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INTRODUCTION

Note. A great deal of applied mathematics depends on the concept

of a vector space. In particular, many applications in ODEs and

PDEs involve infinite dimensional vector spaces.

Note. In sophomore linear algebra, it is traditional to deal at length

with finite dimensional vector spaces. However, infinite dimensional

vector spaces are mentioned (at most) in passing. The purpose of

this presentation is to give a method for addressing this oversight and

for presenting infinite dimensional vector spaces (in particular l2) as

a natural follow-up to the finite dimensional cases. By making analo-

gies between l2 and R
n, we get some geometric insight into function

spaces (such as the space generated by the Fourier functions).
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FINITE DIMENSIONAL VECTOR SPACES

Note. The approaches to vector spaces in the numerous introduc-

tory texts is surprisingly varied. Some texts introduce vectors first

(and occasionally are unclear on the distinction between vectors in

R
n and points in R

n), some introduce matrices and matrix operations

first, and some introduce systems of equations first. All eventually

formally define “vector space.” The better texts [my favorite one is

Fraleigh and Beauregard’s Linear Algebra] define the coordinitiza-

tion of vectors with respect to a given basis, change of bases, and

vector space isomorphism. Most of these texts (some much more

successfully than others) state and prove that an n-dimensional vec-

tor space over R is isomorphic to R
n.
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Note. This result is quite amazing, really. We can classify a finite

dimensional vector space simply by knowing its dimension and its

scalar field! I therefore propose raising this theorem to the status of

a “fundamental theorem”:

THEOREM. Fundamental Theorem of Finite Dimen-

sional Vector Spaces

An n-dimensional vector space with scalar field F is isomorphic to

F
n.

Note. Since students almost exclusively deal with R
n in their sopho-

more level classes, they come to expect that every vector space has

a norm and inner product on it. Of course, since “things are

kept finite” in R
n, divergence is not an issue (and it is the avoidance

of these analysis ideas of convergence and divergence that make it

possible to address finite dimensional vector spaces in a sophomore

level class).
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MODIFIED DEFINITIONS IN THE INFINITE

DIMENSIONAL SETTING

Note. If we insist on defining a linear combination of vectors as a

finite sum

s1v1 + s2v2 + · · · + skvk,

then we find that the concept of an infinite dimensional vector space

is quite complicated. In fact, the proof that every vector space has

a basis (called a Hamel basis if we restrict ourselves to finite sums)

requires the Axiom of Choice (Zorn’s Lemma, actually). This really

means that it may be impossible to construct a Hamel basis for a

vector space, and therefore the application of vector spaces is severely

limited with these restrictions! Hence, we modify several definitions

and are, as a consequence, lead to a concept which is much more

useful.
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Definition. In an infinite dimensional vector space, a linear com-

bination is the infinite sum

∞∑
k=1

skvk. A set of vectors {v1,v2, . . . }
is linearly independent if

∞∑
k=1

skvk = 0 implies sk = 0 for all k.

The span of a set of vectors {v1,v2, . . . } is the set of all (infinite)

linear combinations of the vectors:

span({v1,v2, . . . }) = {s1v1 + s2v2 + · · · | sk ∈ R for all k}.

A basis of an infinite dimensional vector space is a linearly indepen-

dent spanning set.

Note. The above definition of basis is sometimes called a Schauder

basis. With this definition, we can naturally extend the Fundamental

Theorem of Vector Spaces.
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l2 — A NATURAL PLACE TO LIVE!

Note. With the observation that an n-dimensional vector space is

isomorphic to R
n, it is natural to guess that an infinite dimensional

vector space should be isomorphic to

R
∞ = {(r1, r2, . . . ) | rk ∈ R for all k}.

However, there’s clearly some problems if we want to preserve our

familiar ideas of norms and inner products. For example, how long

is the vector (1, 1, 1, . . . )?

Note. We can consider the subspace l2 of R
∞:

l2 =

{
(r1, r2, . . . ) | rk ∈ R for all k and

∞∑
k=1

r2
k < ∞

}
.

In order to show that l2 is actually a subspace, we only need to show

that for all v1,v2 ∈ l2:

1. rv1 ∈ l2 for any r ∈ R (trivial), and

2. v1 + v2 ∈ l2.
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For the second result, it is sufficient to show that if

∞∑
k=1

r2
k < ∞ and

∞∑
k=1

(r′k)
2 < ∞ then

∞∑
k=1

(rk + r′k)
2 < ∞. This can be shown using

mathematical induction and limits. Hence, it is possible to show that

l2 is a vector space. Only slightly more challenging is the proof of

the following which completes our Fundamental Theorem:

Theorem. “Riesz/Fisher Theorem” or “The Fundamen-

tal Theorem of Infinite Dimensional Vector Spaces”

A complete infinite dimensional vector space with an inner product

and with basis {b1,b2, . . . } is isomorphic to l2.

Note. We need to address three ideas before we can prove this

result:

1. Completeness (usually touched on in the appendices of calculus

books),

2. An inner product on a vector space (with which students develop

familiarity in finite dimensions), and

3. Isomorphism between inner product spaces.

With these ideas established, the proof of the Fundamental Theorem

is accessible!
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Lemma 1. Pythagorean Formula. If v1,v2, . . . ,vn are or-

thogonal vectors in an inner product space, then∥∥∥∥∥
n∑

k=1

vk

∥∥∥∥∥
2

=

n∑
k=1

‖vk‖2.

