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P-1: Functions

The Function Concept

Intuitively, a function is any process that produces only one output for each input.
For example, the output on a calculator screen is a function of the input from the
keyboard, since pressing a number such as “9” once on the calculator keyboard
produces only the number “9” on the screen.

In calculus, most functions have numerical inputs and outputs. Moreover,
functions in calculus are often developed as models of real-world processes that
produce only one output for each input.

Functions as Models
Functions model processes which produce
only one output for each input

These function models may be presented either numerically, graphically, or sym-
bolically.

For example, suppose a ball is thrown into the air with an initial speed of 88
feet per second (about 60 m.p.h.) from an initial height of 7 feet. Then the height
r of the ball is a function of the time ¢ that has elapsed since the ball was released.

%

P1-1: Height r at time ¢.

We can generate a numerical representation of the ball’s height as function of time
by measuring the height at one second intervals for 5 seconds. Doing so results in
the following data set

t in seconds | 0 1 2 3 4 5
r in feet | 779 113 127 103 47

(0.1)

That is, the ball has a height of 79 feet after 1 second, a height of 113 feet after 2
seconds, and so on.

The data set for a function can then be plotted as points in the plane. The
result is known as a graphical representation of the function. For example, plotting
the points from the data set (0.1) as points in the plane results in a graphical
representation of the ball’s height r as a function of time t¢.

(113 (3,127
o o]

H120

%30 o

i

24 O (5,47
1

- (0.7

0 2 3 4 5
f = Hime in seconds

P1-2: Data set plotted as points in the plane
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Finally, functions can also be written symbolically in the form
f (input) = “formula to be applied to the input”

In doing so, we often use a letter such as x to denote the input variable. The
output from that process is denoted by f (x), which is pronounced “eff of z.” Or
we may denote the input variable by ¢ and then denote the output by r (¢), which
is “r of t.” Graphical and numerical representations of a function can subsequently
be generated from a symbolic representation.

EXAMPLE 1 1If a ball is thrown upward from an initial height of 7
feet with an initial velocity of 88 feet per second, then the height r (¢)
of the ball at time ¢ is given by

7 (t) =7+ 88t — 16t (0.2)

Use (1.2) to generate the numerical and graphical representations of
the data set representing heights measured at half-second intervals for
5.5 seconds.

Solution: The data set (0.1) represents heights measured at one sec-
ond intervals, so we need only supplement it by computing r (0.5),
r(1.5),r(2.5),r(3.5), r(4.5), and r (5.5) . To compute r (0.5) , we let
t =0.5in (1.2) to obtain

r(0.5) =7+ 88-(0.5) — 16 - (0.5)* = 47
Likewise, we compute the remaining heights to obtain the data set

t]0o 05 1 15 2 25 3 35 4 45 5 55
r| 7 47 79 103 113 127 127 113 103 79 47 7

A plot of the points in the data set then yields a graphical representa-
tion of r(t) :

r = haight in feef
o
L)
o
o

o

L D N A T
f = fime in seconds

P1-3: A Graphical Representation of r (¢)

Check your Reading | What is the height of the ball after 2.5 seconds? Which representation of r(t)

dvd you use to determine your answer?

Domain and Range

Let’s translate the function concept into a mathematical definition. To begin
with, the set of inputs for which a function f is defined is called the domain of
the function, which is denoted dom (f), and the set of output values produced by
a function f is known as the range of the function, which is denoted ran (f). The
mathematical definition of function then follows:
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Definition P.1: A function f is a rule which transforms each input
in a set dom (f) into only one output in a set ran (f).

dom(f) ran(f)

P1-4: Only one f (x) in ran (f) for each x in dom (f)

By convention, if no domain is stated for a function, then the domain is assumed
to be the largest set of inputs for which the function is defined and produces real
number outputs. We call this domain the natural domain of the function.

Domains and ranges are often expressed in interval notation. For example,
[a,b) is the set of points x on the z-axis for which a < x < b.

‘“———
a b

P1-5: The interval [a,b)

To illustrate, [0, 1] denotes all the real numbers between 0 and 1, inclusive.

EXAMPLE 2 Find the domain and range of f (z) = v1 — 22

Solution: In order for the function to be defined, the expression under
the square root cannot be negative. That is, we require that 1—z2 > 0.
Since 1 —2? = (1 — ) (1 + z), the expression 1 — 22 can change signs
only at 1 and —1. However, if x = —2, then 1 — 22 is

1—(=2°=-3<0

Thus, 1 — 22 must be negative for < —1. Similarly, if we test points
in [—1,1,] and [1,00), we find that

- + -

-1 1
Pl6:1—22>0if —1<z<1

As a result, the domain of f (x) =1 — 22 is

By convention, y/u > 0 for u a non-negative real number. Since 1 —
22 < 1for all z in dom (f) and since the square root cannot be negative,
the range of f is

ran (f) =10,1]

In this textbook we work with domains of functions much more frequently than
we work with ranges of functions.
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EXAMPLE 3 Find the domain of the function

f @)= —

VT Ve

Solution: The expression = + 2 under the radical cannot be negative,
and x + 2 > 0 implies that x > —2. In addition, vz + 2 cannot be 1
since otherwise we would have division by 0. But v/x + 2 # 1 implies
that x + 2 # 1, which is the same as z # —1. Thus, the domain of f is
the set of inputs & > —2, but not including —1. In interval notation,
we have

dom (f) = [-2,-1) U (—1,00)
where U represents the union of the two intervals.
<« o O ; 1 >
-2 -1 0 1 2
P1-7: [-2,-1) U (—1,00)

Check your Reading | What is the domain of f (x) = vz — 17

Operations with Functions

We can use the fact that the outputs from functions are real numbers to define
operations on functions. If f and g are functions, then their sum f 4+ g is defined

(f+9)(2)=f(2)+9 () (0.3)

for every = that belongs to both dom (f) and dom (g) . Likewise, for every x that
belongs to both dom (f) and dom (g), we define f — g, fg, and f/g to be

F-9)@) = f@)—g) (0.4)
(o) @) = f(2)g() (0.5)
! r) = I @) where
(g)u — L (where g (@) £0) (0.6)

A consequence of (0.5) is that if k is a constant, then
(kf) (x) = kf (z)
For example, if f (z) = 2?2, then (3f) (z) = 3f (z) =

EXAMPLE 4 Find f+g¢, f —g, fg, and f/g when
fla)=2+2, g)=2"-2

Solution: The definitions (0.3), (0.4), (0.5), and (0.6) imply that

(f+9)(2) = () g@)=a>+2+2" 2w =2 +27 - 2042
(f—9) (@) = g(x)= (2 +2) — (a* —22) = —2* + 2” + 20 + 2
(fg) () = f(x)g(x):(ac +2) (¢* —22) =2° —22° + 22" — da
[ o f(x): 242
(9)() g(x) a*—2z
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We can also define an operation between functions by using the output from a
function ¢ as the input to a function f. The result is called the composition of f
with g and is denoted f o g. That is, composition of f with g is defined

(fog)(x) = f(g(x))

Equivalently, we often interpret f o g as
(fog)(x) = f (input) (0.7)

where the input is g (x).

EXAMPLE 5 Evaluate fog and g o f when f(z) = 2 + x and
g(x)=2x+3

Solution: The equation (0.7) tells us that (fog)(z) = f (input),
where
f (input) = (input)® + (input)

and where the input is g () = 22 + 3. Replacing the input by 2z + 3
thus yields
@2z +3)=(2z43)* + (22 +3)

As a result, f o g is given by

(fog) (@) = (2w +3)" + (2v+3) = 42” + 14z + 12

In contrast, equation (0.7) tells us that (g o f) (x) = g (input) , where
g (input) = 2 (input) + 3

and where the input is f (z) = 2% + . Replacing the input by 22 + x
thus yields
g(x2+x) :2(x2+ac) +3

As a result, g o f is given by

(gof)(x)=2(2"+2z)+3=22"+22+3

Check your Reading |]s fog the same as go f in example 5¢

Polynomial Functions

Functions formed solely by addition, subtraction, and multiplication of real num-
bers and an input variable are known as polynomial functions. In particular, we
have the following definition.

Definition 1.2: If ag,aq,...,a, are numbers with a,, # 0, then the
function
f(x)::ao4fa1x4ka2x2—%...4—anx”

is a polynomial function of degree n.
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The numbers ay, . . ., a, are known as the coefficients of the polynomial function
f (z). Polynomials often arise in modeling simple input-output processes.

EXAMPLE 6 Write the area A of a square as a function of the length
x of one of its sides, and then find its domain and range:

X

P1-8: Area is a function of =

Solution: Since z? is the area of a square of length =, we can write
the function relationship symbolically as

A(z) = 2?

Polynomial functions are added by summing coefficients of like terms. For exam-
ple, if f(x) =222 + 1 and g (z) = 322 + 2z + 3, then
f@)+g@) = 22°+1+32°+22+3
522 42z + 4
However, the product of two polynomials is computed with the distributive law,
such as in
f@)gx) = (22°+1) (32® + 22 +3)
= 222 (3x2+2x+3) +1(3x2+2x+3)
= 62*+42° + 922 + 20+ 3
When entering functions into a graphing calculator, an applet, or a computer

algebra system, it is important to remember the conventions for the order of
operations:

Order of Operations:

Powers take precedence over multiplication
and division. Multiplication and division take
precedence over addition and subtraction.

Grouping takes predence over all other operations. For example, in most computer
algebra systems, the code fragment

x/4+x

represents the expression § + x. To enter the expression

X
4+

the code fragment must be of the form /(4 + ) because division takes precedence
over addition. Similarly, the expression zy? is not the same as (zy)>.
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Exercises
Evaluate each function f(x) below at the given input for x, and simplify com-
pletely.

1. flx)=22-5, x= 2. f(r)=32>-5x+2, =05
3. f(x) =223+ 6, x=2 4.  f(z) =13 — 4z + 322, x=17
5. f(z) = Va2 - ba, x = 6. f(x)=+222 —mz, xr=m7

7. fx)=2%2-5 ax=t-1 8. flx)=322-bx+2, ax=t+2
9. f(x)=22%+6x, ax=t—-5 10. f(z)=+va2-bx, x=2t-5

1. fx)=+vr -5 12. f(z)=v6—-=z
13. f(x)=+vV16—22 14. f(z)=+v22-9
15. f(x):xi4 16. f(x):le_g
7. f(x)f/?__i 18. f(x)%

Numerical:! Construct a numerical representation by evaluating the function at
the given input values. Then construct a graphical representation by plotting the
resulting input-output pairs as points in the xy-plane:

z | 1 2 3 4 5
Y Foy =22 —22+1 |
20 z | —2.5 —15 0.5 1.5 2.5

"o flw)=—2z+1]|

T | 1 2 3 4 5

21. fl@)=a®+2z—1|
T | 1.1 1.01 1.001 1.0001

22. fl@)=a°—z |

23. Sketch a graphical representation of f () = 22 + 1. What does the range of
f () appear to be?

24. Sketch a graphical representation of f (z) = 22 + 2z. What does the range
of f (z) appear to be?

25. Sketch a graphical representation of f (x) = 3z — 1. What does the range of
f (z) appear to be?

26. Sketch a graphical representation of f (z) = 2% — 3z. What does the range
of f (z) appear to be?

In 27-38, assume that f(z) =22 1, g(x) =2 — 23, and h(z) = 22 + 3:

I Numerical exercises require either the use of a table or the analysis of data.
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21, (f+g9)(x) 28. (9—h)(z)

29.  (2f) (x) 30. (2f +9)(z)

3L (fg)(z) 32. (gh) (z)

33. (f/9) (@) 34. (hog)(z)

35. (foh)(x) 36. h(t*+1)

37. (hog)(1) 38 ((f(f—g))oh)(x)

39. Consider the position function r(t) = —16t? +48 which represents the height
of an object above the ground in feet at time ¢ in seconds when the object
is in free-fall near the surface of the earth.

(a) How high above the ground is the object initially (i.e., at t = 0)?
(b) How high above the ground is the object at ¢ = 1 second?
(¢) At what time ¢ does it strike the ground?(Hint: solve r(t) = 0)

40. Consider the position function r(t) = —16t>+ 16t which represents the height
of an object above the ground in feet at time ¢ in seconds.
(a) How high above the ground is the object initially (i.e., at t = 0)?
(b) How high above the ground is the object at ¢t = 1/2 second?
(c) At what time t does it strike the ground?

41. The position function r(t) = —16t2 + 96t represents the height in feet above
level ground of a golf ball that is struck with the club at time ¢t = 0.

(a) Numerical: Create a data set for the function by evaluating r(t)
at the given input values.

t |o 1 2 3 4 5 6
r(®) |

(b) Sketch a graphical representation for the data set.

(¢) About how long is the golf ball in the air?

(d) If the ball is travelling a 36 feet/sec horizontally, how far does it
travel horizontally before striking the ground?

42. The golf ball in problem 41 is now placed on level ground on the surface
of Mars and struck with the same force. The function 7(t) = —6.1t> + 96t
represents the height in feet of the golf ball.

(a) Numerical: Create a data set for the function by evaluating r(t)
at the given input values.

t |o 2 6 10 12 14
r(®) ]

(b) Sketch a graphical representation for the data set.

(c) How long is the golf ball in the air?

(d) If the ball is travelling a 36 feet/sec horizontally, how far does it
travel horizontally before striking the ground?

43. Write the circumference of a circle as a function of its radius, 7.
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44. Write the circumference of a circle as a function of its diameter, d = 2r.

45. Write the area of a circle as a function of its diameter.

46. Write the area of a right isosceles triangle as a function of the length of one
of its legs, b.

47. Given the volume of a right pyramid is one-third the area of the base times
the height, write the volume of a right-circular pyramid as a function of its
base radius 7 if the height is h = 3r.

48. Given the volume of a right pyramid is one-third the area of the base times
the height, write the volume of a right- pyramid with a square base as a
function of one of the lengths of the side of the base, z, if the height is
h = 1.5z.

49. Given the volume of the sphere of radius r is %m"?’

sphere as a function of its diameter d = 2r.

, write the volume of the

50. Given the volume of the sphere of radius 7 is %m"?’, write the volume of the

sphere as a function of time ¢ if its radius r, at time ¢ is given by

Grapher?: Use a computer or graphing calculator to evaluate the following ezx-
pressions at the given input value for x .

2 =5 3.022 — 5.2z + 2.9
1. = = 9. _
Sl @) =557 3 2 f0) = 3rE a2t
x=0.7
5. fl)= 2 | a—_12 54 fo)=a¥t2w— D
’ (@2 -1z +2) - ’ N 3z + 2?2’
r=3
13 — 4z + 322 9322 — 51z + 1.0
55.  f(x) chik o r=17,23 56. f(z)= V230 T

T 6r+32-5/x 3.602 —5.87+4.9

=263

2Grapher exercises require the use of a graphing calculator or computer to produce the graph
of a function.
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P-2: Graphs of Functions

Graphs of Functions

The graph of a function f is the set of all points (z,y) in the xy-plane that satisfy
the equation y = f (z). For example, the graph of f (z) = ao + a1z + ... + apz™
is the set of all points in the xy-plane that satisfy

y=ao+a1x+...+apz" (0.8)

For this reason, curves of the type (0.8) are often called polynomial curves.

In addition, we define the graph of f (x) over an interval [a, b] to be the section
of y = f(z) for which z is in [a,b]. Often the graph of a function f (x) over an
interval [a, b] is approximated by connecting individual points in a finite data set
by line segments. We will use the term grapher to refer to a machine such as a
computer or graphing calculator which produces such an approximation.

EXAMPLE 1 Use a grapher to visualize the graph of
f(x) =7+ 88z — 162>

over the interval [0, 5] .

Solution: Our grapher (yours may vary) begins by computing the
outputs f () at each of the 50 equally spaced inputs x in the following
set:

{0,0.1,0.2,0.3,...,4.7,4.8,4.9,5.0}
The resulting input-output pairs are plotted as points in the zy-plane

(see figure P2-1). Joining successive points with line segments then
produces an approximation of the curve y = 7+ 88z — 1622 (see figure

P2-2).
120 o Coq,, 120
& “,
100 K > 100
7 %
80 ° ° 80
© o
° o
60; N °, 60
-
af © o 40
o
-
20, 20
0 1 7, 3 4 5 0 1 a3 4 5
P2-1 P2-2
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Graphs of some common functions are shown in figure P2-3:

4 6
&
3
2
2 2 0p 1 2
-2}
1
-}
2 1 00 % 2 6
y=2a° y=a°
2 107
15 5

0.5

y=+z y=1/x

P2-3: Graphs of f (z) = 22, g(x) =23, p(z) =V, and ¢(z) = 1/x

Graphs of other functions can be obtained with a grapher. However, in doing so,
it is important to produce graphs that contain all of the features of a function,
features such as the maxima (high points), minima (low points), asymptotes, and
symmetry, which is discussed in more detail at the end of this section.

EXAMPLE 2 Use a grapher to sketch the graph of the function
fz)=a%—92% +2

Solution: The graph of f (z) = 2% — 922 + 2 over [—2,2] is given by

-107

-20]

-307

-40]

P2-4: y = 2% — 922 + 2 over [—2, 2]

However, this is not the whole story. Consider the graph on the bigger
interval [—2, 9]
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-20T

-a0t

-60T

801

-100T

P2-5: y = % — 922 + 2 over [—2,9)

Clearly, the graph has both a high point and a low point, but this was
not revealed by the graph over [—2,2].

How then do we know when we have identified all the features of a graph? The
answer to that questions is one of the reasons we study calculus. In fact, graphing
without calculus often produces misleading representations or omit key features.

Check your Reading | Are there any points on y = x> — 922 + 2 that are higher than the y-intercept?

Linear Functions

Recall that the equation of a line? with slope m which passes through a point
(21,y1) is given by y —y1 = m (z — 1) . Solving for y yields

y=y1+m(z—x1) (0.9)

Thus, (0.9) is the point-slope equation in the form of a graph of a function.
In particular, y = y1 + m (x — x1) is the graph of the function

L(z)=y1+m(z—x) (0.10)

Thus, the graph of a first degree polynomial is a straight line, and correspondingly,
first degree polynomials are known as linear functions.

EXAMPLE 3 Find the linear function whose graph is the line with
slope 2 that passes through the point (1,3).

Solution: Since the slope is m = 2 and the point is (z1,y1) = (1,3),
the equation (0.10) tells us that
L(z)=3+2(zx—1)=2x+1

The graph of the linear function L () = 2x+1 is the curve y = 2z 41,

3Unless otherwise stated, the word line is understood to mean a straight line.
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which is the line with slope 2 that passes through (1, 3).

755 0p 05 i 15 2
-

P2-6: y =2z +1

If we let x = x5 and y = y2 in (0.9), then
Y2 =y1 +m (22 — 1)
Solving for m then leads to the formula

Y=
T2 — 1

m

Often, we denote the denominator, or run, by Az = x5 — x1, where A is the Greek
capital letter delta and denotes a change in a variable. Likewise, the numerator is
often denoted Ay = yo — y1 and is called the rise, so that the slope is

_ Ay _ rise
Az run
(X2.v2) _wy=y1tm(x-xy)

-

P2-7: Slope m is ratio of rise Ay to run Az.

Since (z1,y1) and (z2,y2) are any two points on the line, it follows that the slope
is the same for any two points on the line.

EXAMPLE 4 Find the equation of the line through the points (—1,4)
and (3,2).

Solution: The slope of the line through (—1,4) and (3,2) is
2—4 -2 -1

T3--1 4 2
Thus, the linear function with slope m = —1/2 and through the point
(—1,4) is

m

y=d-t(a——1)=

1
2 27

NN

Check your Reading| Would we obtain the same result in example 4 if (2,3) is used as (x1,y1)?
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Translations of Graphs

The graph of the function f (x4 h) is the graph of the function f (z) shifted h
units to the left if A > 0 and |h| units to the right if A < 0.

y=fx)

h

P2-8: Graph of f (x) P2-9: Graph of f (x + h) for h >0

In contrast, the graph of f (x)+k is the graph of the function f (x) shifted & units
upward if & > 0 and |k| units downward if k£ < 0.

