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1. Introduction

The Two Envelopes Exchange Paradox can be stated as:

A random (positive) amount of money is put in an

envelope O. A coin is flipped and if the coin comes

up heads, twice the amount of money in envelope O

is put in a second envelope (call it T ) and if the coin

comes up tails, half the amount of money in envelope

O is put in envelope T .

The paradox arises by reasoning that if we choose one envelope

(no matter which one) then there is a 50% chance that the other

envelope contains one-half the amount we hold, and there is a 50%

chance that the other envelope contains twice the amount we hold.

That is, the other envelope has an expected value of 1.25 times the

amount in the envelope we hold. This expected value is greater,

regardless of whether we hold envelope O or T . Therefore, if we

hold envelope O it appears to be to our advantage to swap envelope

O for envelope T (we might even be willing to pay a certain amount

of money to swap). Also, if we should hold envelope T we also have

a desire to swap since we can argue that the expected value in O is

1.25 times the amount in T .
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Resolution of the Paradox. Of course, the “paradox” is re-

solved if a probability distribution is given by which the amount

of money to be put in envelope O is determined. The expected

amount in O is then the expected value of this distribution and

the expected amount in T is 1.25 times the expected amount in O

(Gardner 1999).

A Uniform Distribution of NI . Piers Rawling (1999) has

suggested addressing the paradox by exploring what happens when

the amount in envelope O is based on a natural number n (he chose

to put $2n in envelope O) which is chosen according to a uniform

probability distribution on the natural numbers NI . With such a

distribution, countable additivity of the probability measure must

be abandoned. Motivated by this approach, we explore the implica-

tions of postulating a uniform probability distribution on NI which

satisfies the properties of finite additivity and translation invariance.

For each real number r such that 0 ≤ r ≤ 1, we will construct a

subset of NI with measure r. Finally, we propose a method for

calculating expected values for the two envelopes problem which

resolves the paradox.
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2. Definitions and Results

Definition. Let S ⊂ NI and n ∈ NI . Then define

cS(n) = |{x ∈ S|x ≤ n}| .

For S ⊂ NI define the (probability) measure of S as

P (S) = lim
n→∞

cS(n)

n
,

provided this limit exists. (P (S) is called the asymptotic density

of set S. See Chung [1974].)

Theorem 1. P (∅) = 0, P ({n}) = P ({m}) = 0 for all m, n ∈

NI , P ( NI ) = 1 and P (A) = 0 if |A| < ∞.

Proof. This result follows trivially from the definition of P .
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Note. Theorem 1 includes the idea that P should be determined

by a uniform distribution. Although finite sets have measure zero,

the converse of this result does not hold. Consider, for example, the

set

A = {x | x = 10n for some n ∈ NI }.

Then since cA(n) ≤ log10(n), we have P (A) = 0.

Theorem 2. P is finitely additive. That is, if P (S1), P (S2),

. . . , and P (Sk) are defined, Si
⋂

Sj = ∅ for i 6= j, and S =

S1
⋃

S2
⋃

· · ·
⋃

Sk is defined, then P (S) = P (S1) + P (S2) + · · · +

P (Sk).

Proof. Notice that for a given n ∈ NI ,

cS(n) = cS1
(n) + cS2

(n) + · · · + cSk
(n).

Therefore

P (S) = lim
n→∞







cS(n)

n





 = lim
n→∞







cS1
(n) + cS2

(n) + · · · + cSk
(n)

n







= lim
n→∞







cS1
(n)

n





 +







cS2
(n)

n





 + · · · +







cSk
(n)

n







= P (S1) + P (S2) + · · · + P (Sk).
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Note. In general, P is not countably additive. This follows from

the facts that NI =
∞
⋃

n=1
{n}, P ({n}) = 0 for each n ∈ NI , and

P ( NI ) = 1.

Definition. Define for S ⊂ NI and x ∈ NI ,

S + x = {s + x | s ∈ S}.

S + x is commonly called a translation for S.

Theorem 3. P is translation invariant. That is, P (S + x) =

P (S) for all S ⊂ NI and for x ∈ NI .

Proof. First, notice that cS(n) ≤ cS+x(n) + x. Therefore

P (S) = lim
n→∞

cS(n)

n
≤ lim

n→∞

cS+x(n) + x

n

= lim
n→∞







cS+x(n)

n
+

x

n





 = lim
n→∞







cS+x(n)

n





 = P (S + x).

Similarly, since cS(n) ≥ cS+x(n), we have P (S) ≥ P (S+x). There-

fore P (S) = P (S + x).
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3. Sets of Given Measures

Theorem 4. Let p, q ∈ NI with p ≤ q. Then there exists

A ⊂ NI with P (A) = p/q.

