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ABSTRACT

All too often, undergraduate math majors get a thorough exposure

to the structure of R (or maybe Rn), but are left entirely unexposed

to the same concepts (eg. “open,” “closed,” “compact,” “connected,”

“limit,” and “continuity”) in more general settings, such as metric

spaces and topological spaces. This is unfortunate, since in most

instances, it is possible to extend many of the results from R to

Rn, metric spaces and topological spaces, with little to no revision

(provided the relevant definitions are introduced). The purpose of

this presentation is to show how a standard introductory real analysis

class can be used, with minimal interruption, to extend many results

from R to these more general settings.
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1. A STANDARD INTRODUCTION

TO REAL ANALYSIS

Note. Depending on other classes available in the curriculum, the

standard introductory real analysis class (hence forth called “senior

analysis”) covers the following topics:

PART I.

• Introduction to Proof Techniques

• Naive Set Theory and Functions

• Axiomatic Set Theory, Functions, and Cardinality

• Axiomatic Development of the Real Numbers (algebraic properties,

completeness, rationals, irrationals, algebraic numbers)

• Topology of R (open/closed sets, limit points, boundary points,

compactness, Heine-Borel Theorem, connectedness)

• Sequences and Convergence (limits, divergence, monotonicity, bound-

edness, subsequences, subsequential limits, the Bolzano-Weierstrass

Theorem)

• Functions (limits, continuity, inverse images, Extreme Value The-

orem, Intermediate Value Theorem, Uniform Continuity)
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PART II.

• Differentiation (Mean Value Theorems)

• Riemann Integration (properties, necessary and sufficient condi-

tions for Riemann integrability, Riemann-Stieltjes integration)

• Sequences and Series of Functions (convergence, Taylor Series,

Fourier Series [maybe])

In this presentation, we explore ways to extend the topics of Part

I to a more general setting than R. Suggestions are given as to how

to present the new material “in parallel” with the standard material.

Specific examples are presented to show some surprising applications

of the new material.
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2. R AND SOME OF ITS COLLEAGUES

Definition. For this presentation, we define R as a complete, or-

dered field.

Fields. By their senior year, students should be familiar with the

following fields (at least intuitively):

• R, the real numbers

• Q, the rational numbers

• C, the complex numbers

• Zp where p is prime, the integers modulo p

Q is an interesting example, since it is ordered but not complete.

C is complete, but not ordered (which will later raise the question

“What does it mean for a field to be complete if it is not ordered?”).

Zp, p prime, is a finite field and not in the “realm of analysis.”
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Orderings. Recall that the “Order Axiom” postulates the existence

of a positive set P such that

• If a, b ∈ P then a+ b ∈ P and a · b ∈ P (Closure under + and ·).

• For any a in the field, exactly one of the following holds: a ∈ P ,

−a ∈ P , or a = 0 (Law of Trichotomy).

Certainly R and Q (intuitively) are ordered. However, C and Zp are

not ordered. We might also observe that there is no clear ordering

on Rn.

Completeness. Recall that the Axiom of Completeness states

that any set of real numbers with an upper bound has a least upper

bound. However, this makes explicit use of the ordering. Intuitively,

completeness of a space implies that there are “no holes” in the

space. We see from the definition that Q is not complete. However,

we claim that C is complete, though it has no ordering. We can

also claim that Rn and Cn are complete, and they are not ordered.

These observations imply that there may be other approaches to

completeness which do not involve orderings. However, we must

explore sequences before this idea can be further studied.
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3. TOPOLOGY

Recall. A set A ⊂ R is open if for all x ∈ A, there exists ε > 0

such that (x− ε, x+ε) ⊂ A. This can be easily extended to a metric

space (M, ρ): A set A ⊂ M in a metric space is open if for all x ∈ A,

there exists ε > 0 such that B(x, ε) = {y | ρ(x, y) < ε} ⊂ A. This

allows us to discuss open sets without appealing to an ordering. It

also shows how the idea of “open” in R can be extended to other

settings, such as Rn (familiar from sophomore level Linear Algebra)

and C.
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Note. Of course, in senior analysis we prove:

(1) ∅ and R are open.

(2) If A1, A2, . . . , AN are open, then
N⋂
i=1

Ai is open.

(3) If {Ai}i∈I is any collection of open sets, then
⋃
i∈I

Ai is open.

With this result as inspiration (I call it the “logical ancestry”), we

can define a topological space:

A topological space (T ,O) is a point set T and a set O ⊂ P(T ) of

open sets such that:

(1) ∅ and T are open (i.e. ∅, T ∈ O.)

