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Ring

Definition. [Hungerford Definition III.1.1] A ring is a nonempty set R
together with two binary operations (denoted + and multiplication) such
that:

(i) (R,+) is an abelian group.

(ii) (ab)c = a(bc) for all a, b, c ∈ R (i.e., multiplication is
associative).

(iii) a(b + c) = ab + ac and (a + b)c = ac + bc (left and right
distribution of multiplication over +).

If in addition,

(iv) ab = ba for all a, b ∈ R,

then R is a commutative ring. If R contains an element 1R such that

(v) 1Ra = a1R = a for all a ∈ R,

then R is a ring with identity (or unity).
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Zero Divisors

Note. An obvious “shortcoming” of rings is the possible absence of
inverses under multiplication. We adopt the standard notation from
(R,+). We denote the + identity as 0 and for n ∈ Z and a ∈ R, na
denotes the obvious repeated addition.

Definition. [Hungerford Definition III.1.3] A nonzero element a in the ring
R is a left (respectively, right) zero divisor if there exists a nonzero b ∈ R
such that ab = 0 (respectively, ba = 0). A zero divisor is an element of R
which is both a left and right zero divisor.
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The Quaternions, H
Definition. [Hungerford page 117] Let S = {1, i , j , k}. Let H be the
additive abelian group R⊕ R⊕ R⊕ R and write the elements of H as
formal sums (a0, a1, a2, a3) = a01 + a1i + a2j + a3k. Addition in H is as
expected: (a0 + a1i + a2j + a3k) + (b0 + b1i + b2j + b3k)

= (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k.

We turn H into a ring by defining multiplication as

(a0 + a1i + a2j + a3k)(b0 + b1i + b2j + b3k) = (a0b0− a1b1− a2b2− a3b3)

+(a0b1 + a1b0 + a2b3 − a3b2)i + (a0b2 + a2b0 + a3b1 − a1b3)j

+(a0b3 + a3b0 + a1b2 − a2b1)k.

This product can be interpreted by considering:

(i) multiplication in the formal sum is associative,
(ii) ri = ir , rj = jr , rk = kr for all r ∈ R,
(iii) i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i ,

ki = −ik = j .
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Division Ring

Definition. [Hungerford Definition III.1.5] A commutative ring R with
(multiplicative) identity 1R and no zero divisors is an integral domain. A
ring D with identity 1D 6= 0 in which every nonzero element is a unit is a
division ring. A field is a commutative division ring.

Note. First, it is straightforward to show that 1 = (1, 0, 0, 0) is the
identity in H. However, since ij = −ji 6= ji , then H is not commutative
and so H is not an integral domain nor a field.
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Noncommutative Division Ring

Theorem. The quaternions form a noncommutative division ring.

Proof. Tedious computations confirm that multiplication is associative
and the distribution law holds. We now show that every nonzero element
of H has a multiplicative inverse. Consider q = a0 + a1i + a2j + a3k.
Define d = a2

0 + a2
1 + a2

2 + a2
3 6= 0. Notice that

(a0 + a1i + a2j + a3k)((a0/d)− (a1/d)i − (a2/d)j − (a3/d)k)

= (a0(a0/d)− a1(−a1/d)− a2(−a2/d)− a3(−a3/d))

+(a0(−a1/d) + a1(a0/d) + a2(−a3/d)− a3(−a2/d))i

+(a0(−a2/d) + a2(a0/d) + a3(−a1/d)− a1(−a3/d))j

+(a0(−a3/d) + a3(a0/d) + a1(−a2/d)− a2(−a1/d))k

= (a2
0 + a2

1 + a2
2 + a2

3)/d = 1.

So (a0 + a1i + a2j + a3k)−1 = (a0/d)− (a1/d)i − (a2/d)j − (a3/d)k
where d = a2

0 + a2
1 + a2

2 + a2
3. Therefore every nonzero element of H is a

unit and so the quaternions form a noncommutative division ring.
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The Quaternion Group of Order 8

Note. Since every nonzero element of H is a unit, the H contains no left
zero divisors: If qq′ = 0 and q 6= 0, then q′ = q−10 = 0. Similarly, H has
no right zero divisors.
The order 8 group of quaternions has multiplication table:

· 1 i j k −1 −i −j −k

1 1 i j k −1 −i −j −k
i i −1 k −j −i 1 −k j
j j −k −1 i −j k 1 −i
k k j −i −1 −k −j i 1

−1 −1 −i −j −k 1 i j k
−i −i 1 −k j i −1 k −j
−j −j k 1 −i j −k −1 i
−k −k −j i 1 k j −i −1

Notice that each of i , j , and k are square roots of −1. So the quaternions
are, in a sense, a generalization of the complex numbers C.
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Matrix Representation

Note. The quaternions may also be interpreted as a subring of the ring of
all 2× 2 matrices over C. This is Exercise III.1.8 of Hungerford: “Let R be
the set of all 2× 2 matrices over the complex field C of the form[

z w
−w z

]
, where z ,w are the complex conjugates of z and w ,

respectively. Prove that R is a division ring and that R is isomorphic to
the division ring of real quaternions.” In fact, the quaternion group, Q8,

can be thought of as the group of order 8 generated by A =

[
0 1
−1 0

]
and B =

[
0 i
i 0

]
, under matrix multiplication.

