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A Brief Survey of ODEs

Definition. An ordinary differential equation (ODE) is a relation
among an independent variable , an (unkown) function y(z) of that vari-
able, and certain of its derivatives. More precisely, an ODE is a function
of n + 2 variables evaluated at the independent variable ;ﬁ the function v,
and the n derivatives of y, set equal to a constant:

Flz,y,9,y",...,y™) =0.

A function y satisfying this equation is a solution. The highest order of
derivative of y appearing in the equation is the order of the ODE.

eg. Bessel’s Fquation is 2%y" + zy' + (22 — p?)y = 0. This arises in

mechanics and electromagnetic theory. This is an ODE of order 2. This
DE is used to define the Bessel Functions which have been called “the
most important functions beyond the elementary ones.” Solving the Bessel
equation leads to a series for the Bessel functions.



y Definition. A linear ODE of order n, in the dependent variable y and
the independent variable 2 is an equation that is in, or can be expressed
in, the form

Po(z)y™ + P,_1(2)y™ ™V + - 4 Pi(z)y + Py(z)y = G(z)

where P,(z) is not identically 0. The term G(z) is called the nonho-
mogeneous term. If G(x) is identically 0, then the DE is said to be
homogeneous.

eg. Bessel’s equation is z2y" +xy +(z* —p?)y = 0 is a linear homogeneous

DE.

eg. The Pendulum Equation 1s

) 2
d’0 g .
) | 7 sin 0 =0
where @ is the angle of displacement from the vertical, g is the gravitational

constant, I is the length of the pendulum and ¢ is time. This is a nonlinear
DE of order 2.

mg
FIGURE 1.1.1 An oscillating pendulum.
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Definition. Consider the n'P order ODE Flz,y,v,...,y"™] = 0 where
F' is a real function of its n + 2 arguments z,y,4/, ..., y™.

(i) Let f be a real function defined for all z in an interval I and having
an nt derivative for all z € T. f is called an explicit solution of the
above DE on I if Flx, f, f',..., f®] =0forall z € I.

(ii) A relation g(z,y) = 0 is an implicit solution of the DE if it defines
(implicitly) a function f of z on I that is an explicit solution to the DE.

eg. The DE ¢ + ¥ — 0 has solutions implicitly defined by z? + y* = k.
Yy

eg. The Logistic Fquation is ' = az(k — z). This is a first order
nonlinear DE. An explicit solution can be found by integration (and partial

fractions):
akwo

v azg + (ak — azg)e—®

This equation represents the growth of a population with carrying ca-
pacity k and initial population size x.
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) Note. An n! order linear DE (under the “appropriate conditions”) will
have an n-parameter family of solutions.

eg. The DE y” + y = 0 has the 2-parameter family of solutions

Yy = ¢1 cos(x) + cosin(z).

Definition. A DE can have “supplementary conditions” on the solution.
If all the supplementary conditions relate to one value of the independent
variable z, then the problem of finding a solution to the DE satisfying the
supplementary conditions is called an initial value problem (or “IVP”
) for short). If the supplementary conditions relate to 2 or more z values,
the problem is called a boundary value problem (or “BVP” for short).

eg. Solve the IVP:

yll_l_y — 0
y(0) =
y'(0) = 2

'The solution is: y = cosz + 2sin .



y eg. Solve the BVP:

y'+y =0
y(0) = 1
y(r/2) = 2.

The solution is: y = cosz + 2sin .

Note. So, the DE 3" + y = 0 has a 2-parameter family of solutions
and the 2-parameters can be determined if 2 supplementary conditions
are given.
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Existence Theorems for Linear ODEs

Definition. The n functions f1, fo, ..., fs are called linearly dependent
on x € [a,b] if there exists constants cq, ¢y, . . ., ¢, not all zero such that

clfl(w) + C2f2($) + et Cnfn(m) =0

for all  such that € [a, b]. n functions are called linearly independent
on the interval z € [a, b] if they are not linearly dependent there.

Theorem. Basic Existence and Uniqueness Theorem for
Homogeneous Linear ODEs.
The ntt order homogeneous linear DE

Po(z)y"™ + Py (2)y™ D 4 4 Pia)y + Pyz)y =0

where Py, Py,..., P, are continuous for z € [a,b] and P,(z) # 0 for
x € |a,b] has n linearly independent solutions. /Also, if fi, fo,..., fx
are linearly independent solutions of the DE then any linear combination
cifi+cafo+- - +c,fn is also a solution (another reason to call these DEs
“linear”!). Additionally, any solution of the DE can be written as some
linear combination of the f;’s.



y Theorem. Basic Existence and Uniqueness Theorem for
- Nonhomogeneous Linear ODEs.
Let y, be a particular solution of the nonhomogeneous linear DE

Py(z)y™ + P,y (z)y" ™V + ... + Pi(2)y + Po(z)y = G()

and let y, be the general solution (also called the complementary func-
tion) of the associated linear homogenous DE

P,(z)y™ + P () Pi(z)y + Py(z)y = 0.
Then every solution of the original nonhomogencous DE is of the form

Y=Y+ Yp

eg. Solve ¥’ +y = e”. Notice that y, = /2.
The general solution is y = ¢ cosz + ¢ sinx + €* /2.