(2) If {O1, O2, . . . , ON} ⊂ O, then

N⋂
i=1

Oi ∈ O.

(3) If {Oi}i∈I ⊂ O then
⋃
i∈I

Oi ∈ O.

We can easily introduce a few examples of topological spaces:

• R under the usual topology (the one studied in senior analysis).

• (R,P(R)), the discrete topology on R.

• (R, {∅,R}), the trivial topology on R.
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For the sake of illustration, we can mention some topologies on a set

of cardinality 3: {a, b, c}

From Topology, A First Course by J. R. Munkres.
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Note. We can draw parallels between definitions in R which use

the ordering (in the sense that these definitions involve intervals

(a, b) = {x | a < x < b}), definitions in a metric space (M, ρ),

and definitions in a topological space (T ,O):
TERM R Metric Space Topological Space

closed Set X is closed Set X is closed Set X is closed

set if Xc is open. if Xc is open. if Xc is open.

Point x is a limit Point x is a limit Point x is a limit

point of set X if point of set X if point of set X if

limit for all ε > 0, the for all ε > 0, the all open sets Ox

point interval (x− ε, x + ε) set B(x, ε) containing x also

contains infinitely many contains infinitely many contains infinitely many

points of X. points of X. points of X.

Point x is a boundary Point x is a boundary Point x is a boundary

point of set X if for point of set X if for point of set X if all

boundary all ε > 0, the all ε > 0, the open sets Ox

point interval (x− ε, x + ε) set B(x, ε) containing x

contains a point in X contains a point in X contain a point in X

and a point in Xc. and a point in Xc. and a point in Xc.

A separation of A separation of A separation of

set X is two open sets set X is two open sets set X is two open sets

U and V such that U and V such that U and V such that

connected (1) U ∩ V = ∅ (1) U ∩ V = ∅ (1) U ∩ V = ∅
set (2) U ∩ A �= ∅ and V ∩A �= ∅ (2) U ∩ A �= ∅ and V ∩A �= ∅ (2) U ∩A �= ∅ and V ∩A �= ∅

(3) (U ∩ A) ∪ (V ∩ A) = A. (3) (U ∩ A) ∪ (V ∩ A) = A. (3) (U ∩ A) ∪ (V ∩ A) = A.

Set X is connected if there Set X is connected if there Set X is connected if there

is not separation of X. is not separation of X. is not separation of X.

compact Set X is compact Set X is compact Set X is compact

set if every open cover of X if every open cover of X if every open cover of X

has a finite subcover. has a finite subcover. has a finite subcover.

Many of the topological results about R (such as “closed sets con-

tain their limit points”) can then easily be extended to more general

settings.
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Note. Not all topological results of R are so easily extended:

• An open set of real numbers is a countable disjoint union of open

intervals. This result, useful when first encountering measure

theory, has no easy parallel in, say, Rn. However, it can be used

to motivate a discussion of the basis of a topology.

• Connected sets in R are intervals. This result very much depends

on the “one-dimensional nature” of R — when considering C or

Rn (n ≥ 2), we must explore simple and multiple connectedness.

• The Heine-Borel Theorem: A set of real numbers is compact if

and only if it is closed and bounded. Though this result is true

in many familiar settings (R and Rn), there are metric spaces

where the result does not hold.
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4. l2 — A NICE SPACE FOR COUNTEREXAMPLES

Definition. The space l2 consists of all square summable sequences:

l2 = {(x1, x2, x2, . . . ) | x1, x2, x3, · · · ∈ R, x2
1 + x2

2 + · · · < ∞}.

We claim that l2 is an infinite dimensional vector space with norm

‖(x1, x2, x3, . . . )‖ =

√√√√
∞∑
i=1

x2
i

and metric

d(�x, �y) = ‖(x1, x2, x3, . . . )− (y1, y2, y2, . . . )‖ =

√√√√
∞∑
i=1

(xi − yi)2.

Note. Space l2 gives us a setting to show that not everything is as

straightforward as it is in R:

The Heine-Borel Theorem does not hold in l2. There exists a set X

which is closed and bounded, but is not compact: consider

X = {(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), · · · }

and open covering

{ open balls with center x and radius 1/2 | x ∈ X}.

Then set X is open (consider Xc), but the open cover has no finite

subcover (since each x ∈ X is contained in exactly one of the open

sets).
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5. SEQUENCES AND CONVERGENCE

Definition. Let x1, x2, x3, . . . be a sequence. We define the limit

of the sequence and define the sequence to be Cauchy if

Definition in R in a metric space in a topological space

Sequence (xn) converges to Sequence (xn) converges to Sequence (xn) converges to

L if for all ε > 0, there L if for all ε > 0, there L if for all open sets Ox

exists natural number N such that exists natural number N such that containing L, there exists

if n (a natural number) is greater if n (a natural number) is greater natural number N such that

than N , then xn ∈ (L− ε, L + ε). than N , then xn ∈ B(L, ε). if n (a natural number) is greater

than N , then xn ∈ Ox.