Note. In fact, the complex numbers can be similarly represented as the

field of all 2× 2 matrices of the form

[
a −b
b a

]
where a, b ∈ R.
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2 and 3 Dimensional Number Systems

Note. The complex numbers can be defined as ordered pairs of real
numbers, C = {(a, b) | a, b ∈ R}, with addition defined as
(a, b) = (c , d) = (a + c , b + d) and multiplication defined as
(a, b)(c , d) = (ac − bd , bc + ad). We then have that C is a field with
additive identity (0, 0) and multiplicative identity (1, 0). The additive
inverse of (a, b) is (−a,−b) and the multiplicative inverse of
(a, b) 6= (0, 0) is (a/(a2 + b2),−b/(a2 + b2)). We commonly denote (a, b)
as “a + ib” so that i = (0, 1) and we notice that i2 = −1. The complex
numbers are visualized as the “complex plane” where a + ib ∈ C is
associated with (a, b) ∈ R2. During the early decades of the 19th century,
the complex numbers became an accepted part of mathematics (in large
part due to the development of complex function theory by Augustin
Cauchy). Since the complex numbers have an interpretation as a sort of
“two dimensional” number system, a natural question to ask is: “Is there
a three (or higher) dimensional number system?”
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William Rowan Hamilton

Note. Sir William Rowan Hamilton (1805–1865) spent the years 1835 to
1843 trying to develop a three dimensional number system based on triples
of real numbers. He never succeeded. However, he did succeed in
developing a four dimensional number system, now called the quaternions
and denoted “H” in his honor. In a letter he wrote late in his life to his
son Archibald Henry, Hamilton tells the story of his discovery:

“Every morning in the early part of [October 1843], on my coming
down to breakfast, your little brother, William Edwin, and yourself,
used to ask me, ‘Well, papa, can you multiply triplets?’ Whereto I
was always obliged to reply, with a sad shake of the head: ‘No, I
can only add and subtract them.’ But on the 16th day of that same
month. . . An electric circuit seemed to close; and a spark flashed forth
the herald (as I foresaw immediately) of many long years to come of
definitely directed thought and work by myself, if spared, and, at all
events, on the part of others if I should even be allowed to live long
enough distinctly to communicate the discovery. . . .
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Hamilton (continued)

Nor could I resist the impulse—unphilosophical as it may have been—
to cut with a knife on a stone of Brougham Bridge [in Dublin, Ireland;
now called “Broom Bridge”], as we passed it, the fundamental formula
with the symbols i , j , k:

i2 = j2 = k2 = ijk = −1

which contains the Solution of the Problem, but, of course, the in-
scription has long wince mouldered away.”

So the exact date of the birth of the quaternions is October 16, 1843
[Derbyshire 2006].
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A Polynomial with No Roots

Note. We want to explore the properties of the roots of polynomials of a
quaternionic variable. A general Fundamental Theorem of Algebra does
not hold, as revealed by considering the polynomial aqn − qna + 1 where a
is a nonreal quaternion. With a = a0 + ia1 + ja2 + ka3 and
qn = q0 + iq1 + jq2 + kq3, where a0, a1, a2, a3, q0, q1, q2, q3 ∈ R, we have

aqn − qna + 1 = (a0 + ia1 + ja2 + ka3)(q0 + iq1 + jq2 + kq3)

−(q0 + iq1 + jq2 + kq3)(a0 + ia1 + ja2 + ka3) + 1

= (a0q0 + ia0q1 + ja0q2 + ka0q3−a1q1 + ia1q0−ja1q3 + ka1q2

−a2q2 + ia2q3 + ja2q0 − ka2q1−a3q3−ia3q2 + ja3q1 + ka3q0)

−(a0q0 + ia1q0 + ja2q0 + ka3q0−a1q1 + ia0q1−ja3q1 + ka2q1

−a2q2 + ia3q2 + ja0q2 − ka1q2−a3q3−ia2q3 + ja1q3 + ka0q3) + 1

= 1 + i(2a2q3 − 2a3q2) + j(−2a1q3 + 2a3q1) + k(2a1q2 − 2a2q1) 6= 0.

Notice we have computed the commutator

[a0 + ia1 + ja2 + ka3, q0 + iq1 + jq2 + kq3]

= i2(a2q3 − a3q2) + j2(a3q1 − a1q3) + k2(a1q2 − a2q1).
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The Factor Theorem

Note. You are probably familiar with the Factor Theorem which relates
roots of a polynomial to linear factor of the polynomial. You might not
recall that it requires commutivity, though:
The Factor Theorem. [Hungerford Theorem III.6.6] Let R be a
commutative ring with identity and f ∈ R[x ]. Then c ∈ R is a root of f if
and only if x − c divides f .

Note. The Factor Theorem is used to prove the following, which might
remind you of the Fundamental Theorem of Algebra:
Theorem. [Hungerford Theorem III.6.7] If D is an integral domain
contained in an integral domain E and f ∈ D[x ] has degree n, then f has
at most n distinct roots in E .
So in an integral domain, an n degree polynomial has at most n roots.
Surprisingly in a division ring, this can be violated.
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More Roots than Degree

Note. It is easy to see that the polynomial q2 + 1 ∈ H[q] has more than
two roots. Along with ±i are the roots ±j and ±k. In fact, the
polynomial has an infinite number of roots in H! Let x1, x2, x3 ∈ R with
x2
1 + x2

2 + x2
3 = 1. Then

(x1i + x2j + x3k)2 = x2
1 i2 + x1x2ij + x1x3ik + x2x1ji + x2

2 j2 + x2x3jk

+x3x1ki + x3x2kj + x2
3k2

by the definition of multiplication

= −x2
1 − x2

2 − x2
3 since ij = −ji , ik = −ki , jk = −kj

= −1 since x2
1 + x2

2 + x2
3 = 1.
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The Sphere S
Note. We now turn our attention to polynomials in H[x ]. We are
particularly interested in roots of such polynomials, a version of the Factor
Theorem, and the concept of algebraic closure. Much of this material is of
fairly recent origins. The remainder of this presentation is mostly based on
the following references:

1. T. Y. Lam, A First Course in Noncommutative Rings,
Graduate Texts in Mathematics #131, Springer-Verlag
(1991).

2. G. Gentili and D. C. Struppa, A New Theory of Regular
Functions of a Quaternionic Variable, Advances in
Mathematics 216 (2007), 279–301.