A
y=fx)ytk
Y=f(x) / \/

k
S

v
P2-10: Graph of f (x) P2-11: Graph of f (z) + k for k>0

EXAMPLE 6 Sketch the graph of g(z) = (z+2)? + 3 given the
graph of f (x) = 22 shown below:

- - 0
4 2 0 2 X 4

P2-12: Graph of f (z) = 22
Solution: To begin with, let’s notice that f (z +2) = (z + 2). Thus,
the graph of f (z + 2) is the same as the graph of f (z) = 22 shifted 2
units to the left

10

-4 -2 0p 2 X 4

P2-13: Graph of f (z+2) = (z + 2)°
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Moreover, adding 3 to f (x + 2) results in
fx4+2)+3=(x+2)°+3

Consequently, the graph of g (z) = (z + 2)2+3 is the graph of f (x + 2)
shifted 3 units upward:

10

/

4 2 0P 2 4

P2-14: Graphof g (z) = f(x +2) + 3

EXAMPLE 7 Sketch the graph of g(z) = 4 (z —2) + 1 given the
graph of f (z) = 1z shown below:

P2-15: Graph of f (z) = 3z

Solution: To begin with, let’s notice that f (z — 2) = 1 (z — 2). Thus,
the graph of f (z — 2) is the same as the graph of f (z) = 4 shifted 2
units to the right

P2-16: Graph of f (z —2) = 1 (z —2)
Moreover, adding 1 to f (x — 2) results in

f(x—2)+1:%(x—2)+1
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Consequently, the graph of g (z) = 1 (z — 2)+1s the graph of f (z — 2)
shifted 1 unit upward:

P2-17: Graph of g () =1 (z —2) + 1

Check your Reading | Why is P2-17 the same as P2-15%

Symmetry

The graph of — f () is the same as the graph of f (x) reflected through the z-axis,

y=f(x)

y=/x)
P-19: The graph of —f () versus the graph of f (z)
and the graph of f (—z) is the same as the graph of f (z) reflected about the y-axis

:\ /I =fx) TE /: Y=f=x)

P-20: Graph of f (x P-21: Graph of f (—

Functions which satisfy the 1dent1ty f(=x) = f(x) are said to be even functwns,
Because f (—z) = f (x), the graph of an even function is symmetric about the y-
axis. Correspondingly, an odd function is a function that satisfies f (—z) = —f (z) .
Thus, the graph of an odd function is symmetric about the origin.

P-22: Graph of an even function P-23: Graph of an odd function
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EXAMPLE 8 Determine if f (x) = 2* — 322 is even, odd, or neither.

Solution: To begin with, let us compute f (—z):

f(=2) = (a)* = 3(-2)? =" — 327

The result is the same as f (x), which is to say that f(—z) = f ().
Thus, f (x) = 2* — 322 is even.

P-24: Graph of f (z) = 2* — 322

Exercises:
Find the equation of the linear function whose graph satisfies the following:

Slope m = 2 passing through the point (1, 3).

Slope m = —1 passing through the point (—2,1).
Slope m = 0.5 passing through the point (0.5, —0.75)
Slope m = 0.2 passing through the point (—1.4,3.3)
Passing through the points (1,1) and (—2,2).
Passing through the points (—1,2) and (2, —3).

Passing through the points (3,5) and (4, 4).

NS ok ® N

Passing through the origin and the point (—2,—3).

Use a grapher to visualize the graphs of the following functions. In particular, look
for features such as where the function reaches its highest or lowest values or if
the function has any symmetry.

9. f(x)=1622+4r—-3 10. f(z)=23+4x—1
11. (x): zt +4x -1 12, f(z)=a8+42®+7
13. f(z)=2° -3z 4. f(z) =23 — 322
15, f(x) = cos(7x) 16.  f(xz) = sin (7x)

Sketch the graph of the function, and then sketch its translation.

17. f(x) =3z and the translation f (x + 2) over [—4, 4]

18. f(x) =1 — 2z and the translation f (z + 1) over [—4, 4]
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19. f(z) = $2? and the translation f(z) + 1 over [—4,4].

)
20. f(x) = 2% — x and the translation f(z — 2) over [—1,4].
21. f(z) =< and the translation f(z 4 2) — 1 over [—6,4].
22. f(z) = —2 + £ and the translation f(z — 1) + 2 over [—1,4].

Determine if the following functions are even, odd, or neither. Sketch their graph
to confirm your answer.

23. f(x)=2a—x 24.  f(z)=22%+3
25.  f(z) =42 + 5z 26.  f(x) =2z* + 522
27. f(z)=23+1 28.  f(z) =% — 322
29. f(x)=2224+2-3 30. f(x)=22"+423

31. Complete the following table of values for f(z) = 323 — 222

z |- 0 1 2 3
F@) ]
Then graph the (x, f (z)) pairs to obtain a graphical representation of the

function.

32. Complete the following table of values for f () = 2% — 1.

r |15 2.0 3.5 4.0 4.5

fl) |
Then graph the (z, f (z)) pairs to obtain a graphical representation of the
function.

33. The height r in feet as a function of time ¢ in seconds of an object thrown
upward from the surface of Mars is represented numerically in the table
below:

t o 2 .625 5.25 7.875 10.5
r(t) | 4 129.97 171.86  129.70 4475

(a) How high above the surface is the object when it begins its motion?

(b) How high above the surface is the object at t = 7.875 seconds after
the object began moving?

(¢) Graph the (t,r) pairs. Given that r as a function of ¢t must have a
graph that is a parabola, why can we conclude that 129.70 feet is
the maximum altitude of the object.

34. The function r(t) = —16t>+4 describes the height in feet at time ¢ in seconds
of an object rolling off of a table. We set t = 0 to be the instant the object
leaves the table’s edge.

(a) Numerical: Create a data set for the function by completing the
table.

t |o 0.1 0.2 0.3 0.4 0.5
r(®) ]
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(b) How far has the object fallen after 0.1 seconds ?
(c) How long does it take for the object to strike the floor?

35. The population P(t) of a certain small town on January 1 of year ¢ is given
in the table below.

t ] 1990 1992 1994 1996 1998 2000
P(t) | 1031 1081 1111 1186 1286 1300

Graph the (t, P) pairs to obtain a graphical representation of the function.
What is significant about the graph of P (t)?

36. A 3.25 inch tall soup can is filled with water and a small hole is punched in
the bottom of the can allowing the water to drain out. The height y in inches
of the water in the can at time ¢ in minutes since water began draining is
modeled by

y(t) = 0.08t> — 1.08t + 3.25

(a) How high is the water in the can one minute after it begins to
drain?
(b) How long until the can is empty?

(¢) Sketch the graph of the function. For what values of ¢ is the model
valid?

37. Suppose that the price p which can be charged per shirt if z number of shirts
are to be sold is modeled by the demand function

p(x) = —0.007x + 32

(a) What is the price charged per shirt if we can sell x = 100 shirts?
(b) How many shirts must we sell in order to charge $25.00 per shirt?

(¢) Sketch the graph of the demand function (it is linear). Why would
we not want to use the model if more than 4571 shirts are to be
sold?

38. If p(x) = —0.007x + 32 is the price p which can be charged from the sale
of x numbers of shirts, then the revenue R from the sale of x shirts is

R(z)=ap(z).
(a) What is R(z) for the given price function p(x)?
(b) What is the revenue received when 1500 shirts are sold?

(¢) Sketch the graph of the demand function. What is significant about
its graph?

39. The unit circle has an equation of 22 + 32 = 1. What function is the upper
half of the unit circle the graph of? Is it even or odd?

40. Translate the parabola y = 22 by h units to the right and k units up. What is
the resulting curve? What is the equation of the curve and what is significant
about the point (h, k)?

41. Suppose that f(z) is even and g (z) is odd. What type of symmetry do the
following functions have, if any?

(a)  h(x)=f(x)g () (b) h(z)=f(z) = [g())
h(z) =af () —g(x)
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42. Show that if f(I—x) = f(x), then y = f(x) is symmetric about the line
x =1

Supplemental Review:

In the next few paragraphs, we look ahead at the topics from precalculus that will
be important in the next chapter. To begin with, a function f (z) is piecewise
defined if there are non-overlapping intervals (a,b) and (¢, d) such that

| A@) if a<x<d
f(x){f;(x) if c<zxz<d

for functions fi (z) and fa (x). That is, if a < z < b, then f(z) = f1 (z) and if
¢ <x <d,then f(x) = fo(z). It follows that the graph of f (x) is y = f1 (z) over
(a,b) and y = fo (x) over (¢, d).

=) Y

a booc d
L1: Graph of f (z)

Moreover, the intervals used to define f (z) need not be open.

EXAMPLE 1 Evaluate f (—1), f (1), and f (2), and sketch the graph
of the function

_J2x4+3 if 2<=z<1
f(x)_{x21 if 1<x<3

Solution: Since —1 is in [—2,1), we use 2z + 3 in evaluating f (—1):
f(-1)=2(-1)+3=1

Since 1 and 2 are both in [1,3], we use 22 — 1 to evaluate f (1) and
f(2):

f(Hh=12-1=0, f(2)=2>-1=3
Moreover, the graph of f(x) over [—2,3] is the union of the curve
y = 2x + 3 over [—2,1) and the curve y = 22 — 1 over [1,3].

L2: Graph of f (x)
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More than two intervals may be used to define a piecewise-defined function. For
example,
1 if 0<e<?2
s(@y=<¢ -2 if 2<zx<3
1.5 if 3<xz<5

is a piecewise-defined function using three non-overlapping intervals in its defi-
nition. Moreover, when each of the functions used to define s(x) is a constant
function, then we say that s () is a simple function. Simple functions will be used
extensively in later chapters.

A parameter is a constant whose value is not specified. They are useful for
defining families of curves. For example, the family of circles with radius R cen-
tered at the origin all have equations of the form

2? +y? = R? (0.11)

The quantity R in (0.11) is a parameter—that is, it is constant but its value will
not be specified until equation (0.11) is actually used. Likewise, parameters can
be used to define families of functions.

EXAMPLE 2 Sketch the graphs of the family of functions
fla)=2"+k

when k£ = —1,0,1,2.

Solution: If k = —1, then f(z) = 2% — 1, whose graph has a y-

intercept of —1. If k = 0, then f (z) = 22, whose graph has a y-intercept
of 0. Likewise, k = 1,2 lead to y-intercepts of 1,2, respectively:

T . )

2 -Qo — 1 2

L3: Graphs of functions f (z) = % + k when k = —1,0,1,2

We will also use parameters in chapter 1. For example, we will work with the
difference quotient of a function, which is of the form

flzt+h) - f(x)
h

In particular, we will need to be able to evaluate and simplify a difference quotient.

EXAMPLE 3 Simplify the difference quotient of f (z) = 22.
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Solution: To begin with, f (z + h) = (z+h)* = 22 4 2zh + h2, so

that
flath) —f(x) _ (2 +20h+1?) — (a?)
B h
B 2zh + h?
B h
~ h(2x+h)
N h
= 2x+4+h, h#0
Exercises:
Evaluate the piecewise-defined functions at the inputs x = —1,0,1, and then
sketch their graphs.
_Jx+2 if <0 Jx if <0
L f(x){xz—?) if >0 2. f(x){—x if >0
[ 2?24+32 if —2<wx<1 [ 2? if —2<x2<0
3. f(’“"){5 if 1<a<3 LT@=00 i 0<a<2
L 25e<0 Ui izach
5 s(z)=< 3 if 0<z<2 6. s(x)= ) <
9 if 2<x<4d 5 if 1<zx<2
- 3 if 2<z<5

Sketch the graphs of the families of functions given below for the indicated values
of the parameter.

7. f@)=kr+2 k=-1,0,1 8 f(x)=05x—k, k=-1,0,1

9. f(x)=ka? k=-1,1,2 10. f(z)=(z—k)*, k=-1,0,1

1. f(x)=a3+k k=-1,0,1 12. f(2)=k

Evaluate and simplify the difference quotient

f(x+h) - f()
h

for each of the following functions: (Hint: on #18 you will want to rationalize the
numerator).

13. f(z)=5x-3 14. f(z)=0.7z+35
15. f(z)=222-1 16. f(z)=2>+22

7. f(x):% 18, f(z)= /7
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1. LIMITS, TANGENTS, AND RATES
OF CHANGE

We experience our world through our five senses, and yet there is more to our
world than our five senses can reveal. We can extend our five senses with tools
such as microscopes and telescopes, and yet there are many things that still remain
hidden from us. We cannot see electricity. We cannot hear the wind blowing on
Mars. We cannot taste, smell or feel the building blocks of matter. Even with the
most advanced tools known to man, our five senses simply cannot reveal all there
is to know about world around us.

We need a sixth sense, one which will allow us to see inside an atom or hear
the pitch of a radio wave. Since the late seventeenth century, that sixth sense has
been Calculus. No instrument in the world will allow us to see a planet outside
of our solar system, and yet we know of several such planets. Their presence was
inferred using Calculus. No extension of our five senses will allow us to explore the
twists and turns in our world economy, but with our sixth sense—Calculus—we
can make forecasts and predict recessions. We cannot see the wind. But with
Calculus, we can describe it, model it and make predictions as to where it is going
and where it has been.

In this book, we learn to use the sixth sense of Calculus to investigate our
world. We explore the role of Calculus in modern science and mathematics, and
we revisit the discoveries of the past to see how Calculus has grown over the
centuries. This chapter begins that exploration by laying the foundation upon
which subsequent chapters will be built.

1.1 Tangent Lines

Introduction to Calculus

We have known calculus all of our lives. We use it daily to make sense of our world.
When we measure short distances on the earth’s surface with straight lines—
yardsticks, tape measures, etc.—then we are using calculus. When we ignore the
roundness of the earth with phrases like “a straight road” and “a flat field,” then
again we are using calculus. THE EARTH IS FLAT! ...or so we imagine when the
distances being considered are small. This simple idea is the essence of Calculus.

In fact, the concepts underlying calculus have been used throughout history.
Since antiquity, architects have used collections of short line segments to imply
more complicated curves, such as when bricks and blocks with perfectly straight
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sides are used to construct semicircular arches.

Straight
Lines

1-1: An arch is often formed by short line segments

That is, since antiquity, people have approximated small sections of curves with
straight lines.

A Fundamental Concept in Calculus
Some curves can be divided into sections in which each
section is nearly the same as a segment of a straight line

In calculus, curves are approximated by tangent lines, where a line [ is tangent
to a curve at the point of tangency P if the line and the curve are “practically the
same” for small sections of the curve containing P.

1-2: The line [ is tangent to the curve at point P.

Indeed, the Greek mathematician Euclid based much of his geometry on the fact
that a tangent line to a circle is perpendicular to the radius—i.e., to the line
through the origin and the point of tangency.

“,
%,
Ze

& ¢
1-3: Tangent Line to a Circle

Notice again that the tangent line to a circle is “practically the same” as a small
section of the circle which contains the point of tangency.

Check your Reading|What are some examples of a curve on the earth’s surface being considered

“practically the same” as a tangent line?
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Tangent Lines to Polynomials

Tangent lines are related to the fact that when h is close to 0, then higher powers
like A2, h3, and so on are much, much closer to 0. For example, if h = 0.001, then

h? = 0.000001
which is 1000 times smaller than h. Likewise, if A = 0.0001, then
h3 = 0.000000000001

which is much, much closer to 0 than h itself is

Neglible Powers of h
If h is sufficiently close to 0, then h2, h3, h*, and so on are
much, much closer to 0 than A is and thus can often be ignored.

If f () is a polynomial, which is a function of the form
f(z) =ap+ a1z +agr’ + ... 4 ayz”

then this concept can be used to calculate a tangent line to the curve y = f (x) at
a given input x = p.

To do so, we let © = p+h, where h is assumed to be close to 0. Thus, f (p + h)
as a function of h is a polynomial of the form

fp+h)=ap+ah + “higher powers of h” (1.1)

Since the higher powers are negligible, y = f (p + h) is practically the same as
y = ag + arh. Finally, © = p + h implies that h = x — p, so that y = ag + a1h
becomes

y=ao+ai(z—p)

Near the point of tangency (p, f (p)) , the polynomial curve y = f (x) is practically
the same as the tangent line y = ag + a1 (z — p) .

1-4: y = f (x) is almost a straight line at (p, f (p))

Let’s look at some examples.

EXAMPLE 1 Find the equation of the tangent line to y = 2 when
p=1

Solution: Since p = 1, we let x = 1+ h to obtain y = (14 h)z.
Expanding the result leads to

y=(1+h)?>=1+2n+n>
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Since h? is negligible, the tangent line is y = 1 + 2h, which because
h = x — 1 becomes

y=14+2(x—-1)=2zx-1

Thus, y = 2z — 1 is the tangent line to y = 22 at (1,1), as is shown in
figure 1-5:

4 -
i e
1 99//// - 1 X 2 3
2
1-5: y = 22 versus y = 2z — 1

If a; =0 in (1.1), then the tangent line is horizontal.

EXAMPLE 2 Find the equation of the tangent line to y = 2% +2x+3
when p = —1.

Solution: Since p = —1, we let x = —1 + h to obtain

y = (~1+h)>+2(-1+h)+3
= 1-2h+h?>—242h+3
2 4 h?

That is, y = 2 + h?, but since h? is negligible, the tangent line is
simply y = 2, which is a horizontal line (slope is 0). The parabola and
its tangent line are shown in figure 1-6:

-25 -2 -15 X -1 -0.5 ® 0.5

1-6: y = 2% + 22 + 3 versus y = 2

Check your Reading | Why might horizontal tangent lines be important? (See figure 1-6 for help)
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More with Tangent Lines

In summary, to find the equation of the tangent line to the graph of an n*" degree
polynomial when z = p, we use the following steps:

1. Let x = p+ h for h close to 0 and expand to obtain a polynomial in h of the
form
y=ao+ah+ah®+...+a,h"
2. Since h?, k3, h*, and so on are negligible when h is close to 0, the polynomial
is nearly the same as
y=ag+arh
for x close to p.

3. Since x = p+ h implies that h = x — p, the equation of the tangent line to
y = f(x) when x =pis
y=ao+a(z—p)
It follows that when z is close to p, which is when A is close to 0, then the tangent
line is a good approximation of the curve itself.

y=£(x)
‘/y=ao+al(x-p)

) -

///
px

1-7: Tangent is a good approximation to curve when z is close to p

EXAMPLE 3 Find the equation of the tangent line to y = f () at
p =2 when f(x) =23 — 227

Solution: Substituting x = 2 + h and expanding leads to
y=(2+h)®—2(2+h)=4410nh + 6h>+h>

Since 6h% 4 h?3 is negligible for h close to 0, the curves is practically
the same as

y=4+410h
Since = 2+ h implies h = & — 2, the equation of the tangent line is
y=4+10(x —2) =10z — 16
That is, y = 10z — 16 is tangent to y = 2% — 22 at (2,4).
20

15

10

-10°

1-8: y = 10z — 16 is tangent to y = 23 — 2z at (2,4)
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In particular, the tangent line is the line that becomes ever more indistinguishable
from the curve as we choose shorter and shorter sections containing the point of
tangency. A tangent line may even cross the curve, just as long as it does so by
becoming arbitrarily close to the curve itself.

EXAMPLE 4 Find the equation of the tangent line to y = x* + 323 —
3z + 2 when p = 0. Then graph both the curve and its tangent line
over the intervals [—2,2], [-1,1], [-0.5,0.5] and [—0.2,0.2].

Solution: Since z = 0 + h, the curve is of the form

linear part higher powers of h
P — ,_/\_Z
y= 2-3h + 3n® +h

Since x = h, the tangent to the curve when p = 0 is y = 2— 3z. Graphs
of the curve and the line are shown over [—2,2], [-1,1], [-0.5,0.5] and
[—0.2,0.2] in figure 1-8a through 1-8d, respectively.

10 - 5
8 h 4
. /N
P \/
1 J
B .
K 0
5 T o5 3 1 05 _10 95 1
21
-2
-4
-3
1-9a 1-9b
35 26
3 2.4
25 22
15 18
1 16
0.5 1.4
04 02 0 0z, 04 02 01 0 o 02
1-9¢ 1-9d

As the intervals become shorter and shorter, the curve becomes more
and more like the straight line. Thus, the line is tangent to the curve,
even though it crosses over the curve itself.

Check your Reading|0an a line be tangent to a curve WITHOUT EVER INTERSECTING THE
CURVE?
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Applications of the Tangent Concept

In an xy-coordinate system, a “rise” is a change in the y coordinate and a “run” is
a change in the z-coordinate. The slope of a line is a ratio of a “rise” to a “run”,
which means that the slope of the tangent line a; satisfies

rise  change in y

QaqQ =—=——

run  change in x

That is, the slope a; is the rate of change of the tangent line. Since y = f () is
nearly the same as its tangent line at a point of tangency (p, f (p)), the rate of
change of the function itself over a short interval [p, p + h| is practically the same
as a1. That is, the slope of the tangent line at x = p is the rate of change of the
function at x = p.