Proof. Follows by induction from the properties of an inner product

space.

Definition. An inner product space H is complete if every Cauchy

sequence converges. That is, for every sequence {vn} such that

for all ε > 0, there exists N ∈ N such that

if m, n > N then ‖vn − vm‖ < ε,

there exists v ∈ H such that vn → v.
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Lemma 2. Let {vk} be an orthonormal sequence in a complete

inner product space H (i.e. H is a Hilbert space) and let {sk} be a

sequence of real numbers. Then the series

∞∑
k=1

skvk converges if and

only if
∞∑

k=1

(sk)
2 < ∞, and in that case

∥∥∥∥∥
∞∑

k=1

skvk

∥∥∥∥∥
2

=
∞∑

k=1

|sk|2.

Proof. For every m > n > 0 we have∥∥∥∥∥
m∑

k=n

skvk

∥∥∥∥∥
2

=

m∑
k=n

(sk)
2 (1)

by the Pythagorean Formula. If
∞∑

k=1

(sk)
2 < ∞, then the sequence of

partial sums sm =
m∑

k=1

skvk is a Cauchy sequence by (1). Therefore

the series
∞∑

k=1

skvk converges since H is complete.

Conversely, if the series

∞∑
k=1

skvk converges, then (1) implies the

convergence of
∞∑

k=1

(sk)
2 since the sequence of partial sums σm =

m∑
k=1

(sk)
2 is a Cauchy sequence in R, and Cauchy sequences converge

in R (i.e. R is complete).
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We can show ∥∥∥∥∥
∞∑

k=1

skvk

∥∥∥∥∥
2

=
∞∑

k=1

(sk)
2

by taking n = 1 and letting m → ∞ in (1).

Proof of the Fundamental Theorem. Let {b1,b2, . . . } be

a basis of infinite dimensional vector space H (with inner product

〈·, ·〉) and let b ∈ H. Define T (b) = {αk} (a sequence) where

αk = 〈b,bk〉 for k ∈ N. By Lemma 2, T is a one-to-one mapping

from H onto l2. Since the inner product is linear, then T is linear.

T also preserves inner products:

〈T (x), T (y)〉 = 〈{αk}, {βk}〉
=

∞∑
k=1

αkβk

=

∞∑
k=1

〈x,bn〉〈y,bk〉

=

∞∑
k=1

〈x, 〈y,bk〉bk〉

=

〈
x,

∞∑
k=1

〈y,bk〉bk

〉

= 〈x,y〉

Therefore T is an isomorphism from inner product space H to l2.
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Note. We can also completely classify (bounded) linear operators

on infinite dimensional vector spaces:

Theorem. A (bounded) linear operator on an infinite dimensional

vector space with basis {b1,b2, . . . } can be represented by an infinite

matrix.

The proof follows exactly the same as in the finite dimensional case.
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Applications (and Motivation)

Note. Having established that all complete infinite dimensional

inner product spaces are isomorphic to l2 (and having some intuitive

way to visualize l2 by analogy with R
n), we have prepared students

for several examples that are useful in upper level classes.

Example 1. Heine-Borel Not Valid in l2. The set of vectors

that form the standard basis for l2

B = {(1, 0, 0, . . . ), (0, 1, 0, . . . ), . . . , (0, . . . , 0, 1, 0, . . . ), . . . }

is a closed and bounded set, but it is not compact.

Example 2. Fourier Series. The sequence {Φk(x)} =

{
eikx

√
2π

}
for k ∈ Z is an orthonormal basis for L2([−π, π]). Hence, f ∈
L2([−π, π]) means that f : R → C and

∫ π

−π

|f(x)|2 dx < ∞ and

the inner product is 〈f ,g〉 =
∫ π

−π

f(x)g(x) dx.
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Example 3. Legendre Polynomials. The Legendre Polyno-

mials

P0 =

√
1

2

Pk(x) =

√
k + 1

2

2kk!

dk

dxk
[(x2 − 1)k], k ∈ Z

+

form an orthonormal basis for L2([−1, 1]). In fact, we get the Legen-

dre Polynomials by applying the Gram-Schmidt process to the se-

quence of functions {xk}. Several other collections of special func-

tions result in a similar way, including the Hermite Polynomials and

the Laguerre Polynomials.

Example 4. Quantum Mechanics. In quantum mechanics,

a system is represented by a state vector Ψ(x). The state vector

is normalized when ‖Ψ(x)‖2 = 1. An observable (such as position,

momentum, or spin) is represented by a Hermitian operator. If {Ψk}
is an eigenbasis for an operator, then the state vector can be written

as

Ψ(x) =
∞∑

k=1

〈Ψ,Ψk〉Ψk

and the probability that the observable takes on eigenstate Ψk is

|〈Ψ,Ψk〉|2. Notice that (since Ψ is normalized)
∞∑

k=1

|〈Ψ,Ψk〉|2 = ‖Ψ‖2 = 1.
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CONCLUSION

Note. The above approach allows us to discuss infinite dimensional

vector spaces (that is, separable Hilbert spaces) and to discuss their

geometry. The examples which use L2 spaces, however, cannot be

fully appreciated without exploring the topics of Lebesgue measure

and integration. Since these spaces are isomorphic to l2, we do gain

some insight about them (especially their geometry!).
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