Definition. We denote by S the two dimensional sphere (as a subset of
the four dimensional quaternions H)
S = {q = x1i + x2j + x3k | x2

1 + x2
2 + x2

3 = 1}. As observed above, for any
I ∈ S we have I 2 = −1. For x , y ∈ R we let x + yS denote the two
dimensional sphere x + yS = {x + yI | I ∈ S}.
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Real, Imaginary, and Vector Parts

Note. In fact, every quaternion q can be written in the form q = x + yI
for unique x , y ∈ R and I ∈ S. Some then denote Re(q) = x and
Im(q) = y [Vlacci 2017], while others denote Re(q) = x and Im(q) = yI
[Xu 2018]; in addition, for q = x0 + ix1 + jx2 + kx3, a common terminology
is to refer to ix1 + jx2 + kx3 as the vector part of q, denoted Vec(q) [Gal
and Sabadoni 2015].
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The Unit Ball
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The Unit Ball
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Polynomials and Products

Note. We take q as the indeterminate in the ring of polynomials H[q].
Since H is not commutative, we are faced with the case that a monomial
of the form aqn ∈ H[q] is the same as monomial a0qa1qa2q · · · qan ∈ H[q]
where a = a0a1 · · · an, but if we evaluate aqn at some element of H, we
may get a different value than if we evaluate a0qa1q · · · qan at the same
element of H. That is, evaluation of an element of H[q] at r ∈ H is not a
homomorphism. In the remainder of this presentation, we consider
polynomials with the powers of the indeterminate on the left and the
coefficients on the right: p(q) =

∑n
i=0 qiai . We will call p a “quaternionic

polynomial.”

Definition. For two quaternionic polynomials p1(q) =
∑n

i=0 qiai and
p2(q) =

∑m
i=0 qibi in H[q], define the product (or regular product)

(p1p2)(q) =
∑

i=0,1,...,n;j=0,1,...,m

qi+jaibj .
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Failure of the Factor Theorem

Note. Consider the polynomial
p(q) = (q − a)(q − b) = q2 − q(a + b) + ab where a and b are
noncommuting quaternions. Then q = a is a root of p (clearly), but
p(b) = b2 − ba− b2 + ab = ab − ba 6= 0. In fact, p has exactly two roots,
the other being (b − a)−1b(b − a) [Vlacci 2017]. This shows that the
evaluation mapping of H[x ] → H is not a homomorphism when we use the
regular product for multiplication in H[x ].

Note. We now explore roots of quaternionic polynomials. The following
result is originally due to A. Pogorui and M. V. Shapiro (in “On the
Structure of the Set of Zeros of Quaternionic Polynomials,” Complex
Variables 49(6) (2004), 379–389) but we present an easier proof due to
Gentili and Struppa in 2007.
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Zeros on a Sphere

Theorem. Let p(q) =
∑N

n=0 qnan be a given quaternionic polynomial.
Suppose that there exist x0, y0 ∈ R and I , J ∈ S with I 6= J such that
p(x0 + y0I ) = 0 and p(x0 + y0J) = 0. Then for all L ∈ S we have
p(x0 + y0L) = 0.

Proof. For any n ∈ N and any L ∈ S we have that
(x0 + y0L)n =

∑n
i=0

(n
i

)
xn−i
0 y i

0L
i = αn + Lβn by the Binomial Theorem for

a ring with identity (since x0y0L = Lx0y0 because x0, y0 ∈ R; see Theorem
III.1.6 of Hungerford) where

αn =
∑

i≡0(mod 4)

(
n

i

)
xn−i
0 y i

0 −
∑

i≡2(mod 4)

(
n

i

)
xn−i
0 y i

0

and

βn =
∑

i≡1(mod 4)

(
n

i

)
xn−i
0 y i

0 −
∑

i≡3(mod 4)

(
n

i

)
xn−i
0 y i

0

. . .
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Zeros on a Sphere (continued 1)

Proof (continued). . . . because L0(mod 4) = 1, L1(mod 4) = L ,
L2(mod 4) = −1 , and L3(mod 4) = −L. We therefore have

0 = 0−0 = p(x0 +y0I )−p(x0 +y0J) =
N∑

n=0

(αn + Iβn)an−
N∑

n=0

(αn +Jβn)an

=
N∑

n=0

((αn + Iβn)− (αn + Jβn))an =
N∑

n=0

(I − J)βnan = (I − J)
N∑

n=0

βnan.

By hypothesis, I − J 6= 0 so (since H has no zero divisors)
∑N

n=0 βnan = 0
and so

0 = p(x0 + y0I ) =
N∑

n=0

(x0 + y0I )
nan =

N∑
n=0

(αn + Iβn)an

=
N∑

n=0

αnan + I
N∑

n=0

βnan =
N∑

n=0

αnan.
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Zeros on a Sphere (continued 2)

Theorem. Let p(q) =
∑N

n=0 qnan be a given quaternionic polynomial.
Suppose that there exist x0, y0 ∈ R and I , J ∈ S with I 6= J such that
p(x0 + y0I ) = 0 and p(x0 + y0J) = 0. Then for all L ∈ S we have
p(x0 + y0L) = 0.

Proof (continued). Now for any L ∈ S we have that

p(x0 + y0L) =
N∑

n=0

(x0 + y0L)nan =
N∑

n=0

(αn + Lβn)an

=
N∑

n=0

αnan + L
N∑

n=0

βnan = 0 + 0 = 0.
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Evaluation Problems

Note. In fact, Gentili and Struppa develop a theory of analytic functions
of a quaternionic variable and show that the previous result holds for an
analytic function.

