

Question. If p(z) is a polynomial of degree n, then what are the zeros
of p(2)?

Answer 1. If n = 1,2,3, or 4, then no problem (antiquity).

Answer 2. If n > 5, then problem! (Abel et al.)

n
Question. If p(z) = X a,z", then what restrictions can be put on the

v
location of the zeros of p(z) in the complex plane?



Theorem 1. Cauchy 1830

All the zeros of p(z) = i a,z’, where a,, # 0, lie in the circle |z| < 1+ M,
v=0

a;

Anp

where M = max
0<j<(n—1)

Theorem 2. Kakeya-Hayashi-Hurwitz 1910

All the zeros of p(z) = > a,2", where a; are real and positive for j =

. . UZO
0,1,...,n, liein
Ry <|z| < Ry
_ a; a;
where R = min — | and Ry = max |—-|.
0<j<(n—1) aj+1 0<j<(n—1) Aj+1



Theorem 3. Enestrom-Kakeya 1920

If p(z) = Zo a,z" is a polynomial of degree n with real coefficients satis-
V=

fying

then all the zeros of p(z) lie in |z| < 1.

Proof. Consider the polynomial

n .
P(z) =(1-2)p(2) =ap+ X (aj—a;_1)2’ — a2 = —a,nz”HJrGg(z).
=1
If |z] > 1 then
|G2(2)| = |ao+ (a1 — ap)z + (azs — a1)22 + oo+ (an — ap-1)2"]
< Jaol[z|" + |ar — aql|2]" + |az — ar[|2]" + - -+ + |an — ap1]]2]"

\z\”(\ao\ + \a,l — CLQ‘ + ‘CLQ — a,l\ + -+ ‘Cbn — a,n_l\)

\z\”(ao + (a1 — CLQ) + (CLQ — a,l) + - (Cbn — a,n_l))

= a,|z|".
So for |z| > 1

[P(2)]

1V

| = anl|2"" = [Ga(2)]

> a, 2| — an|2|” = an|2|"(|z] = 1) > 0.

Therefore for |z| > 1, P(z) # 0 and in turn p(z) # 0. 1



Theorem 4. Joyal-Labelle-Rahman 1967
Ifp(z) = i a,z" is a polynomial of degree n with real coefficients, a,, # 0,
v=0

satistying -

Note. If ag > 0, then Theorem 4 reduces to Theorem 3.

Proof. Consider the polynomial

P(z)=(1—2)p(z) = ap+ i (a; —aj 1)2 —ap2" "t = —a,2" T 4 Go(2).
j=1

Then for |z| =1,

Gaf2)] = oo+ X () — a;)2

< lap — ap_1| + lan—1 — an—o| + - - + a1 — ap| + |ao

(ap — ap1+ an1—an2+--++a1—ag) + |ag|

a, — ag + |agl.

Z

1
Since 2"Go (—) is analytic in |z| < 1, it follows that by the Maximum
2

Modulus Theorem that

Therefore

<a,—ay+ ‘ao‘ for ‘Z‘ = 1.

for |z] < 1.




1
Replacing z by — we get
2z

|G2(2)| < (an, — ag + |ag))|z|" for |z]| > 1.

(a, — ag + |apl)

Hence, if |z| > then
||
[P(2)] = | = an2"" + Gal(2)]
> | = anll2"" = [Ga(2)]
> an||2]"" = (an — ag + |ao|)|2/"

21" (lanl|2] = (an = a0 + |ao])) > 0.

Therefore for |z| > an = o + ||

, P(z) # 0 and in turn p(z) # 0.



Note. The following result for analytic functions has a rather flexible

condition on the coeflicients of the series expansion of the function.

Theorem 5. Aziz-Mohammed 1980
Let f(z) = § a,z" be analytic in |z| < t. If Re(a;) = a; and I'm(a;) =
0

v=
Bjfor j =0,1,..., for some k and r, and for some ¢ > 0,
O<CE0§tOélS---gtkathk+1ak+1Z...
and
Bo<tB <---<tB >G>

then f(z) # 0 in

t]ag|
2(ath + Bt7) — (o + Bo)”

2] <

Note. We put a similar conditions on the coefficients of a polynomsial.