Systems of Linear ODEs

Note. We sift notation a bit now. We will let ¢ be the independent
variable and x the dependent variable.

Definition. A system of n first order linear DEs is something of the
form:

) = p(t)z + prat)ze + - - - + p1.o()z, + g1(t)
xy = por1(t)x1 + poo(t)zs + -+ + Pop(t) T, + go(t)

33‘;% = DPnl (t)ml "I'pnil(t)x? + e +pn,n(t)mn -+ gn(t)
Notice that we can write such a system in matrix form:
x' =P(t)x +g(t).

We consider the case where the P(t) is a constant matrix and g(¢) = 0.

eg. It is rather easy to see that the solution to the first order homogeneous
linear IVP

is x = zge®.



y eg. In light of the previous example, when considering the linear homo-
geneous first order system with constant coefficients x’ = Ax, we seek a
soultion of the form x = ae™ where a is a constant vector. If this is a
solution, then

x = Ax
are’t = Aae™
ra = Aa
Aa—ra = 0
(A—-rI)a =0

So, we have such a solution if r is an eigenvalue of A and a is an eigenvector

of A.

1 =2

5 4) x. The eigenvalues of the coefficient matrix

eg. Consider x' = (
A are -1 and -2. An eigenvector associated with -1 is ( i ) and an eigen-

: . (1 .
vector associated with -2 is ( 3 ) . 50 the general solution of the system

. et e 2
OfDESlsxzcl(e_t)+C2(36_2t).



The Phase Plane

L1
L2
(determined by the values of ¢; and ¢y, which are derived from initial or
boundary values), then we can represent this solution as a trajectory in

the x;z9-plane (called the phase plane).

Definition. If ( ) is any particular solution of a system of DEs

— —2t
eg. For the previous example, if we let x(") = ( Z‘t ) and x(?) = ( 366_% )

2)

then the general solution is x = ¢;x!") + ¢;x®). In the phase plane, we

have the following trajectories:

L
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y Note. If x' = Ax where A is a symmetric matrix, then the eigenvalues
of A are real and the eigenvectors are linearly independent. In this case,
the general solution to this DE is

X — cla(l) rit _l_ Co a(2) ot + o + Cna(n)ernt

where 71,79,...,7, are the eigenvalues of A and al, a® .. . a®™ are
the respective eigenvectors.

_9 . . _
g 9 ) x. The eigenvalues of the coefficient matrix

2
1

eg. Consider x' = (

A are -1 and 2 with corresponding eigenvectors of ( ; ) and ( ) . S0 the

) general solution of the system of DEs is x = ¢ ( ; ) e + ¢y ( ? ) e’. In

the phase plane:

X 3 _A(I\
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y Note. Cauchy’s formula is e** = %™ = e”(cosy+isiny). Applying
this we get:

Theorem. If A isreal, and r; = A+4p and 79 = X\ — iy are eigenvalues
of A with corresponding eigenvectors al) = a — ib and a®® = a — tb,
then two linearly independent solutions to x' = Ax are

u(t) = e*(acos(ut) — bsin(ut)) and
v(t) = eM(acos(ut) + bsin(ut)).

—1 —4
I -1
) the previous theorem, we get that the general solution is

.o —2e " tsin 2t e 2e~t cos 2t
— T eteos ot 2\ e~tgin2t |

eg. Consider x’ = ( ) X. The eigenvalues of A are —1+£27. From

In the phase plane, the trajectories are:




Critical Points and Stability

} Definition. The system x’ = f(x) has a critical point at x = xq if
f(x0) = 0. Notice that the system is in equilibrium at a critical point.

Note. We can classify the critical points of a system of DEs as

(i) asymptotically stable: all solutions approach 0 as t — oo,

(ii) stable: all solutions remain bounded and do not approach 0 as
t — oo, or | |

(iii) unstable: some trajectories approach 00 a5 t — 00.

) . -
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) Definition. The system x’ = f(x) is autonomous (x' does not explicitly
depend on t, only on x).