Note. In a ring of polynomials, R[t], each element of R commutes with
indeterminate t (see Hungerford’s Theorem III.5.2(ii)). So in R[t] we have
that f (t) =

∑n
i=0 ai t

i =
∑n

i=0 t iai . However, for r ∈ R where R is not
commutative we likely have

∑n
i=0 ai r

i 6=
∑n

i=0 r iai . So in order to
evaluate f (r), we must decide on a standard representation of f (t). Here,
we use the form f (t) =

∑n
i=0 t iai ∈ R[t]. Additionally, we may have

f (t) = g(t)h(t) in R[t], but we may not have f (r) = g(r)h(r). Consider
g(t) = t − a and h(t) = t − b where a, b ∈ R do not commute (so
ab 6= ba). Then we have by the definition of multiplication that
f (t) = g(t)h(t) = (t − a)(t − b) = t2 − t(a + b) + ab. But

f (a) = a2 − a(a + b) + ab = ab − ba 6= 0 = g(a)h(a).
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A One-Sided Factor Theorem

Definition. [Lam Definition 16.1] Let R be a ring and
f (t) =

∑n
i=0 t iai ∈ R[t]. An element r ∈ R is a left root of f if

f (r) =
∑n

i=0 r iai = 0. If g(t) =
∑n

i=0 ai t
i ∈ R[t]. An element r ∈ R is a

right root of g if g(r) =
∑n

i=0 ai r
i = 0.

The Factor Theorem in a Ring with Unity. [Lam Proposition 16.2] An
element r ∈ R is a left root of a nonzero polynomial
f (t) =

∑n
i=0 t iai ∈ R[t] if and only if t − r is a left divisor of f (t) in R[t].

Proof. We give a proof for left roots and divisors with the proof for right
being similar. First, if

f (t) =
n∑

i=0

t iai = (t − r)
n−1∑
i=0

t ici =
n−1∑
i=0

t i+1ci −
n−1∑
i=0

t i rci

then f (r) =
n−1∑
i=0

r i+1ci −
n−1∑
i=0

r i+1ci = 0.
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A One-Sided Factor Theorem (continued)

The Factor Theorem in a Ring with Unity. [Lam Proposition 16.2] An
element r ∈ R is a left root of a nonzero polynomial
f (t) =

∑n
i=0 t iai ∈ R[t] if and only if t − r is a left divisor of f (t) in R[t].

Proof (continued). Second, suppose f (r) =
∑n

i=0 r iai = 0. By the
Remainder Theorem (Hungerford’s Corollary III.6.3 which is stated for
x − r on the right, but the result also holds for x − r on the left; this result
holds in rings with unity) there is a unique g(t) ∈ R[t] such that

f (t) = (t − r)g(t) + f (r) = (t − r)g(t) + 0 = (t − r)g(t).

So t − r is a left divisor of f (t).

Note. Recall a right ideal of a ring R is a subring I of R such that for all
r ∈ R and x ∈ I we have xr ∈ I (Hungerford’s Definition III.2.1). We see
from the Factor Theorem in a Ring with Unity that the set of polynomials
in R[t] having r as a left root is precisely the right ideal
(t − r)R[t] = {(t − r)g(t) | g(t) ∈ R[t]}.
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A One-Sided Factor Theorem (continued)
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Conjugate Roots

Theorem. [Lam Proposition 16.3] Let D be a division ring and let
f (t) = h(t)g(t) in D[t]. Let d ∈ D be such that a = h(d) 6= 0. Then
f (d) = h(d)g(a−1da). In particular, if d is a left root of f but not of h
then the conjugate of d , a−1da, is a left root of g .

Proof. Let g(t) =
∑n

i=0 t ibi . Then f (t) = h(t)g(t) =
∑n

i=0 t ih(t)bi and
so

f (d) =
n∑

i=0

d ih(d)bi =
n∑

i=0

d iabi =
n∑

i=0

aa−1d iabi

=
m∑

i=0

a(a−1da)ibi = ag(a−1da) = h(d)g(a−1da).

If d is a left root of f but not a left root of h then, since D has no zero
divisors, a−1da must be a left root of g .
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Algebraic Conjugation

Note. If D is an integral domain and p ∈ D[x ] is of degree n, then p has
at most n roots in D (see Hungerford’s Theorem III.6.7, mentioned
above). This is not the case in a division ring as illustrated by
p(q) = q2 + 1 ∈ H[q], as described above. The following result is
analogous to Hungerford’s Theorem III.6.7, but for division rings. It does
not imply at most n roots, but roots from at most n conjugacy classes.

Note. Quaternion a is a conjugate of quaternion b (in the algebraic sense)
if a = cbc−1 for some quaternion c . Notice that if a = c1b1c

−1
1 and

a = c2b2c
−1
2 , then b1 = c−1

1 ac1 so that
b1 = c−1

1 (c2b2c
−1
2 )c1 = (c−1

1 c2)b2(c
−1
1 c2)

−1. So conjugation is an
equivalence relation and the conjugacy classes partition H.
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Roots in Conjugacy Classes

Theorem. [Lam Theorem 16.4, “Gordon-Motzkin”] Let D be a division
ring and let f be a polynomial of degree n in D[t]. Then the left (right)
roots of f lie in at most n conjugacy classes of D. If
f (t) = (t − a1)(t − a2) · · · (t − an) where a1, a2, . . . , an ∈ D, then any left
(right) root of f is conjugate to some ai .

Proof. We prove this using induction. In the base case, n = 1 and so f
has exactly one left root and so the left roots lie in n = 1 conjugacy class.
Now suppose that if a polynomial is of degree n − 1, then its left roots lie
in at most n − 1 conjugacy classes. Let f be degree n and let c be a left
root of f . Then by Proposition 16.2, f (t) = (t − c)g(t) where g is of
degree n − 1. Suppose d 6= c is any other left root of f . Then by
Proposition 16.3, d is a conjugate to a left root of g(t) (in particular,
(d − c)−1d(d − c) = r is a left root of g so d = (d − c)r(d − c)−1).
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Roots in Conjugacy Classes (continued)

Theorem. [Lam Theorem 16.4, “Gordon-Motzkin”] Let D be a division
ring and let f be a polynomial of degree n in D[t]. Then the left (right)
roots of f lie in at most n conjugacy classes of D. If
f (t) = (t − a1)(t − a2) · · · (t − an) where a1, a2, . . . , an ∈ D, then any left
(right) root of f is conjugate to some ai .