Sequence (xn) is Cauchy if for Sequence (xn) is Cauchy if for

all ε > 0, there exists a natural all ε > 0, there exists a natural

number N such that for all natural number N such that for all natural —

numbers n,m > N we have numbers n,m > N we have

|xn − xm| < ε. ρ(xn, xm) < ε.

(It is rather surprising that we can talk about limits [and hence

continuity] in a topological space which may not have a metric!)
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Note. In senior analysis, we prove such “obvious” results as “the

limit of a sequence of real numbers is unique.” Surprisingly, this is

not the case in all settings. Consider the topological space:

From Topology, A First Course by J. R. Munkres.

The sequences b, b, b, . . . and c, c, c, . . . each converge to both b and

to c. (This can be used to motivate a discussion of Hausdorff spaces.)

Also, under the discrete topology, the only convergent sequences are

those which are eventually constant.

Note. The Bolzano-Weierstrass Theorem states that an infinite

bounded set of real numbers has a limit point. This is true in Rn

and C. However, consider the set X in l2:

X = {(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), · · · }.

The set is infinite and bounded (each point is within 1 unit of the

“origin”), but there is not a limit point (in fact, each point is an

isolated point within
√
2 units of each of the other points). From

this example, we see that there is a lot of “room” in the infinite

dimensional space l2 — we are able to choose an infinite number of

points and still not have them “cluster”... this is done by choosing

the points in different “directions” from the origin.
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6. CAUCHY AND COMPLETENESS

Note. We have seen that completeness in R is defined in terms

of upper bounds and least upper bounds. However, this definition

cannot be extended to a setting where there is no ordering.

Note. A sequence of real numbers is Cauchy if and only if it is

convergent. In fact, we can show that in a metric space, every con-

vergent sequence is Cauchy. However, there exist metric spaces in

which Cauchy sequences may not converge (such as Qn with the

usual metric).

Definition. A metric space is complete if every Cauchy sequence

converges.

Note. We can show that Rn (or Cn) is complete using the fact that

R (or C) is complete. However, the completeness of other spaces

(such as l2) can be a bit more difficult to prove directly.
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7. FUNCTIONS

Recall. A function f : R → R is continuous at point x if:

for all ε > 0, there exists δ > 0 such that

if x0 is in the domain of f and x0 ∈ (x− δ, x + δ) then

f(x0) ∈ (f(x)− ε, f(x) + ε).

Definition. If f : X → Y where (X, ρx) and (Y, ρy) are metric

spaces, then we can mimic the above definition: Such a function f

is continuous if

for all ε > 0, there exists δ > 0 such that

if x0 is in the domain of f and ρx(x, x0) < δ then

ρy(f(x), f(x0)) < ε.

Note. In senior analysis, we see that f : R → R is continuous if

and only if for each set Y open (relative to the range of f), f−1(Y ) is

open (relative to the domain of f). This property is the motivation

for the definition of continuity in the topological space setting: Let

f : T1 → T2 where (T1,O1) and (T2,O2) are topological spaces.

Then f is continuous if for each O2 ∈ O2, we have f−1(O2) ∈ O1.

This definition can then be used to prove an ε/δ type result for such

continuous functions: f : T1 → T2 is continuous at x ∈ T1 if and

only if for all open Oε ∈ O2 with f(x) ∈ Oε, there exists an open

Oδ ∈ O1 with x ∈ Oδ such that if x0 ∈ Oδ then f(x0) ∈ Oε.
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Note. Since the definitions of many of the ideas are similar in

R, metric spaces, and topological spaces, there are easy extensions

of familiar results of continuous functions from the setting of R to

these other settings. For example, the following results hold in Rn,

metric spaces, and topological spaces:

• If X is a compact set and f is continuous, then f(X) is compact.

• IfX is a connected set and f is continuous, then f(X) is connected.
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8. CONCLUSION

Note. Historically, the ideas mentioned in this presentation were

first explored in the real numbers. These ideas were generalized to

the setting of metric spaces, and later to topological spaces. Due to

this “genealogical relationship,” we can often extend ideas studied in

senior level analysis to these more general settings in a rather natural

way. Students can then see the ideas in a broader setting, and see

some foreshadowing of topics to be studied in more advanced classes.
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