NEW RESULTS

Theorem A. Gardner and Govil 1994 JAT
Suppose p(z) = i a,2', Re(a;) = «; and Im(aj) = B for j =
0

0,1,...,n, a, # OvaTnd for some k£ and r and for some ¢ > 0, we have
ap <tog < Pag < -0 <oy >t g > P > >ty
and
Oo <t < tPo <o B 2B 260 > - 2 1B
Then p(z) has all its zeros in Ry < |z| < Ry where
Ry = min {t|ag| /(2(t* . +t'B,) — (a0 + Bo) — t"(atn + B — |an])) 1}
and

Ry = max { (\ao\tnﬂ —t" Hap + Bo) — tlam + B)-

+(E+ D) a4+t
9 k—1 1 r—1 1
+E - " a4+ B,
‘ 2~

J=1

Jj=k+1 Jj=r+

+<1 . t2) ( nz—:l tn_j_loéj n nz—:l tn_j_lﬁj))/ ‘an‘ : 1}.
1 t



Proof of inner radius. Consider

P(z) = (t — 2)p(z) = tag + i (ta; — a;_1)2) — a 2" = tag + Gi(2).
j=1

On |z| =t,

k ‘ n ‘
Gi(2)] < Xty —a-)t! + X (aj1 —tay)t
7=1 J=k+1

+ ijl@ﬁj - ﬁj—l)t‘j + i (Bj-1 — tﬁj)tj + ‘an‘tn+1

J J=r+1
= —t(ap + fo) + Q(tkHOék + tTHﬁT) — th(Oén + Bn — |an|)

M;.

Applying Schwarz’s Lemma to G1(z), we get

M
Gi(z)| < 12| for |z| < ¢.
Which implies
M|z
()] =~ tag + Gr(2)] 2 tao] |G (2)] 2 tlao| —
t*]ay|

Hence if |z| < min{ ,t} = R; then P(z) # 0 and in turn p(z) # 0.
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EXAMPLE. Suppose

p(z) = (1+14)+(0.240.20)2 + (0.03 + 0.034)2"
+(0.0031 + 0.00314)2° + (0.0003 4- 0.00037) ",

Then by Theorem 1 (of Cauchy), all the zeros of p(z) lie in |z| < 3334.33.
According to Theorem 5 (of Aziz and Mohammed, with k& = r = 0 and
t = 5), no zero of p(z) lies in |z| < 3.54. Applying Theorem A, we find
that the zeros of p(2) lie in

3.74 < |z| < 23.15.

The inner radius is based on k = r = 0 and ¢ = 5. The outer radius is
based on k =r =0 and t = .0467.

Then according to Theorem 1.3, p(z) has no zeros in |z| < 1.3598.
Applying Theorem 2.1 to p(z) with ¢ = 10, £k = r = 3, we find that
p(z) # 01in |z| < 1.6363, an improvement over the bound from Theorem
1.3 of over 20%.
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By making certain choices of ¢, £ and r in Theorem A we obtain the
following corollaries. In each, p(z) = > a,2", a, # 0, Re(a;) = a; and
v=0

Im(a;) =B for j=0,1,...,n.

If in Theorem A, we take t =1, kK = n and r = n, then we get:

Corollary 1. If o < oy < -+ < and Gy < (1 < --- < 3, then

p(z) has all its zeros in

|aol
an| — (g + Bo) + (o + By)

Notice that with 3; = 0 for ¢« = 0,1,...,n, Corollary A implies the
Enestrom-Kakeya Theorem and also gives a zero free region about the

origin. Namely, under these conditions, Corollary 1 restricts the zeros of

p(z) to
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If in Theorem A, we take t =1, £k = 0 and r = 0 then we get:

Corollary 2. If g > oy > -+ > o and By > (61 > --- > 3, then
p(z) has all its zeros in

|ag|

lao| + (ao + Bo) — (an + Bn)
‘an‘ + (CVO + ﬁO) — (Cvn + ﬁn) .

< z| <
‘an‘

If in Theorem A, we take t =1, kK = n and r = 0 then we get:

Corollary 3. If g > a1 > -+ > o, and Gy < (1 < --- < 3, then

p(z) has all its zeros in

|ao|
‘an‘ +a0_ﬁ0_@n+ﬁn

lag| + g — By — an + Bn

<z <
‘an‘

Lastly, if in Theorem A, we take t =1, k = 0 and r = n then we get:

Corollary 4. If o < oy < --- <y and By > By > --- > 3, then

p(z) has all its zeros in

|ag|
‘Cbn‘ —a0+ﬁ0+@n_ﬁn

lao| — g+ Bo + ay — B

<z <
‘an‘
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