Proof (continued). Since by the induction hypothesis the left roots of g
lie in at most n − 1 conjugacy classes, then this arbitrary left root of f
(arbitrary except that it is not c) must lie in one of these n − 1 conjugacy
classes. Adding in the conjugacy class containing c , we have that the left
roots of f lie in at most n conjugacy classes. The result now follows in
general by induction.

The proof of the second claim follows similarly by induction. The result for
right roots is similar.
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Analytic Conjugation

Definition. For q = a + bi + cj + dk ∈ H, we define the quaternionic
conjugate q = a− bi − cj − dk.

Note. For q = a + bi + cj + dk ∈ H, we have

qq = (a + bi + cj + dk)(a + (−b)i + (−c)j + (−d)k)

= ((a)(a)− (b)(−b)− (c)(−c)− (d)(−d))

+((a)(−b) + (b)(a) + (c)(−d)− (d)(−c))i

+((a)(−c) + (c)(a) + (d)(−b)− (b)(−d))j

+((a)(−d) + (d)(a) + (b)(−c)− (c)(−b))k

= a2 + b2 + c2 + d2.

We define the modulus of a ∈ H as |q| =
√

qq.
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Conjugate of a Product

Lemma. For q1, q2 ∈ H we have q1q2 = q2 q1.

Proof. Let q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k. Then

q1q2 = (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k)

= (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 + c1a2 + d1b2 − b1d2)j + (a1d2 + d1a2 + b1c2 − c1b2)k

= (a1a2 − b1b2 − c1c2 − d1d2)− (a1b2 + b1a2 + c1d2 − d1c2)i

−(a1c2 + c1a2 + d1b2 − b1d2)j − (a1d2 + d1a2 + b1c2 − c1b2)k

= ((a2)(a1)− (−b2)(−b1)− (−c2)(−c1)− (−d2)(−d1))

+((−b2)(a1) + (−b1)(a2)− (−d2)(−c1) + (−c2)(−d1)i

+((−c2)(a1) + (a2)(−c1)− (−b2)− d1) + (−d2)(−b1))j

+((−d2)(a1) + (a2)(−d1)− (−c2)(−b1) + (−b2)(−c1))k

...
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Conjugate of a Product (continued)

Lemma. For q1, q2 ∈ H we have q1q2 = q2 q1.

Proof (continued). . . .

q1q2 = ((a2)(a1)− (−b2)(−b1)− (−c2)(−c1)− (−d2)(−d1))

+((a2)(−b1) + (−b2)(a1) + (−c2)(−d1)− (−d2)(−c1))i

+((a2)(−c1) + (−c2)(a1) + (−d2)(−b1)− (−b2)(−d1))j

+((a2)(−d1) + (−d2)(a1) + (−b2)(−c1)− (c1)(−b1))k

= (a2 + (−b2)i + (−c2)j + (−d2)k)(a1 + (−b1)i + (−c1)j + (−d1)k)

= q2 q1.
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One-Side Algebraic Closure

Note. Recall that a field is algebraically closed if every nonconstant
polynomial over the field has a root in the field. This is the motivation for
the following definition.

Definition. [Lam page 169] A division ring D is left (right) algebraically
closed if every nonconstant polynomial in D[t] has a left (right) root in D.

Note. By Proposition 16.2, if f ∈ D[t] for left or right algebraically closed
division ring D, then f can by factored into a product of linear factors in
D[t] (that is, f splits in D[t]).

Note. The following is the Fundamental Theorem of Algebra for
Quaternions. The result originally appeared in I. Nivens’ “Equations in
Quaternions,” American Mathematical Monthly, 48 (1941), 654–661.
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One-Sided Fundamental Theorem of Algebra

Theorem. [Lam Theorem 16.14, “Niven-Jacobson” or “Fundamental
Theorem of Algebra for Quaternions”] The quaternions, H, are left (and
right) algebraically closed.

Proof. For f (q) =
∑n

r=0 qrar ∈ H[q], define f (q) =
∑n

r=0 qrar ∈ H[q].
For f , g ∈ H[q] with f (q) =

∑n
i=0 qiai and g(q) =

∑m
j=0 qjbj we have

fg =

(
n∑

i=0

qiai

) m∑
j=0

qjbi

 =

 ∑
i=0,1,...,n;j=0,1,...,m

qi+jaibj


=

∑
i=0,1,...,n;j=0,1,...,m

qi+jaibj =
∑

i=0,1,...,n;j=0,1,...,m

qi+jbjai by Lemma

=

 m∑
j=0

qjbj

( n∑
i=0

qiai

)
= gf .

() The Quaternions: An Algebraic and Analytic ExplorationSeptember 4, 2018 38 / 64



One-Sided Fundamental Theorem of Algebra

Theorem. [Lam Theorem 16.14, “Niven-Jacobson” or “Fundamental
Theorem of Algebra for Quaternions”] The quaternions, H, are left (and
right) algebraically closed.

Proof. For f (q) =
∑n

r=0 qrar ∈ H[q], define f (q) =
∑n

r=0 qrar ∈ H[q].
For f , g ∈ H[q] with f (q) =

∑n
i=0 qiai and g(q) =

∑m
j=0 qjbj we have

fg =

(
n∑

i=0

qiai

) m∑
j=0

qjbi

 =

 ∑
i=0,1,...,n;j=0,1,...,m

qi+jaibj


=

∑
i=0,1,...,n;j=0,1,...,m

qi+jaibj =
∑

i=0,1,...,n;j=0,1,...,m

qi+jbjai by Lemma

=

 m∑
j=0

qjbj

( n∑
i=0

qiai

)
= gf .