For example, if a ball is thrown upward from an initial height of 7 feet with an
initial velocity of 88 feet per second, then the height r (¢) of the ball at time ¢ is
given by

7 (t) =7+ 88t — 16t (1.2)

Over a short period of time, the motion of the ball is practically a straight line
with slope a;.

y=ayta,(x-p)

120+

100+

80
motion is practically

607 linear in here

407

20+

o 1 p 2 ¢ 3 4 5

1-10: Over short time intervals, motion is practically linear with slope 7’ (p) .

Since the slope is the rate of change of the tangent line, a; is the rate of change
of the ball at p seconds, which is also known as the wvelocity of the ball. That is,
the slope of the tangent line tells us about how fast the ball is traveling at time
t = p seconds.

EXAMPLE 5 1If r(t) = 7+ 88t — 162 is the height in feet of a ball
at time ¢ in seconds, then how fast is the ball traveling at time p = 0
seconds? How fast at p = 1 seconds?

Solution: If p =0, then we let t = 0+ h and

7 (0+ h) =7+ 88h — 16A*

Since h? is negligible, we obtain y = 7 + 88h, so that the tangent line
is
y=7+88(t—0)

which has a slope of 88. Thus, at p = 0, the ball has a velocity of 88
feet per second.

TANGENT LINES 33



If p=1, then welet t =1+ h and
r(14h) =7+83(1+h)—16(1+h)* =79+ 56h — 16h>

Since h? is negligible, we obtain y = 79 + 56h, so that the tangent line
is
y=T9+56(t—1)

which has a slope of 56. Thus, at p = 1 seconds, the ball has a velocity
of 56 feet per second.

Rates of change are not the only application of tangent lines. For example, the
law of reflection says that if a ray of light reflects off of a flat surface, the angle of
incidence is equal to the angle of reflection. But what is the direction of a reflected
ray off of a curved surface?

1-11: Cross-sections of a flat and a curved surface

To answer that question, we zoom until the curve formed by the cross section of
the reflecting surface can be replaced by its tangent line.

1-12: Ray of light reflected off of tangent line

We then compute the angle of reflection off of the flat tangent rather than the
curved surface.

Exercises
Find the tangent line to y = f (x) and identify f' (p) for the given value of p.
Graph both the curve and the line to verify tangency.

1. f(z) =322 p=1 2. f(x)=—2a? p=1

3. f(z)=22-1, p=1 4. f(x)=2>+1, p=

5. f(x)=ax+32%, p=2 6. f(zr)=22+32, p=

7. f(x)=3z+2, p= 8 f(r)=3z+2, p=2

9. f(x)=1+3z—22% p=1 10. f(x)=2-3z+2% p=2
1. f(r)=2>+3,p=-2 12. f(x)=234+3z+1,p=2
13. f(z)=a% -3z, p= 4. fx)=z(x-1)>% p=1

Grapher!: Find the tangent line when p = 0, and then graph both the curve and
the line over the intervals [—2,2], [-1,1], [-0.5,0.5] and [—0.1,0.1]. On which of

LGrapher exercises require the use of a graphing calculator or computer to produce the graph
of a function.
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the intervals would you say that the curve and the line are indistinguishable?

15. y=1+ 3z + 22 16. y=2-3x+a?
17.  y =z + 3x2 18. y=(2z+1)

19. y=0B+z)2—-2) 20. y=0CB+2x)(2—-2)
21. y==xz(1+2?) 22. y=1+z+2*
23, y=1+a3+2° 24, y=22>+zx+1

Each of the following functions represents the height v (t) in feet of an object at
time t in seconds. Find the velocity of the object at the given time p by finding the
slope of the tangent line to the graph of the curve.

25. r(t)=64—16t2atp=1 sec 26. r(t) =64 —16t>at p =0 sec
27.  r(t) =96t — 16t> at p =0 sec 28. 1 (t) =96t — 16t> at p=1 sec
29. r(t)=64+4t—16t2atp=1sec 30. r(t)=32+12t—16t2atp=1

31. Grapher: Graph the following lines along with the curve

fl@)=vid+z+2a?

on the intervals [—2,2], [-1,1], [-0.5,0.5] and [—0.1,0.1]. Which of the
lines is tangent to the curve when p = 07

(a) y=5+2 (b)) y=35+2 (c) y=7+2

32. Grapher: Graph the following lines along with the curve

f(x)zm

on the intervals [-2,2], [—1,1], [-0.5,0.5] and [—0.1,0.1]. Which of the
lines is tangent to the curve when p = 07

(@) y=2+2 (b) y=2+2 (c) y=%+2

33. Grapher: In (a)-(c), only one of the lines is tangent to the given curve
when p = 0. Graph both on the intervals [—2,2], [-1,1], [-0.5,0.5] and
[—0.1,0.1]. In which is the line tangent to the given curve when p = 07 (Be
sure to use radians)

(a) y=cos(z), y==
) y=(1+0)"°, y=1+z

y=vi+z, y=1+2x/2

34. Find the tangent linesto y =22 —2x+3atp=0,p=1,p=2, and p= 3.
Then graph only the tangent lines on the interval [—1,4]. What information
might you infer about y = 22 — 2z + 3 from these 4 tangent lines?

35. Find the tangent lines to the following curves when p = 0. The letters k
and a are called parameters and should be treated as if they have a fixed
numerical value. For example, if

y=1+az + z*

then the tangent line when p=0is y =1 + ax.
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36.

37.

38.

T+ )2

(a
( )

)
b)
(¢)
(d)

Show that in terms of the parameter p, the set of all tangent lines to y = 22
at x = p are given by y = 2px — p?.

(
(z +
(1+

(1- kx) (14 kz)

,_.a

Y
Y
Y
Y

There are many myths and misunderstandings surrounding tangent lines.
One of the most prevalent is that if a line intersects a curve at only one
point, then it is a tangent line. The line in figure 1-13 intersects the curve
at only one point. Why would we not consider this line to be a tangent line
to the curve?

1-13: Is this a tangent line?

A related myth is that a tangent line cannot intersect a curve more than
once. However, the line in figure 1-14 is tangent to the curve at x = 1,and
yet it crosses the curve more than once. Explain why we would nonetheless
consider it to be a tangent line to the curve at x = 1.

1-14: Is this a tangent line?

39. One last myth is that a line must be tangent to a curve at only one point.

However, in figure 1-15, the curve in black is tangent to the red line for all
xin [—1,1].

[SNN
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1-15: Is this a tangent line?

What, then, does it mean for a line to be tangent to a curve, and how do we
see that concept illustrated in this example?

40. Computer Algebra System. If you have access to a computer algebra
system, use it to find the tangent lines to the given curves at the given point.
Then graph both the curve and the tangent line.

(a) y=1—-2)(1—-22)(1 —3z) whenp=1
(b) y=2(x+1)(z+2)(x+3) when p =2
() y=22(x—1)"" whenp=1
(d)y=1+2z(1+x(1+z)) whenp=3

41. Write to Learn: The cross section of a satellite dish is a parabola with an
equation of y = 22 4+ x + 4. If a signal received from space travels down the
positive y-axis, what will its angle of reflection off of the mirror be. Write a
short essay explaining your results and how they were obtained.

42. Write to Learn: Suppose that a billiard table has curved sides that reflect
billiard balls so that the angle of incidence is equal to the angle of reflection.

Top of a Billiard Table
with Curved Sides

=~ =

1-16: An Unsual Pool Table

Write a short essay in which you identify and explain mathematically which
of the six pockets is the “easiest” to hit a ball into (in particular, be sure to
use tangent lines in your explanation).

1.2 The Limit Concept

The Limit Process

Unfortunately, we cannot build a mathematical theory on the vague notion that
“if h is close enough to 0, then h? and higher powers can be ignored.” Instead, we
base calculus on the more concrete and dynamic idea that “If h gets closer and
closer to 0, then h? and higher powers become more and more negligible.” The
concept of h getting closer and closer to 0 is known as the limit concept in calculus
and is the foundation on which the theory of calculus is built.

Let’s be more specific. The symbol lim, which is interpreted “the limit as x
r—p

approaches p,” denotes the act of letting x become closer and closer to p. Thus,
the equation
lim f(x) =1L (1.3)

T—p
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means that “if z approaches p and x # p, then f (z) approaches L.” The require-
x approaching p ment x # p implies that x approaches p without ever being equal to p.
means T % p. To illustrate (1.3), let us suppose a 10 foot long ladder is leaning against a wall
and that its base is pushed toward the wall. If x denotes the distance from the
base of the ladder to the wall, then the Pythagorean theorem says that the height
of the end of the ladder touching the wall is v/100 — z2.

f

_ 2
y—\llOO X
—»
X »

2-1: Ladder moving up a wall

As the base of the ladder moves to the wall, the other end of the ladder moves up
the wall.

10 10 10
[100 - 2 ~/100 - x2
100 - x2
x> x>

xX»

2-2: Base of Ladder moving toward wall

Thus, as x approaches 0, the end of the ladder approaches its full height of 10 feet,

which we write as
lin% v/100 — 22 = 10 (1.4)
€r—

Let’s verify (1.4) numerically by examining a data set in which the inputs x are
approaching 0 from both sides.

EXAMPLE 1 Estimate the value of the limit

lirr%) 1/100 — z2

r—

Solution: To do so, we complete a table in which the inputs x are
approaching 0. In particular, we choose negative and positive values
of = that are becoming successively closer to 0:

x | 05 -02 -01 — 0 « 01 02 05
V100 — 22 | — 777

That is, we compute \/100 —(=0.1)%, \/100 —(=0.01)?, and so on.
The result is the numerical representation below:

x | 05 -02 -01 — 0 « 0.1 02 05
V100 — 22 [ 9.987 9.998 9.9995 — 7?7 «— 9.9995 0.998 9.987

As the x-values approach 0 from either side, the outputs /100 — z2
seem to be approaching 10. Thus, the table leads us to the estimate

m /100 — 22 =10

li
x—0
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Check your Reading | How is the Pythagorean theorem used in figure 3-19

Properties of Limits

When limits of functions exist and and are not equal to 0, then limits of arith-
metic combinations (sums, differences, products, quotients) follow logically. For
example, suppose that

lim f(z) =L and lim g (z) = K

T—p T—p
Then for x close to p, the function f (x) is close to L and the function g (x) is close
to K, so it follows immediately that f (x) 4+ g (x) is close to the number L + K.

That is,
lim [f (z)+g(x)) =L+ K

T—p

Theorem 2.1 further illustrates that arithmetic with non-zero limits is straightfor-
ward.

Theorem 2.1: If lim f (z) and lim g (x) both exist, then

T—p T—p
b (7 @)+ (0)] = lim £ )+ lim g ()
il (7 () g ()] = i () — lim g (x)
idi. ill)?(}) [kf(x)] = kiligf (2), where k is a constant
iv. lim [f (z) - g (z)] = [lim f (ac)} . [lim g (ac)}
r—p T—p T—p
lim f (z)
. f(l') _x—p .
v. ill)?(}) @) Tmg @) when ilg})g () #£0

T—p

Proofs of some of these properties will be supplied in the next section.

EXAMPLE 2 Suppose that ,l.ini f(x) =10 and ,lirrig (x) = 3. What
is the value of the limit
) 2 @)
a—4 f () — 29 (x)

Solution: Since the denominator does not approach 0, properties (i),
(i), (iii), and (v) imply

lim f(z) +29 () _ iﬂf(x) +2i1gig(x)
a—4 f(x) —2¢ (x) lim f () —2 lim g (@)

Using the given values of the limits thus implies that

f(x)+2g(x) 10+2-3 16
P f(2) —29(x) 10-2-3 4

=4
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Moreover, suppose that f (x) and ¢ (x) are polynomials. If g (p) # 0, then it can
be shown that

@ 9

We say that the function ﬁ is continuous at * = p when (1.5) holds, and we

@) _f®) ws)

say that we are using continuity to evaluate a limit when we use (1.5).

EXAMPLE 3 Use continuity to evaluate the limit

22 —3x+2
lim ——— =
z—1 2241

Solution: Let g(z) = 22 + 1. Then g (1) = 2. Thus, (1.5) applies and

22 —=3x4+42 12-3-142 0
lim = ===0
x—1 1}2+1 12+1 5}

However, when limits of denominators are equal to 0, then limit evaluation be-
comes more complicated. For example, if g (p) approaches 0 but f (p) approaches
a number L # 0, then the graph of the function % has a vertical asymptote at
T =Dp.

|

2-3: x = p is a vertical asymptote

cannot approach a number L as

If f; Ei; has a vertical asymptote x = p, then f; (fg

x approaches p, and consequently, we say that
lim I @)

does not exist
z=p g (z)

That is, the quotient is not getting close to any given number.

EXAMPLE 4 Discuss the limit

Solution: As x gets closer to 0, the quantity 22 also gets closer to 0.
As a result, the function I—IQ becomes arbitrarily large, as is shown in
the numerical representation below:

| =01 —0.01 —0.001 — 0 < 0001 0.01 0.1

T
- | 100 10,000 1,000,000 — ??? « 1,000,000 10,000 100
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Thus, y = 712 has a vertical asymptote of x = 0

-4 -2 00 2 X 4

2-4: The graph of f (z) = 25 has a vertical asymptote of z =0

Consequently, lin%] J—IQ does not exist.
r—

Check your Reading |H0w does the following data set relate to example 37

z |09 0.99 0.999 — 1 < 1.001 1.01 1.1
%‘-—2 | 0.061 0.0051 0.0005 — 7?7 «— —0.0005 —0.0049 —0.041
0

Limits of the Form 3

Limits of the Here is a situation that is very important in calculus. It is possible that both f (z)
form % must and g (x) approach 0 as x approaches p. In that case, we say that the limit

be simplified

before they can lim f (@)

be analyzed. a—p g ()

is of the form %. A limit of the form % may exist, or it may not. However, it must
be simplified before it can be analyzed.

EXAMPLE 5 Show that the following limit is of the form % and then
evaluate it:
. 2 —4
o222 32

Solution: At 2 = —2, the numerator becomes (—2)° — 4 = 0 and
the denominator becomes (—2)* — 2 — 2 = 0. Thus, the limit is of the
form % and must be reduced to a non—% form. Since x approaching —2
implies that x # —2, we can factor and cancel to obtain

2?2 —4 (x—2)(z+2) .ox—2

lim ——— = lim —————~< =
P e - z—lglz(x—l)(erQ) oo — 1

Since  — 1 # 0 when z = —2, we can now evaluate using continuity:

i -4 . x-2 —2-2 4
z——2x2 4+ 1 —2 N

1 —
ey 1 —2-1 3

EXAMPLE 6 Evaluate the limit

41
im ————
e—-122+2x+1
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Solution: Substituting x = —1 into the numerator and into the de-

nominator shows us that (1.6) is of the form §. As a result, we must
reduce (1.6) to a non-g form. Since 2® +1 = (z + 1) (2> —z + 1), we
have
. 3+ 1 . (x+1)(x27x+1) . 22 —z+1
lim ————— = lim 5 = lim ———
172 +2x+1 r——1 (J} + 1) 1 z+1
The graph of f(z) = %"—1 has a vertical asymptote at z = —1,

which implies that

23 4+1

im ———  does not exist
e——122 4 2r +1

Check your Reading | Does every limit of the form % exist?

Graphical Estimation of Limits

Finally, limits of the form % can also be estimated graphically by zooming centered
at a given point p to reveal outputs of f (x) as they get closer and closer to p.

EXAMPLE 7 Use zooming to estimate the limit

o3+ 32 —br+1
lim
r—1 r—1
Solution: Notice first that both the denominator and the numerator

reduce to 0 when x = 1, thus implying that the limit is of the form %.
However, if we define

3+ 32 —bx+1
z—1

f(x) =

then we can produce a sequence of zooms centered at = = 1.

4,02
10 5
8 45 401

4
6

3.5 4
4

3
2 25 3.99
0~ 05 1 15 2 2

0607 08 09 1 11 12 398 09980999 ] 1.001 1002

2-5 2-6 2-7

In each plot in the sequence of zooms, the graph of f(x) seems to
imply an output of 4 at an input of 1, even though f (x) is not defined
at 1. Moreover, the smaller the interval on the z-axis, the closer the
range of the y-axis is to being a single output of 4. Thus, we are lead
to the estimate
. 234322 —br+1
lim =
r—1 €r — 1

4 (1.7)
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However, no matter what the graphs seem to imply, the function f (z) in example
7 does not produce an output of 4 when the input is 1. Instead, we are seeing
that f (z) is approaching 4 as x approaches 1 with = # 1, which means that
the fact that the graphs are not defined at at point is not relevant.

Exercises:

Given that lirré f(x)=2and limsg (x) =7, use the properties of limits to evaluate
r— r—

the following:

Lo lim [f (2) +4g(2)] 2. lim [f (z) g (z)]

r—5 r—5
S @)—g(@) , 3
MR FeErIo R T

Evaluate the following limits. Identify all limits which are of the form %. If the
limit does not exist, write d.n.e.

5. lim (22 + 3z —4) 6. lim (23 + 32°)
r—2 r—1
o 2?43 +2 2241
b wl_l’n—ll x? -1 8. x1—1>r(1)15 x—0.5
9 m 6x2 + 152 + 6 10 lim 6x2 + 152+ 6
o222 22452 +6 C2—2 2245046
Tz +1 ooz —4
1. x—l»n—ll 241 12. il—% z—2
x2—4 2 —Tx
13. lm ———— 14. im ———
2ob 72 —dz + 4 2t 22 — 14z + 49
ox®—32 oozt —81
ey 10 I e
x* — 16 3 — 25z
17. li _ 8. lim ————
v 2 Ta2 1 12 +08 422 — 232 + 15
2 2 2 _ 2
19.  lim = 20.  lim =%
;c—»x/ix*\/ﬁ x—»—\/§1'+\/§
4 4 3 _
21, lim_ > 92, lim L=
2—y/3 T2 — 2 —2 2 —4

Numerical: Use a numerical representation of the function to estimate the given
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limit. Then confirm your estimate both analytically and graphically.

5o o Gy
ot M
7 3;3:28 28, lmy gf3:186
20, lim % 30, liny 7;/5\/5

31. Suppose that two 9’ long ladders form the sides of an isosceles triangle whose
center is moving up the y-axis as the bases move toward the y-axis.

2-8

(a) What is the height h (z) of the vertex on the y-axis as a function
of ?
(b) What is the value of the limit

lim A (x)

x—0

and what is the significance of the result?
(¢c) What is the area A (z) of the triangle as a function of x?
(d) What is the value of the limit

A

and what is the significance of the result?

32. Consider the funnel and tank apparatus as shown in figure 2-9.

3v

2-9: A funnel tank system
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33.

34.

35.

36.

37.

38.

The funnel is a right circular cone with radius 2 feet and height 3 feet. The
tank is a right circular cylinder with radius 2 feet and height 1 foot. The
volume of a right circular cone of radius r and height zis V = %m"zx and the
volume of a right circular cylinder with radius r and height h is V = 7r2h .
A fluid is flowing from the funnel into the tank.

(a) Suppose h is the depth of fluid in the tank and x is the depth of
the fluid in the funnel. Write h as a function of z. (Volume in tank
= 47 — Volume in funnel)

(b) Compute and give the limit interpretation of lim1 f(x).
(c) If the funnel is initially half-full and the tank initially empty find
h = f(z) , where h is the depth of the fluid in the tank and z is the

depth of the fluid in the funnel. (Volume in tank = 27— Volume
in funnel)

(d) Compute and give the limit interpretation of 1in}) f(x)
xr—

Explore the following limit numerically and graphically:

g (2 2)? — (h —2)?
h—0 h

Then evaluate the limit analytically to obtain the same result with all three
methods.

Explore the following limit numerically and graphically:

lim Vi+h—+v1—-h

h—0 h

Then evaluate the limit analytically to obtain the same result with all three
methods.

Show that if f (x) = 22 + bx + ¢ has real roots r; and 3, then

22 +br+c
lim —————— =1r; — 19
T r—T1

Show that if f (z) = (z —r) g (z) where g (x) is a polynomial and g (r) # 0,

then
lim M

x—rxr—7Tr

=g(r)

Computer Algebra System: Use either synthetic division or a computer
algebra system to simplify

23 +322 -5z +1
r—1

and then use the result to evaluate the limit

o3 +322—-bx+1
lim
r—1 r—1

Computer Algebra System:Use either synthetic division or a computer
algebra system to simplify
22% — 5% +5r — 6
Tz —2
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and then use the result to evaluate the limit

. 22 — 522+ 52 —6
lim
z—2 T —2

39. Evaluate the limits

a4 . x4z —6 o 222 42x—10
lim , -~ — and lim &—/———— —
z—2 T — 2 x—2 x— 2 x—2 x—2

How is the last limit related to the other two?
40. Explore the limits

2 _ g 2 _
im Z 8 i T8 d lim (a2 4+ 52+ 6)
z—2 T — 2 r—2 x—2 r—2

How is the last limit related to the other two?