Definition. A critical point x° of x' = f(x) is said to be stable is for
all € > 0 there exists a 6 > 0 such that every solution x = ®(t) which
at t = tg satisfies ||®(t,) — x0|| < 8, exists for all + > ¢, and satisfies
|®(t) — x°|| < eforall t > ¢, YA |

2V

) .
Definition. A critical point x" is said to be asymptotically stable if it
is stable and there exists a 6y > 0 such that if ||®(¢)) = x°|| < 6 then

lim ®(t) = x°.

y A\

R\/
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The Pendulum Equation
Damped and Undamped

eg. Recall that the pendulum equation was

d*0 ,

gz = s 6.
We add a further complication by assuming that there is a damping pro-
portional to linear velocity. Then we have

d*6 g . c db
ok —fsmﬁ T
We can write this DE as a system by letting z = 8 and
dx
a Y
dy —9 . c
= e

There is a critical point at y = 0 and = nm where n is an integer. These
critical points correspond to two equilibria;

L

T I T
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‘The system can be written as

oo [0 LY 0
N = (sinz —z) )

Near critical points, the second term on the right hand side is “relatively
unimportant.” This means that we can study stability of the critical
points by looking at the eigenvalues of the A matrix. We find that there is

asymptotic stability at z = 0 = 2nm and instability at z = 0 = (2n+1)x.

S tri d é
eparatrix :
N \ - p\,, N y \ﬁ

FIGURE 9.3.6 Phase portrait for the undamped penduium.
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Limit Cycles and the
Poincare-Bendixson Theorem

Definition. A solution to the autonomous system x' = f(x) is pe-
riodic if for some constant T, x(¢ + T') = x(t). Trajectories of periodic
solutions are simple closed curves in the phase plane.

Definition. A closed trajectory in the phase plane such that other
trajectories spiral toward it (either from the inside or outside) as t — oo
is called a limit cycle.

18



Definition. If all the trajectories near a limit cycle (both those inside
and outside) spiral towards the limit cycle as ¢ — oo then the limit cycle
is said to be stable. If the trajectories on one side spiral towards and
on the other side spiral away, then the limit cycle is semistable. If the
trajectories on both sides of a closed trajectory spiral away as t — oo,
then the closed trajectory is unstable (in fact, it isn’t even called a “limit
cycle” in this case). In the case that nearby trajectories neither approach
nor depart a closed trajectory, it is said to be neutrally stable.

Q
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) Theorem. Suppose

<= (e

where I’ and G have continuous first partial derivatives in a domain D of
the zy—plane. A closed trajectory must necessarily enclose at least one
critical point. If it encloses only one critical point, then the critical point
cannot be a “saddle point.”

Theorem. Poincaré-Bendixson

Let F" and G have continuous first partial derivatives in a domain (i.e. open

connected set) D of the zy—plane. Let D; be a bounded subdomain in

D and let R be the region that consists of D and its boundary. Suppose
) that R contains no critical point. If z = ®(t) and y = ¥(¢) is a solution

for all £ > ¢y and the points (®(t), ¥(¢)) are in R for ¢ > ¢;. Then either

(i) = ®(¢), y = V(¢) is a periodic solution, or

(ii) z = @(t), y = U(¢t) spirals towards a closed trajectory as t — oo.

In either case, R contains a periodic solution.
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Some Funny Stuff from
the Third Dimension

Note. In the last several years, it has come to the attention of the math-
ematical community that third and higher order systems can exhibit very
complex behavior not seen in second order systems. In the early 1960’s,
Edward Lorenz was running a meteorological model on his computer. He
wag numerically solving the equations:

dzx
dt
dy
dt
dz

dt

The system has the critical points:
Pl — (Oa Oa 0)7
P, = (\/b('r — 1),\/b('r —1),7 — 1), and

Py = (=/b(r — 1), —/b(r — 1), — 1).

If » < 1, then there is only one critical point and we find that it is
asymptotically and globally stable. If » > 1 then (0, 0,0) is unstable.

If 1 <7 < 1.34, then P, and Pj are asymptotically stable. Solutions
asymptotically approach P or Ps (not spiralling).

If 1.34 < r < 24.74, then P, and P; are asymptotically stable and
solutions spiral toward P or P;.

= o(~e +y)
= ryr — Y — T2

= —bz 4 xzy
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If » > 24.74, then all critical points are unstable. It can be shown that
trajectories remain bounded as ¢ — oco. In fact, trajectories approach
a limiting set of zero volume. This attracting set is called a strange
attractor!

22



) Note. Consider the system

dz _ N

il my + nxz

dy _ N

gt = mz + nyz

}f = (n/2)(1+ 2" —2® — ¢7).

If m and n are relatively prime, then trajectories are torus knots of type

(m,n). In particular, with m = 2 and n = 3, trajectories are the trefoil
knot:
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