() The Quaternions: An Algebraic and Analytic ExplorationSeptember 4, 2018 38 / 64



One-Sided Fundamental Theorem of Algebra (continued)

Proof (continued). So, in particular, f f = f f = f f , and so f f equals its
own quaternionic conjugate. Therefore the coefficients of f f must be real
and f f ∈ R[q] for all f ∈ H[q].
We now use mathematical induction on n = deg(f ) to prove that f has a
left root in H. For n = 1, f clearly has a left root. Suppose n ≥ 2 and
that every polynomial of degree less than n has a left root in H. Since
R(i) = C ⊂ H is algebraically closed and f f ∈ R[q] then f f has a root α
in R(i) = C. By Proposition 16.3, either α is a left root or f or a
conjugate β of α is a left root of f . In the former case we are done. In the
latter case, if f (q) =

∑n
r=0 qrar then f (q) =

∑n
n=0 qrar and so

f (β) =
∑n

r=0 βrar = 0 or
∑n

r=0 arβ
r

= 0. That is, β is a right root of
f (q). By Theorem 16.2 (applied to a right roots) we can write
f (q) = (q − β)g(q) where g(q) ∈ H has degree n − 1. By the induction
hypothesis, g(q) has a left root γ ∈ H. But then γ is also a left root of
f (q) and the general result now follows by induction. The result for right
algebraic closure is similar.
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Resolution of Degree and Roots

Note. Now that we have our Fundamental Theorem of Algebra, we
conclude with a brief exploration of the structure of the set of quaternions
for which a polynomial has a left (right) root. The following result is from
A. Pogorui and M. Shapiro’s “On the Structure of the Set of Zeros of
Quaternionic Polynomials,” Complex Variables: Theory and Applications
49(6) (2004), 379–389.

Theorem. [Pogorui and Shapiro 2004] For f a (nonzero) polynomial in
H[q]. The set of left (right) roots of f consists of isolated points or
isolated two dimensional spheres of the form S = x + yS for x , y ∈ R. The
number of isolated roots plus twice the number of isolated spheres is less
than or equal to n.
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Resolution of Degree and Roots (continued)

Note. The proof of Pogorui and Shapiro’s theorem is based on
introducing a polynomial of degree 2n with real coefficients (called the
“basic polynomial”) which is associated with a given quaternionic
polynomial of degree n. A one to one correspondence between the isolated
zeros of the quaternionic polynomial and the basic polynomial is
established, and a one to one correspondence between the isolated spheres
of roots of the quaternionic polynomial and pairs of complex conjugate
roots of the basic polynomial is established. Then the fact that a real
polynomial of degree 2n has at most 2n complex roots (the “Fundamental
Theorem of Algebra”) is used to complete the proof.
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Note. One would hope that Pogorui and Shapiro’s theorem could be
extended to an equality of the degree n and the number of isolated roots
plus twice the number of isolated spheres. This would likely require an
introduction of the concept of the multiplicity of a root. G. Gentili and C.
Stoppato in “Zeros of Regular Functions and Polynomials of a
Quaternionic Variable,” Michigan Mathematics Journal 56 (2008),
655–667, explore exactly this. They define multiplicity (see their Definition
5.5) and give an example showing that the degree of a polynomial can
exceed the sum of the multiplicities of its roots. They define the
multiplicity of root p of polynomial f (q) =

∑n
i=0 qiai as the largest m ∈ N

such that f (q) = (q − p)mg(q) where g is a polynomial (in fact, they do
this for f and g quaternionic power series). They then show that
f (q) = (q − I )(q − J) = q2 − q(I + J) + IJ, where I , J ∈ S with I 6= J and
I 6= −J, is of degree 2 yet the only root is I which is of multiplicity 1.

Note. Pogorui and Shapiro’s theorem holds if polynomial f is replaced
with an analytic function of a quaternionic polynomial and the reference to
the degree is dropped. This is also proved by G. Gentili and C. Stoppato
(see their Theorem 2.4).

() The Quaternions: An Algebraic and Analytic ExplorationSeptember 4, 2018 42 / 64



Analytic Theory 1

Note. Attempts to extend the theory of analytic functions from the
complex setting to the quaternionic setting date back to at least the 1930s
and pioneering work by R. Fueter [see [5] in Gentili and Struppa, 2007]. C.
G. Cullen gave an alternative approach in 1965. Fueter’s approach did not
admit the identity function, polynomials, nor power series as regular
functions; Cullen’s approach admits polynomials and power series of
certain forms as regular functions. Here we follow the approach of Gentili
and Struppa [2007] which is based on Cullen’s ideas but produces a more
complete theory and allows for extensions of several results from classical
complex analysis to the quaternionic setting.

() The Quaternions: An Algebraic and Analytic ExplorationSeptember 4, 2018 43 / 64



Analytic Theory 2

Note. For any (fixed) I ∈ S, denote the set R⊕ IR as CI . Then CI is
isomorphic to C (as a field).

Definition. [Gentili and Struppa 2007, Definition 1.2] Let Ω be a domain
(i.e., an open connected set) in H. Function f : Ω → H is C-regular
(slice-regular or simply regular) if for each I ∈ S, f |CI

= fI is analytic on
Ω ∩ CI .

Note. [Gentili and Struppa 2007, Remark 1.3] The requirement that
f : Ω → H is regular is equivalent to the condition that for all I ∈ S,

∂I f (x + yI ) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
[fI (x + yI )] = 0

on Ω ∩ CI .
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Analytic Theory 3

Note. Polynomials of the form studied above, p(q) =
∑n

k=0 qnan, are
regular. Since we have a metric based on modulus, d(q, q′) = |q − q′|,
then this induces a topology on H and we can consider sequences and
series of quaternions and power series of a quaternionic variable.
Fortunately, the behavior of quaternionic power series of the form∑∞

k=0 qnan are as expected.