41. Write to Learn: Consider that the limits

lim v and lim
I*)flx—i_l z——1x+1

do not exist, but that the limit

I v, 1 1
im | —+—— | =
z——1\z+1 x+1

Write a short essay using this example to explain why

lim [f (2) + g (2)] = L

T—p

does not necessarily imply that

lim f(z) + limg(x) =L

T—p T—p

42. Write to Learn: Consider that

x—1 2 +1
im———=0 and lim does not exist
z—1 x4 + 2 z—1 32 —1

i (21 41 1
a—1i\z4+2 22-1) 3

but that the limit

Write a short essay using this example to explain why

lim [f (z) g ()] = L

T—p

does not necessarily imply that

ng@)@ggm>L
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1.3 Definition of the Limit

Target Intervals

As we saw in the last section, limits can be explored numerically, graphically, and
analytically. For example, if we let

3+ 322 —bx+1
z—1

f(x) =

then we can zoom centered at x = 1 to produce a sequence of zooms

4.02
10 5
8 45 4.01
4
6
3.5 4
4
3
2 25 3.99
0”05 1 15 2 2
0607 08 09 1 11 12 398 0.998 0.999 ] 1.001 1.002

3-1: Zooming centered on 1

Because the graph of f(x) seems to imply an output of 4 at an input of 1, we
estimate that

. 234322 —-br+1
lim =
r—1 r—1
even though f (x) is not defined at x = 1 itself.

In order to translate the zooming process into a definition of the limit, we need
some new terminology. In particular, any open interval (a,b) containing a point
p is said to be a neighborhood of p, and the Greek letter e, which is pronounced
“epsilon,” will be used here to denote a small positive number.

When we zoom to estimate the limit

lim f () =L (1.9)

T—p

4 (1.8)

we are essentially producing smalller and smaller neighborhoods of (a, b) containing
p. Our estimate is the output f (x) for some x in (a,b) with z # p, and it is a
good estimate if it is between L — ¢ and L + ¢ for some small € > 0.

zoom_1
zoom 2
— L+e zoom_3
— L-¢
f
p

3-2: Zoom 3 is a graph where L —e < f(z) < L+¢

That is, our goal is to find a neighborhood (a, b) of p such that the estimate f (x)
for z in (a,b), x # p is in the target interval (L — e, L + ¢), where € > 0 is a small
number.
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EXAMPLE 1 Let’s explore (1.8) by finding a neighborhood of 1 on
which the function

¥+ 322 —br+1

N r—1

f(x)

is within e = 0.2 of L =4 (ie, 3.8 < f(z) <4.2).

Solution: Since ¢ = 0.2, we must zoom until the graph of f () is
between the horizontal lines y = 3.8 and y = 4.2:

43
10 5]
42
8
45 a1
6
A 4
4
39
2 35
38
0" 05 i 15 2 3

3.7
0.8 0.9 % 11 12 096 0.98 ¥ 1.02  1.04

3-3: A sequence of zooms centered at p =1

The last graph in the sequence of zooms implies that if  is in (0.98,1.02) ,
then f(z) is between y = 3.8 and y = 4.2. This is illustrated more
clearly in figure 3-4 below.

4.

4.1

4

3.9

3.

098 099 1 1.01  1.02

3-4: f (x) is between 3.8 and 4.2

Check your Reading | Would zooming to a domain of (0.99,1.01) also force f (x) to be between y = 3.8

and y = 4.27

Definition of the Limit

Intuitively, lim f(x) = L means that no matter how small ¢ > 0 is, zooming
T—p

centered on p will result in an interval (a,b) on which f (z) is between L — ¢ and
L+ ¢ for all z in (a,b) such that = # p.

48

L+e . )
zooming means finding (a,b)
L—¢ such that if a<x<b, x#p, then
( 1 ) L-g < f(X) < L+g
a b

3-5: Definition of the Limit
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Let’s translate this intuition into a definition. To begin with, f (z) between L — ¢
and L + ¢ implies the inequality L — e < f (z) < L 4 €, which is the same as

—e< f(z)—L<e (1.10)

However, (1.10) is equivalent to saying that |f (x) — L| < €. These two concepts
allow us to translate our intuition about limits into the following definition.

Definition 3.1: lim f () = L means that for all € > 0, there is a
T—p
neighborhood (a, b) of p such that

|f () = L| <e

for all z in (a,b) such that = # p.

Moreover, any neighborhood of p contained in (a,b) also leads to |f () — L| < e.

EXAMPLE 2 Find a neighborhood of 1 that forces f () in the limit

o3 4+322 -5 +1
lim =
r—1 xfl

to be within € = 0.02 of L = 4.

4

Solution: Although the interval (0.98,1.02) was sufficient for ¢ = 0.2
(see example 1), it is not sufficient for & = 0.02. Thus, we must zoom
centered at p = 1 until the graph of the function

3+ 32 —bx+1

is between the lines y =4 — 0.02 = 3.98 and y = 4 + 0.02 = 4.02:

43 4.06 4.03
42 4.04 4.02
41 4.02 401
4 4 4
3.9 3.98 3.99
38 3.96 3.98
3.7 3.94 3.97
096 098 § 102 104 099 0895 ] 1005 101 0996 0998 } 1002 1004

3-6: A sequence of zooms centered at p =1

Since the graph of f (z) over the interval (0.998,1.002) is between the
two horizontal lines, we can conclude that x in (0.998,1.002) and x # 1
implies that f (x) is within 0.02 of 4. Moreover, any neighborhood of
1 contained in (0.998,1.002) also satisfies the definition.

Notice that the limit in example 2 is of the form %. Thus, the definition of the

limit justifies our earlier assertion that when limits of the form % exist, they must

either be estimated graphically or simplified to a non—% form.
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EXAMPLE 3 Evaluate the limit
lim &
z—2 22 —bhx +6

and then find a neighborhood of x = 2 that forces the function to be
within € = 0.03 of its limit.

Solution: The limit is of the form %, which implies that

2 _ _
x? —4 :hm(x 2)(:c+2):hmx+2:

lim ——
2272 5z 16 =2 (x—2)(x—3) 2—2x2-—3

—4

Since ¢ = 0.03, we graph the lines y = —4 — 0.03 = —4.003 and
y = —4+0.03 = —3.97 along with the function

x2—4

f(x):x275x+6

Zooming centered on 2 eventually reveals a section of the graph of f (x)
between the two lines:

-3.2 3.97
34 9 3.98
-3.6 g
3.8 3.95 2.99)
4
-4.2 -4 -4
-4.4
-4.6 4,05 4.01
4.8

4.02
-5 4.3
52 4.0

18 1.9 2 2.1 2.2 198 199 g 201 202 1996 1998 2 2002 2004

3-7: A sequence of zooms centered at p = 2

Since the graph of f (z) over the interval (1.996,2.004) is between the
two lines, we can conclude that z in (1.996,2.004) and x # 2 implies
that f (z) is within 0.03 of —4.

Check your Reading | Will the interval (1.998,2.002) also force f(x) to be within ¢ = 0.05 of 97

Verifying Limits Analytically

Hypothetically, it is not necessary to use zooming to find neighborhoods of p when

lim f(z) =L

T—p

Definition 3.1 implies that for any € > 0, we need only manipulate the inequality
|f () — L| < e until we have a < < b for some numbers a < p < b.

EXAMPLE 4 Find a neighborhood of 2 that forces f (z) in the limit

lim (32 +2) =8

50 LIMITS, TANGENTS, AND RATES OF CHANGE



to be within € = 0.03 of L = 8.

Solution: Since f (z) = 3x + 2, the inequality |f (z) — L| < € is the
same as
(32 +2) — 8] < 0.03

which simplifies to |3z — 6] < 0.03. As a result,

—0.03 < 3z—6<0.03

—-0.03 < 3(z—2)<0.03

—0.01 < z—-2<0.01
1.99 < x<201

Thus, f(z) = 3z + 2 is within ¢ = 0.03 of L = 8 over the interval
(1.99,2.01).

Moreover, the definition of the limit allows us to actually verify that a limit exists
by showing that a suitable neighborhood of p exists for every value of € > 0.

EXAMPLE 5 Verify the limit
111112 (Bx+2)=38

by specifying a suitable neighborhood of p = 2 for each ¢ > 0.

Solution: Given an ¢ > 0, we must solve the inequality
Bz +2—-8|<¢
The result is

— < 3dr—-6<c¢
6—¢c < 3x<6+¢
2—E < x<2—i—E

3 3

Thus, given any € > 0, the interval (2 - 35,2+ %) is a neighborhood
of 2 on which |(3z +2) — 8| < e.

Limits of linear functions always exist. Indeed, if f (x) = max+bis a linear function

with m # 0, then a rise of € > 0 must be due to a run of =.

L+e y=ma

L-¢ m

£ £
“m P Pty

3-8: Limit Definition for a Linear Function

Thus, suitable neighborhoods for limits of linear functions can always be selected
to be of the form (p— <,p+ <) for each ¢ > 0.

DEFINITION OF THE LIMIT 51



Likewise, it can be shown that if n is an integer, then

lim z" = p" (1.11)

T—p
for all real numbers p > 0. In particular, if | — p™| < ¢, then
—e < 2"—-pt<e
p"—a < xn<pn+8
Uph—e < < Ypt+te

Thus, a suitable neighborhood ({/p™ — ¢, {/p™ + ¢) exists for each € > 0.

Check your Reading | Does the limit of a constant function always exist?

The ¢ — § Definition of the Limit

Mathematicians often use a slightly different form of definition 3.1, one that gives
the limit concept a more numerical flavor. In particular, if = is in (a, b) containing
a point p, then we let ¢, which is the Greek lowercase “delta,” be the smaller of
p—a and b—p. As a result, if = satisfies |x — p| < §, then z is in the neighborhood
(a,b) of p.

5

g \J

a"
A\

a P b

This concept is used to rewrite the definition of the limit in terms of a § > 0.

Definition 3.2: lim f(z) = L also means that for all € > 0, there

T—p

exists a 6 > 0 such that
If(z)— L[ <e
for all z that satisfy 0 < |z — p| < 6.

Computationally, verifying limits is the same as before until the last step, at which
time we choose the smaller of p — a and b — p.

EXAMPLE 5 Verify the limit
111112 (Bx+2)=38

by finding a suitable § > 0 for each € > 0.

Solution: Given an ¢ > 0, the inequality |3z 4+ 2 — 8| < ¢ leads to

— < 3r—6<e¢
6—¢c < 3xr<b+e
2—E < :c<2+E

3 3

Thus, if we let 6 = 5, then 0 < |z — 2| < 6 implies |(3z +2) — 8| < e.
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The advantage of definition 3.2 is that it leads to limit proofs of theorems which
are concise and compact. The key is that if we choose a ¢ that is the smaller of all
the ¢’s for a given set of limits, then all those limits can be used simultaneously.
Let’s look at two such theorems whose proofs illustrate this idea, which is italized
for emphasis in both cases.

Theorem 3.3: If lim f (z) = L and lim g (z) = K, then
T—p

T—p

lim [f () +g(z)] =L+ K

T—p

Proof: For all € > 0, there exists §; > 0 such that if 0 < |z — p| < 61,

then - -
L—5<f@)<L+s (1.12)
Likewise, there exists 65 > 0 such that if 0 < |x — p| < 82, then
€ €
K—§<g(x)<K+§ (1.13)

If we let 6 > 0 be the smaller of 61 and Oz, then 0 < |z —p| < &
implies that both (1.12) and (1.13) are true. Combining the two yields

L-S+K-% < f@+g)<L+3+K+>

2 2 2
L+K-¢ < f@)+gl@x)<L+K+e
which is the same as

[(f (@) +9(x) = (L+K)|<e

Thus, for each ¢ > 0, a suitable 6 > 0 exists, so that definition 3.2
implies that
lim (f(x) +g(z)) =L+ K = lim f (z) 4+ lim g (x)

T—p T—p T—p

As another example, let us use the definition of the limit to consider the case

where the graph of g (z) is “squeezed” to a point at = p between the graphs of
f(z) and h(x) :

y=h(x)

e y=g(x)
7 =fx)
r

3-9: y =g (x) is “squeezed” between y = f (x) and y = h (z)

In words, this leads to the following;:

Theorem 3.4: (Squeeze Theorem) If f (z) < g (x) < h(x) on some
neighborhood (a,b) of p and if

lim f(z) =L and lim h(x) =1L
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then the limit of g (x) as x approaches p exists and
limg(z) =L

T—p

Proof. : For all € > 0, there exists 67 > 0 and 62 > 0 such that if
0 < |x—p| <61 and 0 < |x — p| < 82, respectively, then

L-—e<f(zx)<L+e and L—e<h(z)<L+e

respectively. If 0 is chosen to be the smaller of 61 and b5, then 0 <
| —p| < & implies that

L-—e<f(x)<g(x)<h(z)<L+e

which in turn implies that L —e < g (z) < L+e¢. Thus, |g(z) — L| < e
for all x that satisfy 0 < |z —p| < 6. L

Exercises:
Grapher: Zoom centered at the appropriate input to determine graphically the
value of each limit. Be sure to use radians with trigonometric functions.

. 224 R |
L F—»rnz Tz —2 2. i’1—>mlx2—l
. 2 +3x+2 . 22+ —1
. m 4 im0
5. 111112 3z +2) 6. 111112 (4 +2)
7. lim (Jz| +1) 8. lim |22 —1]
x—0 x—0
3 2_ .1 3.
9. lim T T 40 fim S F
z—1 z—1 z——1 41
11, lim S2@) 19, lim 5@ -1
x—0 x x—0 x
. .1 . sin(x)
13. lim zsin (—) 14. lim ——~*
z—0 z T—T T — T

Grapher: Given the following limits, find a neighborhood of p which satisfies the
definition of the limit for each of the values ¢ = 0.1, ¢ = 0.01, € = 0.001.

. 1'2 -9 . 2
15. lim =6 16. lim (ac - 1) =-1
z—3 r—3 z—0
| . 3 +202 +r+2 5
17 ilinl x—1 3 18. xlinilz x2—4 4
2 ) 2
19, lim ELET 2. lim 2T g
z—0 |$| z—0 |1’|
21. lim M —4 29 lim Los(x) — 1
—0 x x—0 .112 2
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Verify the following limits exist by finding a suitable neighborhood of the given p
for each possible € > 0. (Equivalently, find 6 > 0 for an arbitrary € > 0 that
satisfies the limit definition).

23. lim3z=6 24, lm(z-1)=1
r—2 r—2
2. lim (20+1) =3 2. lim (3—x)=2
2 2
97, lim L2 g 98, lim %
z—3 T — 3 z—0 T
2 2 z?
29. lim [(x +12—(@-1?% =0 30, lim S =1
= z—1 T

31. Use the definition of the limit to prove that

lim 3z +1)=3p+1

r—p
Then use this result to evaluate lim1 (Bx+1).
xTr—

32. Use the definition of the limit to prove that

lim (mx +b) =mp+b

T—p

Then use this result to evaluate lim (7z + 1).

Tr—T

33. For f(x) =22+ 2z.

(a) Show that
f(O+h)—f(0) h*+2h
h - h
(b) Numerical: Complete the table below:.

h | -0.01 -0.001 -0.0001 — 0 <« 0.0001 0.001 o0.01
M}L—M@ | 7
(c) Use the table to estimate the value of the limit
L FO4R) ~ [ (0)
h—0 h
(d) Grapher: Find an neighborhood (a, b) of 0 which satisfies the de-
finition of the limit in (c) for ¢ = 0.01.
34. For f(x) =+vx+3.
(a) Show that
fA+h)—f(1) Vh+4-2
h N h
(b) Numerical: Complete the table below using the difference quo-
tient.
h | -0.01 -0.001 -0.0001 — 0 <« 0.0001 0.001 0.01
TOF=7T) | R S
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(c) Use the table to estimate the value of the limit
1 —fQ
L FOAR - ()

h—0 h
(d) Grapher: Find an neighborhood (a, b) of 0 which satisfies the de-
finition of the limit in (c) for ¢ = 0.01.

35. Write to Learn: Write a short essay in which you prove that if lim f (z) = L

T—p
and k is constant, then
lim [kf ()] = kL

T—p

36. Write to Learn: Write a short essay in which you prove that if lim f (z) =

T—p

L and lim g (z) = K, then
T—p

lim [/ (2) — g (@) = L — K
37. Write to Learn: Write a short essay in which you prove that
lim z'/? = pl/2

r—p

for all positive numbers p.
38. Write to Learn: Write a short essay in which you prove that if lim f (z) =
T—p

L and lim g (x) = K and if f(z) < g (z) for all z in a neighborhood (a, b)
T—p
of p, then L < K. (Hint: f L—e < K +e for alle >0, then L < K ).

1.4 Horizontal Asymptotes

Limits to Infinity

In many applications of the limit concept, an input variable & does not approach
a number p, but it instead becomes larger and larger without bound. In this case,
we say that x approaches infinity, and we write

lim f(z)=1L (1.14)
T—00
where oo is called the infinity symbol and represents the concept of numbers be-
coming larger and larger without bound. (note: oo is not a number, even though
we often treat it like one).

Rigorously, (1.14) means that for each ¢ > 0, there is an interval (R, co) for
some number R such that

L-e<f(x)<L+e

That is, as x increases without bound, f (x) approaches L.

L+e

L =

L-¢ / ~—

&

R
4-1: |f(z) —L| < e on (R, 0)
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If we replace the interval (R, c0) by the inequality x > R, then we are led to the
following definition.

Definition 4.1a: lim f(z) = L means that for any ¢ > 0, there is a
number R such that if x > R, then

|f () = L| <e

The limit as « approaches —oo of f () is similarly defined:

Definition 4.1b: lim f(z) = L means that for any ¢ > 0, there is
a number R such that if © < R, then |f () — L] < e.

We say that the curve y = f (z) has a horizontal asymptote of y = L if either

lim f(z)=1L or lim f(z)=1L

T—00 T——00

EXAMPLE 1 Use definition 4.1 to show that

Solution: Suppose we are given a number £ > 0 (¢ should be consid-
ered small—such as ¢ = 0.01 or ¢ = 0.00001, for instance). We must
find R > 0 such that if x > R, then

1

= 0' <e (1.15)

However, (1.15) simplifies to
1 , 1
— <eor x°> =
x €
Thus, if z > \/lg, then (1.15) is true. Thus, given any € > 0, we let

R = \/Lg and require that x > R.

For example, if ¢ = 0.01 in example 1, then we would let

/1
R= m-\/lOO-lO

As a result, z > 10 implies that |712 - O} < 0.01.

Let’s expand example 1 into a much broader result. Consider that if n > 0,
then 2" becomes arbitrarily large as « approaches co. Thus, for any € > 0, there
is a number R such that |z|" > 1 for all z > R. It follows that

‘1‘
—| <€ or
:L.n

1
——O‘<5
x’ll
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for all x > R. That is, 1/2™ becomes arbitrarily close to 0 as x approaches oo,
which we write as !
lim — =0 if n>0 (1.16)

z—oo g7

1
As a result, y = — has a horizontal asymptote of y = 0 if n > 0.
x 3

1
EXAMPLE 2 What is the horizontal asymptote of y = F?

Solution: Equation (1.16) with n = 4 is of the form

T—00 I

As a result, y = ﬁ has a horizontal asymptote of y = 0.

0.8
0.6
0.4

0.2

01 2 3 4 5

4-2: Graph of y = 1/2*

Check your Reading | Does y = 1/a® have a horizontal asymptote? Explain.

Limits of Rational Functions

The result (1.16) can be applied to limits of algebraic functions in general. To do
so, we first define the principal term to be z' where n denotes the degree of the
denominator. We then multiply by

1/1‘"
1/1.71

and use (1.16) to evaluate the resulting limits.