Proof. Notice that for all p, q ∈ NI , p ≤ q we have

n

q
− 1 < cAp/q

(n) <
n

q
+ 1.

Therefore P (Ap/q) = lim
n→∞

cAp/q
(n)

n
=

1

q
by the Sandwich Theorem.

By Theorem 2,

P





p
⋃

i=1
Ai,q



 =
p

q
.

Theorem 5. For any irrational r ∈ [0, 1], there exists a set A with

P (A) = r.

Proof. Let the decimal expansion of r be 0.d1d2d3 · · · (that is,

r =
∞
∑

i=1
di × 10−i). For k ≥ 1, define

Ak =
dk
⋃

i=1
Ai×10k−1/10k ,

where Ai×10k−1/10k is constructed as in Theorem 4. Therefore P (Ak) =

dk × 10−k. Notice that Ai
⋂

Aj = ∅ if i 6= j. Let A =
∞
⋃

i=1
Ai.
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Let ε > 0 be given. Then for some M ∈ NI ,

r − ε < 0.d1d2 · · · dM < r.

Let BM =
M
⋃

i=1
Ai. Then BM ⊂ A and P (BM ) = 0.d1d2 · · · dM .

Now for a given n, cBM
(n) ≤ cA(n). Therefore

cBM

n
≤

cA(n)

n
and

r − ε < 0.d1d2 · · · dM = P (BM ) = lim
n→∞

cBM
(n)

n
≤ lim inf

n→∞

cA(n)

n
.

Similarly, there exists N ∈ NI with

r < 0.d1d2 · · · (dN + 1) < r + ε.

With

BN =





N−1
⋃

i=1
Ai





⋃







dN+1
⋃

i=1
Ai×10N−1/10N







we have A ⊂ BN and P (BN ) = 0.d1d2 · · · (dN + 1). For given n,

cA(n) ≤ cBN
(n) and so

cA(n)

n
≤

cBN
(n)

n
and

lim sup
n→∞

cA(n)

n
≤ lim

n→∞

cBN
(n)

n
= 0.d1d2 · · · (dN + 1) < r + ε.

Therefore for arbitrary ε > 0 we have

r − ε < lim inf
n→∞







cA(n)

n





 ≤ lim sup
n→∞







cA(n)

n





 < r + ε.

Hence

lim inf
n→∞







cA(n)

n





 = lim sup
n→∞







cA(n)

n





 = lim
n→∞

cA(n)

n
= P (A) = r.
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4. A Nonmeasurable Set

Note. Unfortunately, it is fairly easy to construct subsets of NI

which are not measurable under our definition. We simply alter-

nate the inclusion and exclusion of larger and larger numbers of

natural numbers. For example, define Ai = {102i−2 + 1, 102i−2 +

2, . . . , 102i−1} for i ∈ NI , and define A =
∞
⋃

i=1
Ai. Then for n = 10k

where k is odd, cA(n) = 9 ×
(k+1)/2

∑

i=1
102i−2 and for n = 10k where

k is even, cA(n) = 9 ×
k/2
∑

i=1
102i−2. If we restrict n to values in the

set {n | n = 10k where k is odd} then lim
n→∞

cA(n)

n
=

10

11
. If we

restrict n to values in the set {n | n = 10k where k is even} then

lim
n→∞

cA(n)

n
=

1

11
. Therefore P (A) is not defined.
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5. Discussion and Expected Values

Note. We would now like to return to the two envelopes problem

and draw some conclusions from the properties we have developed.

Expected Value, First Attempt. We associate a value of n

with set {n}. If we calculate the expected value in envelope O using

infinite sums, then we get
∞
∑

i=1
iP ({i}) =

∞
∑

i=1
0 = 0.

It is not surprising that we get this absurdity when taking an infi-

nite sum, since we have calculated probabilities without having the

property of countable additivity.

Expected Value, Second Attempt. An alternative approach

is to calculate a “cumulative expected value” and then take a limit.

That is, we can argue that the expected amount in envelope O is

lim
n→∞







∞
∑

i=1

C{i}(n)

n
× i





 = lim
n→∞





n
∑

i=1

i

n



 = lim
n→∞







n(n + 1)

2n





 = ∞.

In this way, we calculate a limit of finite sums and never directly

deal with an infinite sum. Notice that this gives an infinite expected

value for the contents of both envelopes O and T , and the paradox

is resolved. We therefore propose that, in the setting of the two

envelopes problem, probabilities and expected values be computed

as above.
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