Theorem. [Gentili and Struppa, Theorem 2.1] For every power series∑∞
n=0 qnan there exists a number R ∈ R∞, 0 ≤ R ≤ ∞, called the radius

of convergence, such that the series converges absolutely for every q with
|q| < R and uniformly for every q with |q| ≤ ρ < R. Moreover if |q| > R,
the series is divergent.
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Limit Points of the Set of Zeros

Theorem. [Conway Theorem IV.3.7] Let G be a connected open set of
complex numbers and let f : G → C be an analytic function. Then the
following are equaivalent:

(a) f ≡ 0,

(b) there is a point a in G such that f (n)(a) = 0 for all n ∈ N,

(c) {z ∈ G | f (z) = 0} has a limit point in G .

Theorem. [Gentili and Struppa 2007, Theorem 3.1] Let
B = B(0;R) = {q ∈ H | |q| ≤ R} and suppose f : B → H is a regular
function. Denote Zf = {q ∈ B | f (q) = 0} the zero set of f . If there exists
I ∈ S such that LI ∩ Zf has an accumulation point, then f ≡ 0 on B.
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Maximum Modulus Theorem

Theorem. [Conway Theorem IV.3.11] If G is a region and f : G → C is
an analytic function such that there is a point a in G with |f (a)| ≥ |f (z)|
for all z ∈ G , then f is constant.

Theorem. [Gentili and Struppa 2007, Theorem 3.4] Let
B = B(0;R) = {q ∈ H | |q| ≤ R} and suppose f : B → H is a regular
function. If |f | has a relative maximum at a point a ∈ B, then f is
constant on B.
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Maximum Modulus Theorem
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Cauchy Estimate

Theorem. [Conway, Theorem IV.2.14] Let f be analytic in
B(a;R) = {z ∈ C | |z − a| < R} and suppose |f (z)| ≤ M for all
z ∈ B(a;R). Then |f (n)(a)| ≤ n!M/Rn.

Theorem. [Gentili and Struppa 2007, Theorem 3.6] Let
B = B(0;R) = {q ∈ H | |q| ≤ R} and suppose f : B → H is a regular
function. Let r < R, I ∈ S, and ∂∆I (0, r) = {(x + yI ) | x2 + y2 = r2}. If
MI = max{|f (q)| | q ∈ ∂∆I (0, r)} and if M = inf{MI | I ∈ S}, then∣∣∣∣∣ ∂nf

∂xn

∣∣∣∣
q=0

∣∣∣∣∣ ≤ n!M

rn
, for n ≥ 0.

() The Quaternions: An Algebraic and Analytic ExplorationSeptember 4, 2018 48 / 64



Cauchy Estimate

Theorem. [Conway, Theorem IV.2.14] Let f be analytic in
B(a;R) = {z ∈ C | |z − a| < R} and suppose |f (z)| ≤ M for all
z ∈ B(a;R). Then |f (n)(a)| ≤ n!M/Rn.

Theorem. [Gentili and Struppa 2007, Theorem 3.6] Let
B = B(0;R) = {q ∈ H | |q| ≤ R} and suppose f : B → H is a regular
function. Let r < R, I ∈ S, and ∂∆I (0, r) = {(x + yI ) | x2 + y2 = r2}. If
MI = max{|f (q)| | q ∈ ∂∆I (0, r)} and if M = inf{MI | I ∈ S}, then∣∣∣∣∣ ∂nf

∂xn

∣∣∣∣
q=0

∣∣∣∣∣ ≤ n!M

rn
, for n ≥ 0.

() The Quaternions: An Algebraic and Analytic ExplorationSeptember 4, 2018 48 / 64



Liouville’s Theorem

Theorem. [Conway Theorem IV.3.4] If f is a bounded entire function (i.e.
analytic in all of C), then f is constant.

Theorem. [Gentili and Struppa 2007, Theorem 3.7] Let f : H → H be an
entire regular function (i.e. f is analytic if all of H). If f is bounded, i.e.
there exists a positive number M such that |f (q)| ≤ M on all of H, then f
is constant.
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Structure of the Zero Set

Theorem. [Conway Corollary IV.3.10] If f : G → C is analytic and not
constant, a ∈ G , and f (a) = 0 then there is an R > 0 such that
B(a;R) ⊂ G and f (z) 6= 0 for 0 < |z − a| < R.

Theorem. [Gentili and Struppa 2007, Theorem 5.3] If f has a series
representation f (q) =

∑∞
n=0 qnan with real coefficients an, then every real

zero x0 is isolated, and if x0 + y0I is a nonreal zero (i.e. y0 6= 0) then
x0 + y0I is a zero for any I ∈ S. In particular, if f 6≡ 0, the zero set of f
consists of isolated points (belonging to R) or isolated 2-spheres.

Note. A similar result holds for the coefficients an as quaternions (but
with some small additional hypotheses). See Gentili and Struppa’s
Theorem 5.4.
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Complex Gauss-Lucas Theorem

Theorem. If all the zeros of a polynomial P lie in a half plane in the
complex plane, then all zeros of the derivative P ′ lie in the same half plane.

Note. The Gauss-Lucas Theorem does not hold in general since the
polynomial p(q) = (q − i)(q − j) = q2 − q(i + j) + k has zero set {i}, but
p′(q) = 2q − (i + j) has zero set {(i + j)/2} [Ghiloni and Perotti, 2018].
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Quaternionic Gauss-Lucas Theorem, Introduction

Definition. [Vlacci 2011, Definition 3.1] A domain Ω ⊂ H is axially
symmetric if for all x + yI ∈ Ω, the whole 2-sphere s + yS ⊂ Ω. If V ⊂ H
then the set Ṽ = ∪x+yI∈V x + yS is the axially symmetric completion of V .