EXAMPLE 3 Evaluate the limit

. zt 41
im —————
z—oo x4 4+ 22 + 3

Solution: The principal term is x* since 4 is the highest power in the

denominator. Multiplying by %/%i yields

i a* 41
z—oo \ x4 4 2x + 3
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which after distributing yields

z* 1 1
hm [ =t T2 ) i <1+—z4)
oo \ G424 8 | a1+ S+ 0

The result is a ratio of limits of the form (1.16), so that

lim 7x4+1 = lim 1+””_14 e
a0 gt + 2543  amco \14+ %+ ) 1+0+0
It also follows that the graph of the function

41
f @)= x4 422+ 3
has a horizontal asymptote of y = 1:

% ) 2 0 2 6

4-3: Horizontal Asymptote of y =1

Limits in which z approaches —co can be converted into limits as x approaches
oo using the fact that

Jlimf (@) = Jim f(~a)

Thus, limits to either +00 or —oo are evaluated in the same way.

(1.17)

EXAMPLE 4 Evaluate the limit

22 —1
m
r——00 1—‘,—1;

Solution: Using (1.17), we convert this into the limit

2 _ PAL 2 _
lim = 1—lim—(x) 1:' -1

= 1m
z——oc0 1+ 2 T—00 —x z—o0 1 —

The principal term is x, so we transform the limit into

22 —1 1/x . z-—1 .
im —— = lim 5 = lim —
z—o0 1 — 1/x z—00 ;—1 £—00

: 1 x
since - approaches 0 as x approaches co. However, =5 approaches —oo
as = approaches co. We thus write either

. z? -1 . z? .
lim =—o00 or lim does not exist (1.18)
z——c0 1+ 2 z——00 1+
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Check your Reading | Why are both statements true in (1.18)%

Functions with Two Horizontal Asymptotes

A function may possibly have 2 horizontal asymptotes—one as x approaches —oo
and one as x approaches oco. For example, if a function is defined by roots of
polynomials, then sign changes may be implied by the roots being used.

EXAMPLE 5 Find all the horizontal asymptotes of

x4+ 0.5

) = — 2

fle) 241
Solution: To begin with, let us evaluate
x+0.5

im ———
e—oo /22 41
The degree of the denominator is 1, so the principal term is x'. More-
over, we can assume that & > 0, so that V22 = x. Thus, we have
0.5 0.5 1 1448
i T ~ i 2 Jx . -

= Iim — = lim —%—
T—00 J}2+1 [L‘*)OO,/xz_l’_ll/,/xz T—00 /1+L2
As x approaches co, we obtain
z+0.5 1+ %5 140

and thus, y = 1 is a horizontal asymptote of f (z) as « approaches co.
For x approaching —oo, we use (1.17):
x+0.5 . —x+0.5 . 05—z

Again, the principal term is z and we can assume that x > 0. Thus,

. 05—z 1/x - 0—1
lim ——=——=——= = lim = =-1
;z—)oo,/x2+11/,/x2 .K—)OO\/1+L2 \/14»0
x
As a result, we have
0.5
lim TE0s -1
e——oo \/x2 + 1
which implies that f (x) has a horizontal asymptote of y = —1 as x

approaches —oc.

4-4: A function with 2 horizontal asymptotes
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The absolute value function can also lead to functions with more than one hori-
zontal asymptote, or possibly even a function with only one horizontal asymptote
in only one direction.

EXAMPLE 6 Find the horizontal asymptotes of f (z) = || + 2« + 1.

Solution: If x approaches oo, then we can assume x > 0 and thus,
lim (Jz|+2+1)= lim 2z +1) =00
T—00 r— 00

Because 2z + 1 becomes arbitrarily large as x approaches oo, the func-

tion f(x) = || + 2 + 1 does not have a horizontal asymptote as z
approaches oo.

For the limit as x approaches —oco, we use to fact that |z| = —x
when z < 0, so that

lim (Jz|+2+1)= lim (—z+z+1)= lim (0+1)=1
z——00 T——00 T——00

Thus, f(z) = |z| +  + 1 has a horizontal asymptote of y = 1 as x
approaches —oo.

2

T

-2 -1 00 } 2

4-5: Graph of f (z) = ||+ 2 +1

Check your Reading | Can a function have 8 horizontal asymptotes?

Horizontal Asymptotes and Graphing

Rigorous definitions for limits to co are necessary because even the most sophis-
ticated graphing technology may not be useful as tools for studying horizontal
asymptotes. For example, the graph of

f@) = s

T 2011
over the interval [0, 120] does not reveal its horizontal asymptote.

0.21
0.157
0.17

0.051
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No horizontal asymptote is observed even for the graph of f (x) over [0, 10000] .

0.81
0.61
0.4t

0.27

0o 2000 4000 X 6000 8000 10000
4-7
However, it is rather easy to show that
201 —1
b0 201 T1

which implies that the horizontal asymptote of y = f (z) is y = 1.

EXAMPLE 7 Show that
0.1 _ 1
lim z

z—oo 01 41 =1

Solution: The principal term is z%!. Thus,

i 201 —11/200 1--5 1-0 )
m ————— = lIm =— =
e—oo g0 +11/201  amel4 5 140

Exercises:
Evaluate the limit if it exists. If the limit does not exist, explain why not.

1. lim — 2. lim —

r—o0 I Tr— 00 (L‘z
3 lim — 4 li 1
5 lim 1 6. lim O
. . 1
7 lim 8 lim
z—oo T + 1 z—oo T+ 3
2r+5 S5 — 3
9 li 10. L
%+ 3z 2 —3x+5
11. lim ——— 12. 1
i 2212 ooo 72 4 27 — 1
. x2 —4x 42 . 2x2 — 4z — 2
13 hm = L T
. 1 1 . 1 1
15. .Kli)r(olo <x+1_:£1> 16. JLILH;O (m+1+x1>
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Find the horizontal asymptote, if one exists, of each of the following functions.

I f@) =1 18, f(x):%
D 0 f@=T0
2L f(@) = 2 @)= 5
23. f(x)% 24 Jw) = @ii;)z
Identify all horizontal asymptotes, if any, of the following functions.
25. f(x):%ﬂ 26. f(:c):@—il1
277, f(x)= —”C(SZB‘TH 28. f(x)= ;4—:_1
2. fl@) = 0. flo)= |a:|g%
3. f) =2t 2. fl@= Ofﬁ?z

33. Find the horizontal asymptotes of
x+6
T =iy

Graph the function and its asymptote over the interval [—5,5]. Does the
graph of the function intersect the asymptote at some point in [—5, 57

34. A linear function Lo, () = b+ ma is an oblique asymptote of f (x) if

lim [f (z) — Lo ()] =0 (1.19)
T—00
Show that the given linear function L., (z) is an oblique asymptote of
f (z) .(Hint: find a common denominator and combine fractions) Then graph
both L () and f (x) over [—5,5].

@ @=""1 L@=a
B pa)= S @)=
() =B

2 +1

35. In this exercise, we consider the function

L
f@)= ¥
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(a) Show that the horizontal asymptote of f (z) is y = 1 by evaluating

VT
VI +2

(b) Graph f (x) and y = 1 over the interval [0, 10] . Would you conclude
from the graph that y = 1 is a horizontal asymptote of f (x)?

(¢) Graph f(z) and y = 1 over the interval [0,100]. Would you con-
clude from the graph that y = 1 is a horizontal asymptote of f (x)?

lim
Tr—0Q0

36. In this exercise, we consider the function

130'2 _ 41:0.1 + 3
(a) Show that the horizontal asymptote of f (z) is y = 1 by evaluating

i .110'2 _ 4.13‘0'1 +3
‘LLIIOlO xO'Q +3

(b) Graph f(z) and y = 1 over the interval [0, 1000]. Would you con-
clude from the graph that y = 1 is a horizontal asymptote of f (x)?

(c) Evaluate f (1E10), where aEb is scientific notation for a x 10°. How
close is it to 17

37. Use the definition of the limit to oo to show that if

lim f(z)=1L and lim g(z) = K

then
lim [f(z)+g(z)]=L+K
r—00
38. Use the definition of the limit to co to show that if

if lim f(x)=1L and lim g(z) =K

T—00 r—00

then lim [f(z)—g(x)]=L—-K

T—00

39. A function f () is said to be asymptotically equivalent to g (z) if

im 28 g
2 @)

Show that f (x) is asymptotically equivalent to g (z) if and only if g (z) is
asymptotically equivalent to f ().

40. A function f(x) is said to be of order at most g (z) if there exists M > 0
such that
f(x)

g ()

when z is sufficiently large. Give an example of a function f (x) that is of
at most order g (x) = 1 for which

L @)
A g (@)

<M

does not exist

(Hint: Think of the trigonometric functions).
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41. Write to Learn: Suppose that a,, # 0 and b, # 0 where n is a positive
integer. In a short essay, explain why

by by b+ by by
lim -

200 ApT" + Gp_12" 1+ ... Ftaix+ag  an

42. Write to Learn: Suppose that a,, # 0 and b, # 0 where m,n are positive
integers. In a short essay, explain why the limit

i D™ 4+ by 1™ L+ L+ by + by
im

=00 Apx™ + Q12"+ ...+ a1z +ag
is equal to 0 when n > m and does not exist when n < m.

1.5 Continuity

Continuity at a Point

Sections 1-2 and 1-3 imply that if f (z) is a polynomial, then
lim f(2) = f (p)
T—p
That is, if f(x) is a polynomial, then we can evaluate its limit as & approaches

p by simply substituting p for z. This idea is very important in mathematics, so
important that we state it as a definition.

Definition 5.1: A function f (z) is continuous at p if

lim £ () = £ (¢) (1.20

Moreover, continuous functions can be combined arithmetically to create still more
continuous functions..

Theorem 5.2: If f and g are continuous at x = p and k is a number,

then f+ g, f — g, kf and fg are also continuous at * = p. Moreover,
if g (p) # 0, then 5 is also continuous at = = p.

In addition, if lim g (z) = L and f (z) is continuous at L, then
T—p

T—p

lim Lo @) = 1 [ im0 o) (121)

which implies that if ¢ is continuous at = p and f is continuous at g (p), then
f o g is continuous at p. A special case of (1.21) is given by

gyﬂww=b3f@r

(1.22)
when the limit as « approaches p of f () exists.
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EXAMPLE 1 If g(x) is continuous at = 4 and if g (4) = 3, then
what is the value of

. 2

i@; [2% + 2g ()]
Solution: Since z? is a polynomial, it is continuous at x = 4. Thus,
theorem 5-2 implies that z2? + 2¢g (z) is also continuous at x = 4, so
that

lim [° +2g ()] =4*+29(4) =16+ 23 =22

EXAMPLE 2 Suppose that lirré g (z) = 2 and evaluate

lim [g (z)]"

r—5

Solution: The property (1.22) implies that

tim g (2))* = [tim g ()] = (2" = 16

Check your Reading | What is lirré [9 (2)]? given the fact that limsg (x) =27
r— Tr—

One Sided Limits

To better explore continuity, let us define

lim f(x)=1L (1.23)

z—pTt

to mean that as x approaches p with the restriction that x > p, the function f (x)
approaches L. Similarly, let us define

lim f(x)=1L (1.24)

T—p~

to mean that as x approaches p with the restriction that x < p, the function f (x)
approaches L. We call (1.23) and (1.24) the limit from the right and the limit from
the left, respectively.

It follows immediately from the definition of the limit that

lim f(x) =L onlyif lim f(z)=L= lim f(x)

T—p T—p~ me*

That is, the limit exists only if the limits from the right and left are the same. As
a result, definition 5.1 says that a function f (x) is continuous at an input value p
only if the following hold:

i.  f(p) is defined
ii. lim f(x)= lim f(2)=1L
T—p~ mﬂp*
iii. L is the same as f (p)

For example, suppose that f (x) is the piecewise-defined function
_Ja(@) if x<p
”@‘{ru>afx2p
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A typical graph of a piecewise-defined f is shown below:

.1«9
,
L e
72
< L
| P

5-1: A piecewise defined function

Then continuity of f (x) at = p requires that K = L, which is equivalent to

lim ¢(z) = lim r(z) = f(p)

T—p— r—pt

That is, f (z) is continuous at p only if the limit of f (z) exists at p, which occurs
only when the limits from the left and right are the same at p.

L=K }F\/ L=K }(/\/
| x%[‘)' | };+éx

5-2: Limit from left and right are the same

When f (x) is not continuous at = p, as would be the case if L # K, then x = p
is called a point of discontinuity of f (x).

EXAMPLE 3 Find a value of k for which

-2 0

is continuous at x = 2.

Solution: By definition, f (2) =2 (2)+3 = 7, thus satisfying the first
criterion. Next, we notice that the limit from the left is

lim f(z)= ‘111517(2134-3):2-2—1-3:7

r—2~

while the limit from the right is

lim f(z)= lim (22> —k)=2-(2)° —k=8—k

z—2+ r—2+1

To achieve continuity, we need

lim f(z)= lim f(x)

T—2~ r—2+
which means that we need

7T=8—-k or k=1
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EXAMPLE 4 Find a value of k for which

_ 22 -3z if r<-1
f(x)_{ 322+ 2k if > -1 (1.26)

is continuous at x = —1.

Solution: By definition, f (—1) = (—1)* — 3 (—1) = 4, thus satisfying
the first criterion. Next, we notice that the limit from the left is

lim f(z)= lim (22 —3z)=(-1)°>-3(-1)=4

r——1" r——1"
while the limit from the right is

lim f(z)= lim (32%+2k)=3(-1)>+2k=3+2k

r——1+ r——1

To achieve continuity, we need

lim f(z)= lm_f(2)=f(-1)

r——1— r——1+

which means that we need

3+2k=14 or k=

N —

Check your Reading |Does (1.26) with k = % satisfy criterion (i11)? FExplain.

Points of Discontinuity

Let us define the equation
lim f(z) =00

r—pT

to mean that for all M > 0, there exists intervals of the form (p,b) such that if x
isin (p,b), then f(z) > M.

T

5-3: x in (p,b) implies that f (x) > M
We similarly define the one-sided infinite limits

lim f(x)=—o00, lim f(z)=o00, and lim f(z)=—-o00

z—pt T—p~ T—p~

We then define the line x = p to be a vertical asymptote of f (z) if any of the
following limits hold:

lim f(z)=o00, lim f(zx)=-00, lim f(z)=o00, lim f(x)=—-00

z—pt z—pTt T—p~ T—p—
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Since oo is not a number, a vertical asymptote of f (x) must also be a point of
discontinuity of f (x).

5-4: Vertical Asymptote of x = p

EXAMPLE 5 Where are the points of discontinuity of

z—1
T)=—"
Solution: The function f(x) is the ratio of two polynomials, and
polynomials are continuous everywhere. However, 3 — 222 = 0 if
x = 0 or x = 2. Since the numerator is nonzero at both of these
inputs, f (z) has vertical asymptotes at = 0 and « = 2.

=

-10°
5-5: f (x) has two vertical asymptotes

Correspondingly, 2 = 0 and & = 2 are points of discontinuity of f ().

In addition, a function is not continuous at x = p if any of the following occur at
T =p:
fip) not defined lim fix) # lim f{x) Sfp) not same as L
h\_/ x>p- ~ x>p+ d
— /_\\/ /{:\—/
i i i
p p p
5-6: Criteria for Continuity

That is, a function is not continuous at p if any of the three conditions (i), (ii), or
(iii) do not hold at p.

EXAMPLE 6 Is f(x) = %L continuous at x = 17
Solution: Since f (1) leads to division by 0, (i) is not satisfied. Thus,

fx)= |ijl is not continuous at x = 0.
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EXAMPLE 7 Determine if the following function is continuous at

x=0. )
|| + sin (z) if r40

flx) = .
2 if =0

Solution: Condition (i) holds since f (0) = 2. Let’s explore (i) using
the graph of f (z):

0.5

-0.5

5-7: Graph of f (x)
Clearly, the limits from the left and right are

lim || + sin (z) _ 5 and lim || + sin (z)
r—0+ T r—0— x

=0
Since the limits from the left and right are not the same,

lim || + sin (z)
z—0 x

does not exist

Thus, the function f () is not continuous at z = 0.

Check your Reading |Is f(x) =sin(1/x) continuous at x = 07

The Intermediate Value Theorem

We say that f(z) is continuous on an interval [a, b] if f () is continuous at p for
every p in (a,b) and if
Gim f@)=f),  lm f)=70)
The phrase “f (x) is continuous” means that f (z) is continuous at every point.
If f(z) is continuous on an interval [a,b] and if d is a number between f (a)

and f (b), then the intermediate value theorem says that there is a number ¢ in
[a, b] such that f (c) = d.

5-8: There must be ¢ in (a,b) such that f(¢) =d
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It is the intermediate value theorem from which we obtain the concept that a
continuous function can be “drawn without lifting your pencil.”

However, the intermediate value theorem may be more valuable as a tool in
numerical calculations. In particular, it can be used to determine if a continuous
function has a zero in a given interval.

EXAMPLE 8 Determine if f(x) = 2° — 3z + 1 has a root in the
interval [—2,0] .

Solution: Notice that f (—2) = —1 while f (0) = 1. Since 0 is between
—1 and 1, there exists a number ¢ in [—2,0] such that f (¢) = 0. That
is, f (z) has a root somewhere in [—2,0]:

5-9: Locating roots with the Intermediate Value Theorem

Suppose now for f(z) = 2% — 3z + 1 as in example 8 that we noticed that
f(=1) =1. Since f(—1) and f (—2) have different signs, f () must have a root at
some point in [—2, —1]. Indeed, the Bisection method in numerical analysis is an
algorithm in which we repeatedly compute the midpoint of an interval and then
determine which subinterval contains the root of the function.

Exercises:

Identify the point(s), if any, where the function is not continuous. Graph each
function on [—4,4] to verify your identifications. See the users manual for your
calculator for instructions on graphing piecewise-defined functions.”

L )= 2 f@) =
3. f(z)=(22—204+1)/3 4. f(x)= (2> 4+1)72
r? — x?
N 6 =[5
a4 a it
9. f(x)=sin(|z|) 10.  f(x) = cos(|z|)

2Many graphing programs will not permit the odd root of a negative number unless the
variable is first declared to be a real variable. See your manual for details.
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1. f(x) . 12.
13. f(x){ ;ﬁ:i)z z; i;g 14.
o rn-{ZE T e
17. f(x):{?;gf% z; i; 18.

fla) = 2l

f@>{§_1§§§§1
f(){fog(lx) Zj i;g
ro={3 i 15

Find a value for k for which the given functions are continuous at the point between

the two sections.

f3x-2 if z<1 _fdr+1 if <2
19. f(x){k:x—i-2 if ox>1 20. f(x){kx+3 it x>
2 . 2 .
R N RN S B AT R S LA M A
|| —z if < -3 ?2+2 if <1
23, f(z)={ k if v=-3 24 f(x)={ k if x=1
2 |z| if ©>-3 204+1 if x>1

Assume that f (x) is continuous at x = 3, that f (3) =5, that f (8) = 2, and that

lim g (x) =8
r—3

Evaluate the following limits.

25 lim [#2 4+ 3f (2)] 26.
27, lim [f () g ()] 28.
29. ilin (92 (x) — 2f ()] 30.

tim [ Vo)
lim /(@)

2=3 g (x)

lim £ [g (x) 5]

31. Intermediate Value Theorem: Prove that f (z) = 2 + 2z — 4 has a zero
somewhere in [0, 2]. Is the zero in [0, 1] or is it in [1,2]?

32. Intermediate Value Theorem: Prove that f (z) = 2° — 222 +4 has a zero
somewhere in [—2,0]. Is the zero in [-2,—1] or is it in [—1,0]?

33. Intermediate Value Theorem: A function f (z) is said to be even if

f=x) = f(2)

Prove that an even function must have an even number of real roots.

34. Intermediate Value Theorem: Let f (z) be continuous on the real line

and suppose that
lim f(x)=K

Tr——00

and

lim f(z)=1L

T—00

where K < L. Show that if K < y < L, there there is a number ¢ such that

fle)=y?
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35. Grapher: Graph the following function on the interval [—0.2,0.2] :

_ [ sin(2) if z#0
f(”’)_{o ) if £=0

Is the function continuous at x = 07 Does the function have a vertical
asymptote at x = 07 Explain.

36. Grapher: Graph the following function on the interval [—0.2,0.2] :

zsin (L) if =z
ro={ g ez

Is the function continuous at x = 07 Does the function have a vertical
asymptote at x = 0?7 Explain.

37. Write to Learn: Suppose f (z) # 0 for all z in (p,q). Explain why f(x)
continuous on (p,q) implies that f (z) is either always positive or always
negative on (p,q) .

38. Write to Learn: In a short essay explain why the definition of the limit
implies that if f (x) is continuous at p, then for all € > 0, there is an interval
(a,b) containing p such that

[f (@)= f(p)l <e
for all x # p in (a,b).
39. Write to Learn: If f is continuous at a number L, then

lim f(u) = f(L) (1.27)

Suppose that lim g (z) = L, and in a short essay, explain why letting u =
I*)p

g (x) in (1.27) leads to
lim f (g (z)) = f (L)

T—p
40. Write to Learn: Complete the following steps to prove that
if lim f(z)=L and limg(x)=K, then lim|[f(z)g(z)]=KL
r—p r—p T—p

(a) Prove the following identity
Fe)g@) =7 (F () +9 (@) ~ 1 (f () — g &)
(b) Use (1.21) to compute the limits

lim (f (z) +¢(z))*> and  lim (f(z) —g(2))?

T—p T—p
(¢) Combine the results in (a) and (b) to finish the proof.

41. A spinner is spun counterclockwise as shown in figure 2-9.

/
\ 4

5-10
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The lines separating the colors are radii drawn every 60°, and the angle 6
is the angle with of the spinner arm with the positive z-axis. The function
f(6) is defined
|1 if Oisinblack
1) = { 0 if 0isin white
(a) Sketch the graph of f (6)7 What is its smallest period in degrees?
(

b) Compute lim f(0) and lim () .
0—1350 0—700°

)
)
(¢) What are the points of discontinuity of f (6)?
(d) Evaluate the limits

lim f(0) and lim f(6)

0—60°+ 0—60°—

42. In this exercise, we explore the limit

lim m
x—0 I

|| ||

(a) Explain why - is equal to 1 when x > 0 and ** is equal to —1
when x < 0.

(b) Graph %l and then zoom centered on 0. Explain why the range of
every graph in the zoom contains the points —1 and 1.

(¢) What is the limit from the left and the limit from the right as x
approaches 0 of %[7
(d) * Given € = 0.01 and any value of L, explain why the inequality

lz]
x

L—-0.01 < < L+0.01

does not have a solution.

1.6 Differentiability

Differentiability

Now that we have developed the limit concept, let’s use it to place the study of
tangent lines on a firm foundation. To begin with, we say that a function f (z) is
differentiable at an input x = p if its graph has a tangent line at x = p. Let’s use
the limit concept to explore what it means for a function to be differentiable at a
given input.

Recall from section 1 that if f(z) is a polynomial, then the equation of a
tangent line is calculated with

f(p+h)=a0+arth+ “higher powers of b’

If h =0, then f(p+0) = ap, so that ag = f (p) . In contrast, the quantity a; is
the slope of the tangent line, which is called the derivative of f (x) at = p and is
denoted f’ (p) ( “eff prime of p”). Replacing ag and a; by their new names yields

fp+h)=fp) +f (h + “higher powersof h” (1.28)
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f(p) is the
slope  of the
tangent line to
y = f(2) at
T =p.

That is, if & is close to 0, then f (p + h) is practically the same as f (p) + f’ (p) h.
Y

y=fx)

fp+h)
fo) )k

6-1: f (p+ h) is nearly the same as f (p) + f' (p) h

Let us now let o (h), which is pronounced “little oh of A”, denote the “higher
powers of h, so that (1.28) becomes

fo+h)=f@)+f (h)h+o(h)

That is, o (h) represents the “higher powers” that can be ignored when h is close
to 0.

p p-I—h
6-2: o (h) represents the negligible “higher powers” of h

Specifically, since o (h) has powers of h higher than 1, the fractionﬂ,?l has powers
of h greater than 0. Thus, o (h) has the property that

lim == =0 (1.29)

This leads us to the following definition:

Definition 6.1: A function f(z) is differentiable at an input p if
there exists a number f’(p) (called the derivative of f (z) at p) such
that

fo+h)=f)+f P h + ofh) (1.30)
for some o (h) satisfying (1.29).

If f (x) is differentiable at each point in an interval (a,b), then we say that f(x)
is differentiable on (a,b).

EXAMPLE 1 For f(z) =1+ 2z +2°/3, find f’ (0) and the equation
of the tangent line to y = f(x) at p = 0. Also, find o (h) and show
that it satisfies (1.29).

Solution: If we let x = 0 + h, then we obtain

Oy f o(h)
F(0)+f'(0)h
fO4+h)y= "1+2n + K3
Thus, f'(0) = 2 and y = 1 + 2h. Since & = h, the tangent line to f (z)
atp=0isy =14 22.
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6-3: Tangent to y = 1 + 2 + x°/3 at the point (0,1).
Also, o (h) = h°/? and
(h) h5/3

. 1 _ 1 2/3:
Jim == = Jim == = lim A 0

Check your Reading |Is f(x) =142z + 2%/ a polynomial?

Derivatives of Polynomials

In principle, we can use definition 6.1 to calculate the derivative of any polynomial.
Let’s look at a couple of examples.

EXAMPLE 2 For f (z) = 2® — 5z, find f’ (1) and the equation of the
tangent line to y = f () at p = 1. Also, find o (h) and show that it
satisfies (1.29).

Solution: The problem is essentially the same as those we considered
in section 1, but with different notation. We let x = 1+ h and expand

f(A+h):
FA+h) =0+h)?=50+h)=—4—2n+3h>+h°
Comparing to (1.30) leads us to
F W+ (Dh o(h)
e N —_—N—
f(A+h)="—4—2n + 3h2+h3
Thus, f/ (1) = —2 and y = —4 — 2h, which leads to the tangent line
y=—-4-2(x—-1)

6-4: Tangent to y = 22 — 4z at the point (1, —3).
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Also, o(h) = 3h? + h3, and

O(h)i . 3h2+h37 . 2\
T ST T @ =0

Calculating derivatives of higher degree polynomials requires the expansion of
(p+h)". In elementary algebra, it is shown that

(p+h)" =cop” +c1p" th+cop” 2h? 4+ ... +c, A" (1.31)
where the coefficients cg, ¢y, ¢, . . ., ¢, form the n'" row of Pascal’s triangle shown
below:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

In a later section we will use Pascal’s triangle to develop an important rule for
finding derivatives.

EXAMPLE 3 Find f’(2) for f (x) = a*. Also, identify o (h).

Solution: We must first expand f (2 + h) = (2+ h)*. The n = 4 row
of Pascal’s triangle gives us the coefficients ¢y, ¢, c2, c3, and ¢4 in the
expansion of (2 + h)*.

n=0 1

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

[n=4 1 4 6 4 1

n=>5 1 5 10 10 5 1
n=~6 1 6 15 20 15 6 1
n="7 1 7 21 35 35 21 7

Substituting the coefficients from Pascal’s triangle into (1.31) yields
2+h)* =12+ 42°h +6-2°h2 +4-20° + 1.0* (1.32)
Simplifying leads us to
f(2+ h) =16 + 32h + 24h* + 8h° + h*

from which we see that f’(2) = 32 and o (h) = 24h? + 8h> + h*.

Check your Reading| Does o (h) = 24h? + 8h® + h* satisfy (1.29)?
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Differentiability and Continuity

Notice that o (h) itself approaches 0 as h approaches 0, because

fmo o) = im (252 1) = (i 25 ) (jim) =0

Thus, if we apply the limit as h approaches 0 to (1.30), the result is
. . oy .
lim f (p +h) = lim f (p) + lim f* (p) h+ lim o (h)
This in turn simplifies to
lim f(p+h) = f () (1.33)

If we let © = p + h, then x approaches p as h approaches 0. As a result, (1.33)
becomes

lim f(z) = f ()

T—p

which implies that f (z) is continuous at z = p.

Theorem 6.2 If f(x) is differentiable at a point p, then it is also
continuous at p.

However, a function f (x) can be continuous at p without also being differentiable
at p.

EXAMPLE 4 Explain why the following function is continuous but
not differentiable at h =0 :

f(h)y=1+h+h?3

Solution: Since %in%) (1 +h+ h?/ 3) = 1, the function is continuous at

h = 0. But near h = 0, the function is of the form
f (k) = “linear function” + “a lower power of h”

where by a “lower power” we mean an h with an exponent below 1.
Lower powers have larger magnitudes than h when h is close to 0.
Indeed, if A = 0.001, then h2/3 = 0.01, which is 10 times larger than
h = 0.01. Since lower powers of h cannot be ignored, f’(0) does not
exist.

15
1.4

1.3

N
1
-0.2 -0.1 0 Ohl 0.2

6-5: Graph of f (h) =1+ h + h?/3

In fact, the graph of f(h) = 1 + h + h?/3 comes to a sharp point at
h = 0, and thus it cannot be “practically the same” as a straight line at
h = 0. Equivalently, if we let o (h) = h?/3, then o (h) does not satisfy
(1.29).
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We say that y = 1+ h + h?/3 has a cusp at h = 0. Since y = f (x) cannot have
a tangent line at a cusp, f(x) is not differentiable at an input where a cusp
occurs.

EXAMPLE 5 Find the value of k for which

_ 2+k if z<1
f()_{62x if x>1

is continuous at x = 1. Then determine if it is differentiable at © = 1
as well.

Solution: By definition, f (1) = 12 + k = k + 1, thus satisfying the
first criteria. Moreover, the limit from the left is

li = i 24k)=k+1
Jm f @)= lim (25 k) = kot
and the limit from the right is
li = li 6—2x)=6—2=4
A S ) = g, (6=20)

To achieve continuity, the limits from the left and right must be the
sameand equal to f (1). Thus, k+ 1 = 4, so that k = 3, which leads to

_ 2?2 +3 if <1
f(x)_{62x if >1

However, the graph of f (x) over [0, 2] reveals a cusp at z = 1.

35

25

0 0.5 1 15 2
6-6: f(x) hasacusp at x =1

That is, f () is continuous at = 1 but is not differentiable at 2 = 1.

In fact, there are functions that are continuous at every point but which are
not differentiable at any point. For example, the function below is a fractal
interpolation function, which appears to have a cusp at every point on the graph.

2

6-7: A function which is continuous everywhere but differentiable nowhere
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Check your Reading |]s f (x) = |x| differentiable at 07 Explain.

Additional Points of Nondifferentiability

We saw above that if f (x) has a cusp at « = p, then f’ (p) does not exist. Other
points where f’ (p) fails to exist are points where a tangent line is vertical and
points of discontinuity.

EXAMPLE 6 Is f(x) = (z — 1)1/5 + 1 differentiable at x = 17

Solution: The graph of f (z) = (z — 1)1/5 + 1 reveals that f (z) has
a vertical tangent line when x = 1, as is shown below:

2
15 /

0.5

00 0.5 15 2

6-8: A vertical tangent line

Since the slope of a vertical line is undefined, f’ (1) does not exist.

EXAMPLE 7 Is the following function differentiable at x =1 :
x? if z<l1
f(@{ z+1 if x>1

Solution: Figure 7-9 reveals that f (z) is not continuous at x = 1.

|

6-9

Every zoom centered at 1 will contain both pieces of f (x), thus pre-
venting f (z) from ever being “practically the same” as a straight line.
Since y = f (z) does not have a tangent line at = 1, the derivative
£ (1) does not exist.
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Exercises:
Find f’ (p) at the given value of p, and then find the graph of the tangent line to
y=f(x) at (p, f(p)). Also, identify o(h) and show that it satisfies (1.29).

. fx)=22+1,p=1 2. f@)y=2%p=1

3. f(x)=a22+2x, p=2 4. f(x)=224+1,p=-5
5 f(x)=3x4+2,p=—-4 6. f(z)=mw p=0.2736
7. flzx)=2% p=2 8. flx)=a"+1,p=

Grapher: Graph each function on [—4,4], and identify the point(s) at which
the function is not differentiable. See the users manual for details on graphing
piecewise-defined functions.’

9. f(x)=(2®—-22+1)/3 10.  f(z) = |=? - 1|
1. f(z) = (2® +1.5)72 12. f(2)=(a®+a+ )4
e -1 2+ a
13. f(z)= :c2+1‘ 4. f(x) = 2]
15, f (@)= 222 16, f (x) = cos (|a)
_ 1—cos(x) _sin(|z])
17. f(x)—im| 18. f(x) = -
19.  f(z) =sin(|z|) 20. f(x)=tan(|z|)
21, f(x)=2a'/® 22.  f(x)= (2 —2)t/5
2 i f <1 249 i f <1
2. f(x){gx—l ﬁf o1 24 f(x){i3+2x ﬁf P
2 —1 if w<l1 3x-2 if z<l1
2. f(x):{:axm ;f i21 26. f(x):{x§1 ﬁf §21
[ a?sin(L) if x#0 [ sin(z)+1 if <0
27. f(x){ ! (z) oz 28. f(x){cos(x) YA

29. Find the number k for which the function

_f3z-2 if <1
f(x)_{kx+2 if x>1

is continuous at x = 1. Then determine if the function is differentiable at
that point.

3Many graphing programs will not permit the odd root of a negative number unless the
variable is first declared to be a real variable. See your manual for details.
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30.

31.

32.

Find the number k for which the function

- 22 +8z if x<2
f(x){x3+k if x>2

is continuous at x = 2. Then determine if the function is differentiable at
that point.

Find the number k for which the function

(@43 if z< -2
f(x)_{x?’—i-k: if ©>-2

is continuous at * = —2. Then determine if the function is differentiable at
that point.

Find the number k for which the function

[ =3x+k if z<-1
f(x){ @+1)? if z>-1

is continuous at x = —1. Then determine if the function is differentiable at
that point.

33. The curve in figure 6-10 is the graph of a function f (x). Determine the points

34.

35.

36.

82

where f (z) is not differentiable and explain why f (x) is not differentiable

at those points.

U /\
|
|
|
|
|
|
|
|
1
|
|
|
|

6-10: Exercise 33

Explain using definition 6.1 why the function f (z) = 22 + (z — 1)2/3 is not
differentiable at x = 1.

Here is an alternative method for demonstrating that if f () is differentiable
at x = p, then f (z) is also continuous at = = p.

(a) Explain why f(z) is practically the same as a linear function
L (z) = max + b for x near p.

(b) Prove that L (x) = max + b is continuous at p.
(¢) Explain why (a) and (b) imply f (x) is continuous at p.

Suppose a function f (z) is defined piecewise by

_J 9@ if <0
f(x)_{merb if >0

and suppose that both f () and g (x) are differentiable at = 0. How is m
related to the function g7
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37. Confirm the following identity assuming x # 0 and h sufficiently close to 0:

h2
2 (x + h)

L1,
x+h a2

Identify o (h) and show that it satisfies (1.29). What does this imply the
derivative of % is?

38. Confirm the following identity assuming x # 0 and h sufficiently small

h  h(Vet+h-Va)
NN AN )

Identify o(h) and show that it satisfies (1.29). What does this imply the
derivative of \/x is?.

VETh= i+t

39. Use Pascal’s triangle to find f’ (7) by expanding f (7w + k) and identifying
the coefficient of h in that expansion.

(a) f(z)=a°
(b) f(z) ==2'
() f(x)=2a®
(d) f(z)=2°

40. Based on the pattern observed in exercise 39, what do you expect f’ (7) to
be when f (x) = 2'9? What do you expect f’ (7) to be when f (x) = 21907

41. Computer Algebra System. If you have access to a computer algebra
system, use it to find f' (1), f'(2), and f'(3).

(a) f(z)=(010-2)(1—2z)(1-3z)
(b) f(x)=z(x+1)(x+2)(z+3)
(©) fl@)=(@—-1)*(@-2)7°(@-3)?
d) f@)=14+z(1+z(l+z))

1.7 Rates of Change

The Limit Definition of the Derivative

One of the most important applications of the derivative is as a measure of the rate
of change of a function at a given input. In this section, we develop the concept
of the derivative as a rate of change by first defining the derivative as a limit of
average rates of change.

If f(x) is a differentiable at an input p, then definition 6.1 implies that

fo+n)=f®) +f ®h+o(h)
Thus, f(p+h) — f(p) = f' (p) h+0(h), and also

flp+h)—f(p)
h

=f)+—
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Also by definition, the limit as h approaches 0 of ﬂ,?l is 0, and consequently,

fn ) J S =y H
fp)+0 = giﬂw

The result is the limit definition of the derivative.

Definition 7.1: The derivative f’ (p) of a function f (x) at a point p

is defined to be

lim . (1.34)

when the limit exists.

Let’s develop a geometric interpretation of definition 7.1. Given the points (p, f (p))
and (p+ h, f (p+ h)), the change in = is Ax = p+ h —p = h and the change in
yis Ay = f(p+h) — f (p). Thus, the slope of the secant line through (p, f (p))
and (p+h, f(p+h)) is

Ay _ change in outputs _ f(p+h) — f(p) (1.35)
Az change in inputs h .

which is known as the difference quotient of f over [p,p + h].
Graphically, definition 7.1 implies that the secant line through the points
(p, f(p)) and (p+ h, f (p+ h)) is nearly the same as the tangent line at (p, f (p)).

y=Ax)

_ secant line, slope = difference quotient
~~—tangent line, slope = derivative

(p+hfp+h))

)

7-1: Secant line approximation of a tangent line.

Indeed, secant line approximations approach the slope of the tangent line as h
approaches 0.

y=f(x)

(23(12))
Fh-
7-2: Secant approximation approaches tangent line as h approaches 0

We often rewrite definition 7.1 in the form

. Ay
/ _
Fo=0m s (139

to reflect the fact that the derivative is the limit of the slopes of secant line
approximations.
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EXAMPLE 1 Find f'(2) and the equation of the tangent line to the
graph of f(z) =1 when p =2.

Solution: Since f (2+h) = 2_%}” it follows that the change in y is

Ay=fC+R) @)= 57— 5

By finding a common denominator, Ay can be simplified to

2 2+h  —h

Ay

T2(02+h) 202+h) 22+h)

Since Az = h, the difference quotient is

Ay _ 1 (Ay) = 1 —h __ -
Ar - Az YT R\20 n)) T 2@+ h
Thus, the derivative at 2 is

Ay -1 -1
/ T =9 -
F@) =l S = e~ g

Since f (2) = 3, the equation of the tangent line is

[y

y=yp+m(w—p)=——;11(w—2)

which simplifies toy =1 — %x.

Check your Reading |Is f(x)= % a polynomial?

The Derivative as a Rate of Change

The difference quotient %ﬁ is also known as the average rate of change of f over
[p,p + h]. Thus, definition 7.1 says that f’ (p) is the limit of average rates of change
over arbitrarily short intervals containing p. For this reason, f’ (p) is interpreted to
be the instantaneous rate of change of f (x) at x = p. Consequently, the derivative
1’ (p) tells us how fast a process is changing at a given input p.
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Often we define the differential dy to be the small “rise” along a tangent line
due to a small “run” given by the differential dx, so that % is the slope of the
tangent line.

_ay
slope =70

dy
»Ap))

X
curve

tangent line
7-4: The derivative is also denoted by %

That is, the derivative can be written in differential notation as
dy ’

which further implies that % should be interpreted to be the instantaneous rate
of change of y as a function of x at a given input p.

EXAMPLE 2 A cylinder initially contains 500 ml of air at a pressure
of 1 atmosphere (atm). If the air in the cylinder is compressed by a
piston without changing its temperature, then Boyle’s law says that
the pressure P is related to the volume x by

p_ 50
T
What is 22 when z = 250 ml? What does it mean?

dz
same temperature

500 ml < ~ <
. x ml
initially <

7-5: Boyles law relates changes in volume to changes in pressure at constant temperature.

Solution: The change in pressure at a volume of 250 ml due to a
small change in volume Az = h is given by
500 500

AP:P(25O+h)7P(25O):250_‘_]17ﬁ

and as a result, the difference quotient is
AP P(250+h)—P(250) 1 500 9
250 + h

Ar h " h
(since division by h is the same as multiplication by }—ll ). Thus, the

derivative is ) 00
/ R TN _
P1(250) = Jim, & <250 +h 2>

The limit is of the form %, so we simplify by combining fractions
1 ( 500 2(250+h))

P (250) = - _
(250) o h \250+h 250+ 4

1 (/500 — 500 — 2h
Wb h 250 + h

N
T bR\ 250+ £
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Cancellation leads to a limit that can be evaluated using continuity:

_ —2
P’ (250) = li —
(250) = Jim =77 ~ 25010

Thus, the pressure is changing with respect to volume at a rate of
dP  —1 atm
de 125 ml

when the volume is x = 250 ml. We interpret this to mean that for
volumes close to 250 ml, the pressure increases at a rate of 1 atm per
each 125 ml decrease in volume.