Note. The unit ball B = {q ∈ H | |q| = 1} is an axially symmetric set.

Definition. [Vlacci 2011, Definition 3.8] Let f (q) =
∑∞

n=0 qnan be a
given quaternionic power series with radius of convergence R. Define the
regular conjugate of f as the series f c(q) =

∑∞
n=0 qnan. Define f s as the

regular product f s = ff c = f c f ; if f is a polynomial, this is sometimes
called the normal polynomial of f [Ghiloni and Perotti, 2018].

Note. The coefficients of f s are real. If f is a quaternionic polynomial of
degree n, then f s is a real polynomial of degree 2n [Vlacci, 2011].

Definition. For a set Z of elements of H, the convex hull of Z is the
intersection of all convex sets in H which contain Z , denoted K(Z ).
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Quaternionic Gauss-Lucas Theorem

Theorem. Gauss-Lucas in H. [Vlacci 2011, Proposition 3.14] Let
p(q) =

∑n
r=0 qrar be a polynomial with derivative p′(q) =

∑n
r=1 qr−1rar .

Let ps = ppc be the normal polynomial of p and let Zps be the zero set of
ps . Then all zeros of p′ lie in the axially symmetric completion of the
convex hull K(Zps ).

Note. We saw above that the polynomial
p(q) = (q − i)(q − j) = q2 − q(i + j) + k has zero set {i}, but
p′(q) = 2q − (i + j) has zero set {(i + j)/2} and so violates a general
Gauss-Lucas Theorem for quaternions. In this example,
pc(q) = q2 + q(i + j) + k and so

ps(q) = p(q)pc(q) = (q2 − q(i + j) + k)(q2 + q(i + j)− k) = (q2 + 1)2.

The zero set of ps is then S and the convex hull K(Zps ) is the “interior” of
S, K(Zps ) = {q = 0 + ix1 + jx2 + kx3 | x2

1 + x2
2 + x2

3 ≤ 1} (which is already
axially symmetric). Notice that (i + j)/2 ∈ K(Zp2), as guaranteed by the
Gauss-Lucas Theorem in H.
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Complex Bernstein Inequality

Definition/Theorem. For a complex polynomial P, a norm is given by
‖P‖ = max|z|=1 |P(z)|.

Note. There are a number of other norms on complex polynomials. One
collection of such norms are the Lp norms given by

‖P‖p =
{

1
2π

∫ 2π
0 |P(e iθ)|P dθ

}1/p
.

Bernstein’s Inequality. [Serge Bernstein, 1926] For a complex polynomial
P of degree n, we have ‖P ′‖ ≤ n‖P‖.

Erdös-Lax Theorem. [Lax, 1944] If P is a complex polynomial of degree
n such that P(z) 6= 0 for |z | < 1, then ‖P‖ ≤ n‖P‖/2.

Note. For more details on these results, see Bernstein-Type Inequalities
for Polynomials, R. Gardner, N. K. Govil, and G. Milovanovic, Elsevier
Press (2019).
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Quaternionic Bernstein Inequality

Theorem. [Gal and Sabadin 2015, Theorem 2.1] If P is a quaternionic
polynomial of degree n, then ‖P ′‖ ≤ n‖P‖ where ‖P‖ = max|q|=1 |P(q)|.

Note. The proof uses the Maximum Modulus Theorem and the
Gauss-Lucas Theorem (the quaternionic versions, of course).
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Quaternionic Erdös-Lax Theorem, Introduction

Theorem. [Gal and Sabadini 2015, Theorem 3.1] The Erdös-Lax
inequality is not valid, in general, for quaternionic polynomials.

Note. The proof is based on the example mentioned above of
P(q) = (q − i)(q − j) = q2 − q(i + j) + k. We have claimed that the zero
set for P is {i}. Gal and Sabadini give the computations to show that

‖P ′‖ ≥ (6 + 2
√

2)1/2 > (4 + 4
√

2)1/2 ≥ ‖P‖ =
2

2
‖P‖ =

n

2
‖P‖.
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Quaternionic Erdös-Lax Theorem

Theorem. [Gal and Sabadini 2015, Proposition 3.2] If P is a quaternionic
polynomial of degree n that has no zero in the ball |q| < 1. Assume that
the zeros of P are either spheres and/or real points and that there exists
at most one isolated zero α ∈ H \ R that has multiplicity 1. Then
‖P ′‖ ≤ n‖P‖/2.

Note. The bound above is optimal, as seen by considering
P(q) = (1 + qn)/2.
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Other Polynomial Complex Results 1

Centroid Theorem. The centroid of the zeros of a complex polynomial P
is the same as the centroid of the zeros of P ′.

Ilieff-Sendov Conjecture. If all the zeros of a polynomial P lie in |z | ≤ 1
and if r is a zero of P, then there is a zero of P ′ in the circle |z − r | ≤ 1.
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Other Polynomial Complex Results 2

Rate of Growth Theorem. [Bernstein, 1926] If P is a complex
polynomial of degree n such that |P(z)| ≤ M on |z | = 1, then for R ≥ 1
we have max|z|=R |P(z)| ≤ MRn.

Note. The proof of the Rate of Growth Theorem only requires the
Maximum Modulus Theorem (which holds in the quaternionic setting).

Eneström-Kakeya Theorem. [Eneström 1893, Kakeya 1912] If
p(z) =

∑n
v=0 avzv is a complex polynomial with real coefficients satisfying

0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in |z | < 1.

Note. The proof of the Eneström-Kakeya Theorem only requires the
Triangle Inequality for modulus and the Maximum Modulus Theorem
(both of which hold in the quaternionic setting).
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