EXAMPLE 3 Water is draining from a small hole in the bottom of
a cylindrical can. After ¢ minutes, the height of the water inside the
can is

y = (—0.3065¢ + 1.8323)>

where y is in inches. What is %} at t = 1 minutes after water begins
to drain? How is it interpreted?

< —

7-6: Water leaking from a Tank

Solution: The change in height after 1 minute due to a small change
At = h is given by

Ay = (—0.3065(1+ h)+1.8323)* — (—0.3065 - 1 + 1.8323)°
= —0.9353h + 0.93942h°

As a result, the difference quotient is

Ay _ —0.9353h + 0.93942h2

= = —0.9353 + 0.93942h
At h *

Applying the limit as h approaches 0 results in the desired instanta-
neous rate of change:
dy Ay mn
— = lim —= = —0.9353 —

dt s At min
That is, the tank is draining at a rate of about 0.9353 inches per minute
after 1 minute has elapsed.
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Check your Reading | What other method might we have used to find the derivative in example 37

Average and Instantaneous Velocity

If r (t) denotes the position of an object at time ¢, then the derivative 7/ (p) is
often written as v (p) and is called the instantaneous velocity of the object at time
t = p. Moreover, if r (t) is a polynomial, then we can calculate the derivative 7’ (p)
using the definition of differentiability.

EXAMPLE 4 Suppose a 7 (t) = 60t — 6.1¢? is the height of an object
above the surface of Mars, in feet, at time ¢ in seconds. How fast is
the projectile traveling at ¢ = 1 seconds?

Solution: To find the velocity r’' (1), we expand r (1 + h):

r(l+h) = 60(1+h)—6.1(1+h)*
53.9 4+ 47.8h — 6.1h>

Thus, 7’ (1) = 47.8, which means that the object has a velocity after 1
second of
ft

1) =47.8 —
v() sec

Rates of change are particularly important in the study of projectile motion. In
particular, in the late 1500’s, Galileo Galilei showed that if an object has a height
ro and a velocity vg at time ¢ = 0, then the height of the object at time ¢ is

1
r(t)=ro+uvot - §gt2 (1.37)

where g is the acceleration due to gravity, which is about 32 feet per second per
second near the earth’s surface.

EXAMPLE 5 Suppose a rock is dropped from a building that is 64
feet tall. Neglecting air resistance and supposing that time ¢t = 0
corresponds to the moment the rock is released, find the following:

a) The model (1.37) of the rock’s height r (t) as a function of ¢.
b) The time at which the rock strikes the earth.
¢) The velocity of the rock when it strikes the earth.

Solution: a) The initial height of the rock is 64 feet, and the initial
velocity is vy = 0 since the rock is not moving prior to being released.
Thus, (1.37) implies that at time ¢, the rock will have a height of

r(t) = 64 — 16t

b) The rock will strike the earth when the rock’s height is 0. Setting
r(t) = 0 yields

o

64 — 16> =
16(2—-t)(24+t) = 0
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The solutions are t = 2 and ¢t = —2. The rock is moving only for
positive time, so that we conclude that the rock falls for ¢ = 2 seconds
before it reaches the ground.

¢) The velocity when the rock strikes the earth is v (2) . To find v (2),
we notice that r (2) = 0 and that

r(24h)=64—16(2+h)* = —64h — 16h> (1.38)

Since the coefficient of h is —64, we conclude that the velocity with
which the rock strikes the earth is

Jt

2)=-64
v(@) sec

Check your Reading | What is % at t =2 when r(t) = 64 — 16t2?

Numerical Representations

It is not always possible to calculate the limit implied in definition 7.1. In such
cases, we often use a numerical representation to estimate the desired rate of
change.

EXAMPLE 6 Estimate the derivative of f (z) = sin (x) at = = 7.

Solution: Since Ay = sin (7 + h) — sin (7) and since sin (7) = 0, the
difference quotient is

Ay  sin(m+h)

Az~ h
Thus, f/ (x) is given by

/N .. sin(m4h)
fi(m) = Jim —

which we cannot (yet) evaluate in closed form. Instead, let us use a
numerical representation:

h |-01  -0.01 — 0 <« 001 0.1
IETA 10,998 -0.99998 — 7?7  -0.99998 -0.998

This leads us to estimate that

/ — lip N TR
)= o S

EXAMPLE 7 Suppose that the revenue R in thousands of dollars as
a function of the number x of a certain automobile available for sale is

R(z) = 2z + 221

How fast is the revenue changing when there are 100 automobiles?
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Solution: The difference quotient at = = 100 is

R(100+ k) — R(100) (21004 k) +2(100+1)"**) = (200 +2 (100)*1*)

h h
The derivative—i.e., the rate of change of revenue—is thus given by
the limit
dR (2(100+ B) +2(100 + 1)****) — (200 + 2 (100)***)
— = lim
dr  h—0 h

The limit cannot be evaluated in closed form, so we instead use a
numerical representation:

h |—0.1 -0.01 -0.001 — 0 <« 0.001 o0.01 0.1

ROOEM_RA00) 1790043  2.0043 2.0043 — 777 « 20043 2.0043 2.0043

As a result, the rate of change in the revenue after selling 100 automo-

biles is
ar = lim (100 +h) = R(100) ~ $20, 043 per car sold
dr  h—0 h
Exercises:

Use definition 7.1 to calculate f'(p), which is the instantaneous rate of change of
f (x) at the given input p.

1 f(],‘)=31,‘27 p=1 2 f(l’)_—l‘, p=1
3. f(x)=x+32% p=0 4 f(x)=22+32, p=1
5. f(x)=3z+2, p=1 6. f(x)=3z+2, p=2
7. fl@)=2% p=0 8. flx)=2a" p=0

1 1

1. f@)=xz+z7t p=1 12. f(x)=23-3Vz, p=1
13. f(zx)=2x'2, p=4 4. f(zx)=2'3, p=38

Each of the following curves is the model of a distance traveled r in feet at a given
time t in seconds. Find the velocity of the object at the given time. Be sure to
include units.

15. r=—16t%, p=1 sec 16. r=—6.1t2, p=1 sec
17. r=64—16t%, p=1 sec 18. r=64—6.1t%, p=1 sec
19. r =196t —6.1¢2, p =0 sec 20. r =196t — 16t2, p =2 sec
2. =6+ 20 —6.142, p= 0.5 sec 92, =20+ 68t — 162, p= 0.3 sec
23. rog=064,v9=0,p=2sec 24, rog=064,v9=0, p=1 sec
on the earth on Mars (g = 12.2 Ee%)

Ezxercises 25-38 ask you to calculate and interpret rates of change. In doing so, be
sure to include the units for the rate of change (such as dollars per shirt, inches
per minute, etc.).
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25. Estimate f’' (27) when f (6) = sin () using a numerical representation, where
f(0) is in meters and @ is in radians.

26. Estimate f’(0) when f (0) = tan () using a numerical representation, where
f () is in meters and 6 is in radians.

27. An oil slick’s area is increasing at a constant rate of = square miles per hour
has a radius r at time ¢ of

7 (t) = V't miles

How fast is the radius increasing after 1 hour?

28. In the oil slick in exercise 27, suppose instead that the radius r as a function
of t is given by
r = bt miles

How fast is the area of the slick increasing after 1 hour?

29. Use (1.37) to explain why the vertical position of an object thrown straight
up with an initial velocity of 12 feet per second from a height of 4 feet above
the earth is given by the position function » = —16¢2 + 12t 4+ 4. How fast is
the ball moving after 1 second?

30. Suppose a ball is rolled off of a level table which is four feet high.

(a) Use (1.37) to explain why the height r (¢) in feet of the ball at time
t seconds after it leaves the edge of the table is

r(t) =4 — 16t

(b) What is the average velocity of the ball as it falls from ¢t = 0.4 to
t = 0.5 seconds?

(¢c) What is the average velocity of the ball as it falls from ¢ = 0.49 to
t = 0.5 seconds?

(d) What is the velocity of the ball when it strikes the ground at ¢ = 0.5
seconds?

31. A certain object is dropped from a height of 64 feet on Mars. It’s height t
seconds after being dropped is

r(t) =64 — 6.1£2

Use r (t) to answer the following questions.

(a) What is the average velocity of the object as it falls from time ¢t = 1
to time ¢t = 1.17 (i.e., h =0.1)
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32.

33.

34.

35.

36.

37.

38.

92

(b) What is the average velocity of the object as it falls from time ¢ = 1
to time ¢ = 1.017 (i.e., h = 0.01).
(¢c) What is the instantaneous velocity of the object at time ¢ = 17

(d) What is the velocity of the ball when it strikes the ground at t = 1
seconds?

A rock is dropped from a height of 80 feet on Mars. It’s height t seconds
later is

r(t) = 80 — 6.1£2

The same rock dropped on earth from 80 feet would have a height ¢ seconds
later of

s (t) = 80 — 162

(a) How long until the first rock hits the surface of Mars (i.e., until

r(t) =0)?
(b) How long until the second rock hits the surface of Earth (i.e., until
s(t) =0)7

(c) What is the velocity of the rock when it strikes the surface of Mars?
(d) What is the velocity of the rock when it strikes the surface of Earth?

Let S(t) = 2t? + 20t + 1 be the number of individuals in a large metropolitan
area showing cold symptoms at time ¢ in days since the first individual in
the area showed cold symptoms. What is the rate of change of the number
of people showing cold symptoms initially (i.e., at ¢ = 0)7

In exercise 33, what is the rate of change of the number of people showing
cold symptoms after 20 days?

A 3.25 inch tall soup can is filled with water and a small hole is punched in
the bottom of the can allowing the water to drain out. The height y in inches
of the water in the can at time ¢ in minutes since water began draining is
modeled by

y = 0.09t> — 1.08t + 3.25

How fast is the height of the water dropping initially? After 1 minute?

The temperature in degrees Celsius of an object is for a short period of time
approximated by T(t) = 2.85t% — 0.12¢ + 31 where ¢ is the time in minutes
since the initial temperature reading. How fast is the temperature changing
after 15 minutes?

Let p = —0.007x + 32 be the price per shirt in dollars when x numbers of
shirts are sold and let R denote the revenue from the sale of shirts.

(a) Explain why R = xp and determine the revenue curve by substi-
tuting for p.
(b) What is € when 2 = 1000? What does it mean?

(¢c) What is the average rate of change of R as  changes from 1000 to
1001. What does it mean? How is it related to (b)?

Let P = t3 — 2t — 30t + 88 be the population of a suburb of a certain city
at time ¢, where t is the number of years since December 31, 1985.

(a) How fast is the suburb’s population changing initially?
(b) How fast is the suburb’s population changing after 15 years?
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39. Write to Learn®: On most automobiles, a speedometer reports the ratio
of the circumference of the driveshaft to the time required for the driveshaft
to make one revolution. Write a short essay which uses the concept of rate
of change to explain why the speedometer reading at a given time is a good
approximation of the instantaneous speed of the automobile.

40. Galileo used inclined boards to study velocity. In particular, he showed that
neglecting friction, a ball released from a point on a board inclined at an
angle 6 would after ¢ seconds have traveled a distance in feet of r (t) =
16t2 sin 0

B

7-8: Ball is rolling down a plane of length L

(a) What is r (¢) when the board is inclined at an angle of § = 30°7?
(b) How long does it take for the ball to roll four feet?

(¢) Construct a table of average velocities at the time in (b) with h
becoming closer and closer to 0. What is the velocity of the ball
after it has rolled four feet?

(d) Try it out! Use a stopwatch to time a ball which rolls down a four

foot long board inclined at a 30° angle. Does it match the result
in (b)?

Self Test

A variety of questions are asked in a variety of ways in the problems below. Answer

as many of the questions below as possible before looking at the answers in the back
of the book.

1. Answer each statement as true or false.

(a) A polynomial must have only one output value for each input value
(b) A function must have only one input value for each output value.

(c) For y = a,a™ + ap_12" " + ... + a1x + ap, the tangent line at an input
of 0is y = a1 + agp-

(d) If f(h) = ao + a1h + azh?® + ... + a,h™ and h is close to 0, then the
higher powers of h contribute more to f(h) than do the lower powers
of h.

(e) A tangent line to a curve cannot intersect a curve more than once.

(f) For a curve given by y = f(x), the slope of the tangent line to the curve
at a point (p, f(p)) may in some cases differ from f'(p).

(g) The expression @ is the slope of a secant line to the curve y = \/z
through (1,1).

4 “Write to Learn” exercises are applications in which the solution should be presented with
complete sentences and supporting explanations.
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(h) The slope of the secant line to a curve gives the average rate of change
of the function between two points on the curve, whereas the slope of
the tangent line gives the instantaneous rate of change of the function
at a point.

(i) }Lir% g(h) is always the same as g (0).

(j) For y = f(x), if  has units in meters and y has units in kilograms
then % has units in kilograms/meter.

2. Answer each statement as true or false.

(a) From the table

¢ |01 001 0001 0.0001 0.00001
F(r) |21 201 2001 20001 2.00001

one can conclude that 1in}) flz)=2.
xr—
(b) If a function is continuous at a point p, then the function must have a
limit as = approaches p.

(¢) If a function is continuous at a point p, then the function must have a
derivative at p.

(d) 1f lirr%) f(z) = 3, then the curve y = f(z) has a horizontal asymptote of
y=3.
e) If lim f(z) = L, then f(z) must be continuous at p.

T—p
f

g) Every rational function is continuous everywhere.

(
(
(
(h) If lim f(x) =0 and lim g(x) = 0 then it follows that lim L) _ g

)

) Every polynomial function is continuous everywhere.
) m gt
)

(i) dy is the change in the y-coordinate along the tangent line to y = f (z)
as x changes from p to p + dz.

(j) If f(h) = (2h + 3)° then o(h) = 2h

. Which of the following is the equation of the tangent line to y = 222 —5x+3
when p = 0?7

(a)y=222-5z (b)y=222+3 (¢)y=-Hr+3 (d)y=2x+3

. Which of the following is the slope of the tangent line to y = 1+ x + 222 at
p=237

(a)%=1 (b)E=2 (g%=3 (L=13 (%=22 (f)

14

. Which of the following is not true of the limit

. V3+h—3
lim ————
h—0 h
(a) Vo +2
(b) Tt is f/(2) when f (z) = vz +1
(c) Tt is f'(3) when f(x) =+/x
(d) The limit does not exist.

a) It is f/ (1) when f (z)
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6. If f(x) =2+ 5z + 222 and p = 2, then which of the following is true:

(a) f(2+h)=20+13h+2h% and f’(2) = 20
(0) f(24h) =2+ 5h+2h? and f/ (2) = 5

(¢) Zooming on the graph of f (x) centered at p = 2 produces what appears
to be a straight line with a slope of 13.

(d) Zooming on the graph of f (x) centered at p = 2 produces what appears
to be a straight line with a slope of 5

7. If }Lmb f(z) = /8/3 and glﬁ:rrlcg(x) = /2, then lim[f(z)g(x)] =

T—c

(a) V8/3+v2 (b) V8V2 (o) V4/3 (d) 4/3

.t —k?
ST T
(a) 1/k (b) k (¢) does not exist d) 2k (e) 2

9. How many horizontal asymptotes does the following function have?

_ [+
f @)= iz + 2
(a) 0 (b) 1 (c) 2 (d) 3

2 _
10. Which of the following intervals contains the value of lim %813
Tr——00 x

(a) (—o0,—2) (b) (-2,0) (¢) (0,3) (d) (3,00) (e) does not exist

x—1

p = 1 is the function f (z) = %"—1 within € = 0.1 of 1 but not within
¢ = 0.01 of 1 for all z # p in that neighborhood?

11. Given that lim1 22° 3o+l _ 1, on which of the following neighborhoods of

(a) (0.94,1.06) (b)  (0.96,1.04) (¢) (0.996,1.004) (d)  (0.999, 1.0

12. Each of the following functions is not continuous at a point for a different
reason. Give the reason for the discontinuity of each one.

. 20 —3 if x<2
| 22-3 if z<2 _ : —
@ f@={%73 %15 o ﬂ@{ AN
2 .
© fw="=0 @ ra@={ 5 g7

13. What value of k£ that makes the following function continuous at x = 17
2z — 3, r<l1
f@)={ i
Is it differentiable at © = 1 for that value of k? Why or why not?
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14.

15.

16.

17.

18.

19.

20.

Evaluate the following limit, if it exists:

The height at time ¢ of a ball thrown upward is given by r(t) = 4+ 10t — 16t2

(a) How far above the ground is the ball at time ¢t = 0.57

(b) What is the average velocity of the ball as it travels from ¢ = 0.5 to
t=0.517

(c) What is the average velocity of the ball as it travels from ¢ = 0.5 to
t=0.5017

(d) What is the ball’s instantaneous velocity at ¢t = 0.5? Is it falling or
rising at ¢t = 0.57

Which of the following limits is of the form %?
. a2 -2r-1 .ox?—1 . x—2 .
(@) Jm——— 0 m== () lImm— @ ln =

. o (=27 -1
What is the value of the limit hm1 -7

Use the limit definition of the derivative to find f’ (2) when f (z) = v/z + 2

Write to Learn: In 2 or 3 sentences, prove that 1ir112 (2x — 1) = 3 by finding
xTr—

for each ¢ > 0 a neighborhood (a,b) of p such that |f () — L| < ¢ for all
x in (a,b) with & # p. (The endpoints a and b of the interval should be in
terms of € ).

Write to Learn: Write two sentences which explain how we would compute
f'(2) when f(x) = 2% + 2.

Looking Ahead:

The laws of exponents and the properties of the trigonometric functions will
be important in the next chapter. Thus, in the next few paragraphs we review
these important concepts.

If @ > 0 and if n is a positive integer, then

a"=a-a-...-q
N———

n times

Moreover, if n is a positive integer, then we define

96
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If m,n are integers with n > 0, then f (z) = 2™ — a™ is a polynomial with only

one positive real root, which is defined to be a™/™.

n even n odd

L1: Definition of a™/™

It follows that if p and ¢ are positive integers, then

a’-a!=a-a-...ca-a-a-...-a=a-a-...-a=aP?

p times q times p+q times

For example, 72 -7 = (7-7) - (7-7-7) = 7**3. Likewise, we can show that

qtimes

—_——
(a”)q:ap-ap-...-ap:ap+p+"'+p:apq
—_————
q times
For example, (52)3 = 52.5%.5% = 5222 = 523 Moreover, a" = —L implies that

a™a~"™ =1, and in addition,

n times

— |
n
a :a'a'...-a:anﬁn
a™ a-a-...-a
N——
m times

As a result, Z—: = a" ", which implies that a® = 1.

KEY CONCEPT: Laws of Exponents
If a > 0 and m,n are integers, then
(1) ama = a7n+n

(2) (an)”” = g
(3) a?tTm = a_n

am™m
(4)a® =1

In addition, if @ > 0 and b > 0, then a fifth law of exponents says that

(5) (ab)" = a"b"

(422)° "

EXAMPLE 1 Simplify the expression 5
Try

y > 0.

assuming = > 0 and

Solution: To begin with, property (5) implies that

(4x2)3y7 B 43 (1:2)3y7
Try?  Tay?
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Property (2) then implies that

(41:2)3317 B 43 (1:2)3317 B 6425y7
Tey?  Taxy? Txy?

As a result, property (3) implies that

(41:2)33/7 _ 4 (1:2)33/7 _ 64ay7 %xaq 7—2 _ 6—4x5 5
Tey?  Taxy? Twy? 7 Tty

The study of trigonometry begins with radian measure. In particular, if P is a
point on the unit circle and if 6 is the angle between the positive z-axis and the
ray from the origin through P, then the radian measure of 6 is the arclength on
the unit circle measured counterclockwise from the z-axis to the point P.

L2: The radian measure of § is the length of the arc
it subtends on the unit circle

(More generally, the radian measure of an angle is the ratio of the arclength of a
circle subtended by that angle to the radius of the circle. Thus, radian measure
is dimensionless, which is to say that it has no units like feet, meters, grams, or
pounds).

One cycle—that is, one time around the unit circle—has a measure of 2. Other

angles in radian measure are likewise defined as fractions of the circumference of
the unit circle.

2n % T T
113 N iﬁ i3
3 3 4 3 4£
Sn n
f\ 6 6
) m
2n
=5
6 -n
_ _ —3n a1
% 3n Tn 4 4
2

L3:0=m,60=2r60=7%, and § = 3%

Negative angles correspond to angles measured clockwise from the positive z-axis.

If 0 is the radian measure of the angle formed by the z-axis and the ray from
the origin through a point P on the unit circle, then the coordinates of P are

98 LIMITS, TANGENTS, AND RATES OF CHANGE



(cos (0),sin(6)).°

/ P(cos(0),sin(0))
0

(1,0)

- cos(8)— |(1,0)

L2: Definition of cos () and sin ()

Sines and cosines of some common angles are summarized below:

T A%[ f[ :

. 1 2 3
sin(f) | 0 A% ﬁ 2 1
cos(f) | 1 5 5 5 0

The reference angle 6 of an angle 0 is defined to be the smallest positive angle
between the termination of # and the z-axis.

[N (7
NN

L4: 0 is the reference angle 6

The quadrant of an angle # determines the sign of the sine or cosine of that
angle, as shown in the table below:

sin(0) > 0 above x-axis " | 8

= — 2

? 2

L N\ Y

sin(0) - | ; o

sin(m)=0- 0 L sin(0)=0 2 | 0 &

\\ ) o cos(0) =

/ V \ 9'7

\ / S \\ T

in(0) < 0 bel -axi

sin(0) elow x-axis cos(’%t)=0

L5: Signs of Sine and Cosine

The reference angle is then used to determine the magnitude of the sine or cosine.

EXAMPLE 1 Compute sin (4F)

Solution: We first recognize that the angle is in the third quadrant
with a reference angle of § = %. Since the third quadrant is below the

50 is the Greek letter “theta,” and is often used to denote angles.
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z-axis, sin (%) is negative. Combined with the value from the table

| sin (4_”> SR

above, we find that
3 2

Besides the sine and cosine function, we study the other four trigonometric func-
tions:

tan (x) = ::)I; ((i)) (tangent of x) cot (z) = :?j ((2 (cotangent of z)
sec (x) = cosl(x) (secant of x) cse(z) = sinl(:z:) (cosecant of x)

if let « = cos () and y = sin (#), then (??) implies that

22 +y? = cos? (A) +sin? (0) = 1

Exercises
Simplify the following expressions assuming x > 0 and y > 0.
1. (3c2y)3 2. x%x32®
2\3/2 4 3 2
3. (4h)" 4. (22)° (zy)
3 02 \?
(122y) ()
8x3y? ' (823)% 22
Evaluate the following
7. cos(m/6) 8. sin(7/6)
9. cos(bm/6) 10.  sin(57/6)
11. cos(7m/6) 12.  sin(77/6)
13.  cos(m/3) 14.  sin(3w/4)
15.  cos(4w/3) 16. sin(57/4)
17. Convert the radian measurement to degrees.
i 4 3m T
= = = = 32
W% BT ©F @I (03250

18. Convert the degree measurement to radians.
(a) 135° (b) 310° (c) 215° (d) 15° (e) 128°
19. Evaluate the following by first determining the reference angle and quadrant
of the angle.

20. In this exercise, we work with the identity sin (2z) = 2sin (z) cos (z)

(a) Obtain this identity from (2.43) by letting a = z.
(b) Expand the following and simplify to a function of sin (2x):

(cosx + sin x)2
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The Next Step... Why Tangent Lines?

Why do we study tangent lines? Why not simply study approximation in
general? Our next step is to show that tangent lines provide information about a
curve that cannot be obtained from other types of approximations.

In physics, it is shown that a ray of light reflects off of a flat surface at the
same angle it strikes the surface.

Law of Reflection: If a ray of light is reflected off of a flat surface,
then the entire path of the light lies in a plane normal to the surface
and the the angle of incidence is equal to the angle of reflection.

NS-1: Law of Reflection

But what if the surface is curved? How do we predict the angle of reflection of a
ray of light off of a curved surface?

To answer that, we notice that if the surface has a tangent at the point of
reflection, then it is practically the same as the tangent line to the surface at
that point. Thus, we may suppose that the light reflects off of the tangent in red
instead of off of the surface.

NS-2: Reflection off of a curved surface

We can use tangent lines to study properties of parabolic reflectors, which are
used in a variety of applications including satellite dishes and headlight reflectors.
For example, let us consider that if the cross-section of a parabolic reflector is
given by

$2

T4
then any vertical ray which strikes the reflector will be directed to the focus of the
parabola.

Y

Focus

NS-3: Parabolic Reflector Directs Vertical Rays to a common Focus
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Let’s use this to determine the coordinates of F. To do so, let us assume a

2
i
the y-axis. If B denotes the y-intercept of the tangent line at A, then the law of
reflection implies that the triangle AF' B is isosceles.

vertical ray strikes the reflector at a A = <a and continues to a point F' on

x2

A/yZZp
F o /4

—
(03

B
NS-4: AABF is isosceles

Moreover, the perpendicular bisector of the line segment AB passes through

F. Thus, we need only show that the slope of AB is 2%) and that the midpoint
of AB is (%, O). It then follows that the perpendicular bisector of AB is the line
with slope =2 through the point (£,0). The y-intercept of this line is the focus,

F.

Write to Learn Complete the computation described in the last paragraph to
determine the coordinates of F, and then write a short essay with complete
sentences which begins with the law of reflection and ends with the demon-
stration that a parabolic reflector reflects vertical rays toward the focus F.

Write to Learn Locate the focus of the parabola given by y = 3z — 22 by
determining where the reflection of the vertical ray x = 1 intersects the
vertical line z = 1.5 which is the axis of symmetry of the parabola . Report
your results in a short essay using complete sentences.

Write to Learn Suppose that we choose the point on the parabola such that
the segment AF in NS-4 is horizontal. Show that this happens when the
tangent line has a slope of 1. Use these ideas to locate the focus of the
parabola below.

NS-5

Report your results in a short essay using complete sentences.

Write to Learn Go to the library or explore the internet to learn more about
reflection properties of curves. Report your results in an essay using complete
sentences and providing references to your sources.

Group Learning Suppose a reflector has a cross-section in the shape of the
curve y = x* — 222 4+ 1. What are the reflections of the vertical rays through
[—2,2] with increments every 0.25 units (i.e., the rays x = =2, x = —1.75,
x = —1.5, and so on)? Have each member of the group determine a set of
such reflections, and then plot all the reflections on a common grid. Discuss
the results and then present the reflections and the results in either a formal
paper or a formal presentation.
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Advanced Contexts
(Advanced contexts are included at the end of each chapter for those
students who want something a little more challenging)

Ellipses and hyperbolas also have reflection properties related to their foci.
In particular, if @ > b > 0, then the ellipse

2 2

x
2t =l

<

has foci at (c,0) and (—c,0), where the number c satisfies b + ¢ = a?.

b

-b
NS-6: Foci at (—c,0) and (c,0)

If we let F} denote the focus at (—¢,0) and let F5 denote the focus at (¢,0), then
a ray emanating from F} will be reflected to the Focus at F», and vice versa. To
prove this fact, we need only show that o = (3 in the figure NS-7, assuming that
BF; is parallel to PFs.

BB
B

F, F, Ja

/)

NS-7: Need to show that a = 3

To do so, we need only prove that the triangle PF} B is isosceles.

Exercise 1 Let (x1,y1) denote the coordinates of P. What is the equation of the
line through P tangent to the ellipse in figure NS-77
Exercise 2 * What are the coordinates of B in figure NS-7¢

Exercise 3 * Show that |BF1| = |PFi|. What does this imply about a and 37
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2. THE DERIVATIVE

In chapter 1, we explored tangent lines, linearizations, and rates of change at a
specific point. In the last section of chapter 1, we used the notation f’(p) to
denote the derivative of a function f (x) at an input of p.

We adopted this notation because the derivative is itself a function. It maps
inputs p to rates of change f’ (p). Moreover, treating the derivative as a function
allows us to develop rules for computing derivatives symbollically and strategies
for applying derivatives to problems throughout mathematics and science.

In this chapter, we explore rules for finding derivatives of an important class
of functions known as the elementary functions. Doing so will allow us to make
calculus broad in scope by allowing us to define and explore some of the most
important functions encountered in mathematics and science.

2.1 The Derivative Function

The Derivative as a Function

The derivative is itself a function, in that it maps an input p to an output that
can be interpreted as either the slope of tangent line to y = f (x) at p or as the
rate of change of f(x) at p. Thus, throughout the remainder of this chapter, we
concentrate on the process of producing the derivative function, a process known
as differentiation.

In particular, the derivative as a function of = is denoted by f’(z), which by
definition 7.1 satisfies

Alternatively, when f (z) is differentiable at z, then we can compute f’(x) by
identifying it in the expansion of f (z + h):

flath)=f@)+f(@)h + o(h)

Moreover, we define the symbol d—i to mean “the derivative of”, so that the equa-
tion

(@) = £ (@)

literally means “f’ (z) is the derivative of f (z).” We call <& the derivative operator
since it represents the act of transforming a given function into its derivative
function.

EXAMPLE 1 Find f'(z) for f (z) = 2%

Solution: If f (z) = 22, then f (z +h) = (z + h)?, so that
f(x+h)=a®+2xh + h?
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Since 2z is the coefficient of h, the derivative of f (x) = 22 is f/ (z) =
2x. We write this in operator notation as

2
2 =9
dacx T

EXAMPLE 2 Find f' (z) for f (z) = 23.

Solution: If f (z) = 23, then
f@4+h) =@+h)?=a®+32>h +3zh>+h?
which implies that f’(x) = 322. In operator notation, this is written
d 3

ax = 322

In general, if f(x) = 2™, then f(z+h) = (x+h)", which is expanded using
Pascal’s triangle. Notice, however, that the first two coefficients of the n'" row of
Pascal’s triangle are 1 and n, respectively. :

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1
/! /

n |1 n

As a result, the expansion of (z + h)" is of the form
(x+h)"=2"+nz""'h + o(h)

which implies the derivative of f(x) = 2™ is f’(x) = naz""!. In operator form,
this becomes our first rule for computing derivatives:
. o d 1
The Power Rule: If n is a positive integer, then d—x" = na”
x

EXAMPLE 3 Use the power rule to compute “£2% and 3.

Solution: When n = 2 we have

d
%xz =2*"1 =2z
and when n = 3, we have L% = 322,

Check your Reading | Use the power rule to evaluate %x‘l.
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Derivatives of Polynomials

If f (z) and g (z) are polynomials and 7 (z) = f (z) + g (x), then

r(x+h)= f(x+h) + g(x+h)
f@)+ f(x) h+ o1 () + g(x)+ g (x) h+ o2 (h)

Collecting common terms yields
r(x) = f(2)+g () +[f (&) + g (@) h+ o1 (h) + 02 (h)]
This implies that ' (z) = f' (z)+ ¢’ (z) . In like fashion, we can obtain each of the

following derivative rules:

Theorem 1.2 If f (x) and ¢ (x) are polynomials and k is a constant,

then
L@ ro@) = wf@+ g (21)
L@ 9@ = wf@) - g
Lkf@) = kaf@
d
~k =0

Theorem 5.2 and the power rule allow us to compute the derivative of a polynomial.

EXAMPLE 4 Find f' (z) for f (z) = 2% + 3z + 2.

Solution: Theorem 5.2 implies that

d d d d
/ _ = 3 _ (=23 o1 el
f(x)fdx(:c + 3z +2) (dwx)+3<dxx>+<dx2>
Since 2 is a constant, its rate of change is 0. Thus, the power rule

implies that
f'(x)=3224+3-12°+0=322+3

EXAMPLE 5 Find f'(z) for f (z) = 2% (2 +5).

Solution: First, we distribute the 22 to obtain f (z) = 2 + 522. As
a result, the power rule and theorem 5.2 imply that
d

f(z)= pm (2 +52%) = 32 + 10z

Moreover, we define the second derivative f” (x) to be the derivative of f/ (x), we
define the third derivative ' () to be the derivative of f” (x), and in general, we
define the n'" derivative f(™) (z) to be the derivative of f(*~1) ().
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EXAMPLE 6 Find f/, f”, f", and f® for f (z) = 2° 4 62° + z

Solution: The first derivative is

f () = difc (z° + 62° + z)

d s d d
(dxx)+6<dxx)+dxx

= 5zt 4+1822+1

The second derivative f” () is then obtained by differentiating f ().
That is,

f’(x) = dilx (52* + 182 + 1)

= 202° + 362

The third derivative "/ (x) is given by

" (x) = d% f" (x) = 60> + 36
and the fourth derivative is
FO ()= L (602 + 36) = 120z
dx

Check your Reading | What is the fifth derivative f©® (z) of f(x) = x° + 623 + 22

Velocity and Acceleration

If 7 (t) denotes the position of an object at time ¢, then 7’ (¢) is the instantaneous
velocity of the object and is usually denoted v (t). Moreover, r” (t) = v’ (t) is the
instantaneous rate of change of the velocity, which is known as the acceleration,
a (t), of the object at time ¢. That is, we define

a(t) =r"(t)

In differential notation, velocity and acceleration are given by

dr d?r
V= — and a(t) = —
dt *) dt?
where % is the differential notation for the second derivative.

EXAMPLE 7 Find the velocity and acceleration of an object in free
fall whose height in feet at time ¢ in seconds is

r(t) = 64t — 16t
Solution: The velocity v (t) is the derivative of r (¢), which is

v(t):%:64—32t
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The acceleration a (t) is the second derivative of r (t) , which is

d’r d

EXAMPLE 8 Find the velocity and acceleration of an object whose
position at time ¢ is given by r (t) = ¢ (t — 2)°.
Solution: First, we expand the square to obtain
r(t) =t (t* — 4t +4)
Distributing ¢ then yields r (t) = t> — 4t + 4¢, so that the velocity is

t)=— = — (t° — 4t 4) =3t° -8t +4
As a result, the acceleration is given by
&r d . ,
a(t) = == (3t =8t +4) =6t — 8

Check your Reading | How is the acceleration a (t) of an object related to its velocity?

More with Objects in Free-fall

Recall that if an object in free fall has a height rg and a velocity vy at time ¢ = 0,
then its height r (¢) at time ¢ is given by Galileo’s model of projectile motion,

1
r(t) =ro + vot — Egt2 (2.2)

where g denotes the acceleration due to gravity near that planet’s surface. The
velocity v (t) = r/ (t) is the rate of change of the object at time ¢, which can be
used to study the motion of the projectile.

For example, an object reaches its maximum height when its velocity changes
from positive to negative. That is, the time ¢ at what the object reaches its
maximum height is the same time at which v (¢) = 0. Thus, to find the maximum
height of an object in free fall, we solve v (t) = 0 for ¢ and then compute r at that
time.

EXAMPLE 9 Find the model (2.2), the velocity v (t), and the max-
imum height of a rock which is projected vertically from the earth’s
surface with a velocity of 64 feet per second (i.e., about 43 mph).

Solution: Its initial height is g = 0, so (2.2) implies that its height r
at time ¢ is
r(t) = 64t — 16t

since g = 32 feet /sec? near the surface of the earth. It follows that the
velocity of the rock is v (t) = 64 — 32¢. If we set v (t) = 0 and solve, we
obtain

64—-32t = 0

t = 2 sec
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That is, the object must have reached a maximum height when ¢ = 2.
Substituting ¢ = 2 into r (¢) then yields the rock’s maximum height,
which is 7 (2) = 64 (2) — 16 (2)* = 64 feet.

64 — @ Maximum height of 64 feet

Tl after r=2 seconds

1-1: Projectile launched from the earth’s surface

EXAMPLE 10 Find the model (2.2), the velocity v (¢), and the max-
imum height of a rock which is projected vertically from the surface of
Mars with a velocity of 64 feet per second.

Solution: Near the surface of Mars, the acceleration due to gravity is
g = 12.2 ft./sec®. Thus, the rock’s height at time ¢ is

r(t) = 64t — 6.1¢2

The velocity of the rock is v (t) = 64 — 12.2t, so that setting v (t) =0
yields

64—122t = 0
t = 5.246 sec

Substituting t = 5.246 into r (¢) yields
7 (5.246) = 64 (5.246) — 6.1 (5.246)* = 168 feet, 10 inches

That is, the rock will rise much higher above the surface of Mars than
it would above the surface of the earth.

Exercises:
Find f'(x) and f" (x).
1. f(x)=2° 2. f(x)=2a"
3. flx)=22+2x+3 4. f(x)=222+3
5. f(z) =328 + 22 6. f(z)=a—223
7. f(x)=22%+5xr—42?-10 8 fr)=22*—-223+2+1
9. f(x)=3x5—4a® +22% — 23z + 17 10.  f(x)=32° — 1722+ 22+ 1
1. f(z) = (22 + 1)* 12, f(z) = (22 +3)?
13. f(z)=2-=z 14. f(z)=6-5z
15.  f(z) =03z +2.5 16. f(z)=3.2—0.7z
17.  f(z) = 0.1522 + 0.342 — 0.62 18, f(z) = 104z — 3.722 + 9.8z
19.  f(x)=(2241) (z° +2) 20.  f(x) = (2 —5)%(42% + 0.5z)
2l f(z)= 2 +2 22, f(z)= 2t + 203

T T+ 2
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Find the velocity and acceleration of an object whose position at time t is r(t):

31.

32.

33.

34.

35.

23. r(t) = —16t2 24. 7 (t) = 64— 16t>

25. 7 (t) =50t — 4.8¢2 26. 7 (t) =75+ 17t — 4.8t
27. r(t) =35t — 10t* 28. 7 (t) = 35t3 — 10t*

29. r(t) =t(16 —t) 30. r(t)=(t+1)(16—1)°

Find the specified derivatives. These must be done in the order given.

(a) Find ¥ (z)if f(z) =2 + 3z + 1
(b) Find f© (2) if f (z) = 2° + 32® + 22+ 3
(¢) Find f( (z) if f (z) = 2°

) =a’

)

) )
(d) Find f® (z) if f (x
(e) Find fO (x) if f (z) = 2'°
(f) Find f19) (z) if f(z) = 2% + 332% + 17250 + 3277 — 13227 + 1

What is the general form of a function whose second derivative is identically
zero?

Using (2.2), find the height r(¢) of the object above the ground—i.e., the
earth’s surface—at time t. Then velocity of the object..

(a) An object is dropped from a window 30 ft. off of the ground.
(b) A rock is thrown vertically upward with an initial velocity of 20
ft./sec. The thrower releases the object 5.5 ft. above the ground.

(c) A ball rolls off of a level table 4 ft. high. (i.e., initial vertical
velocity is 0)

Supposing that the surface gravity of Mars is approximately 12.2 ft./sec.?,
use (2.2) to find the function r(¢) giving the height of the object above the
surface of Mars at time ¢. Then find the velocity v (¢).

(a) An object is dropped from a window 30 ft. off of the ground.

(b) A rock is thrown vertically upward with an initial velocity of 20
ft./sec. The thrower releases the object 5.5 ft. above the ground.

(¢) A ball rolls off of a level table 4 ft. high.

(d) An object drops from a window 38 ft. above the ground. It strikes
a deck on the first floor, 12 ft. above the ground. It then rolls

horizontally for 2 seconds before falling the remaining distance to
the ground.

Grapher: Suppose that a baseball is thrown upward from a height of 7.5
feet with an initial velocity of 73 feet per second (i.e., about 50 miles per
hour). If thrown near the earth’s surface, the position of the object at time
tis

7 (t) = 7.5+ 73t — 16t*
while if thrown near the surface of Mars, the position of the object at time
tis

s(t) = 7.5 4 73t — 6.1t
Use a grapher to answer the following:

(a) How much higher will the ball’s maximum height be on Mars than
on the Earth?
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(b) How much longer will it be aloft on Mars than on the Earth?

36. Suppose that a baseball is thrown upward from a height of 7.5 feet with an
initial velocity of 110 feet per second (i.e., about 75 miles per hour).

(a) What is the position of the ball ¢ seconds after release if the thrower
is standing on the earth?

(b) What is the position of the ball ¢ seconds after release if the thrower
is standing on Mars?

(¢) How much higher will the ball’s maximum height be on Mars than
on the Earth?

(d) How much longer will it be aloft on Mars than on the earth?

37. Graph the implied height functions above each planet, and then use the
graphs to answer the following:

(a) Which remains aloft for the longest period of time—a ball dropped
from 100 feet on the earth’s surface or a ball dropped from 30 feet
on Mars’ surface?

(b) Which has the greatest height—a ball thrown upward from the
earth’s surface with an initial velocity of 100 feet per second or a
ball thrown upward from Mars’ surface with an initial velocity of
50 feet per second?

38. * A rock thrown into the air from an initial height of ry = 0 returns to the
earth’s surface T seconds later. What is the maximum height of the rock as
a function of T'7

39. Grapher: Compute f’(x) for f () = 2® — 322 + 1. Then graph f (x) and
f' (z) on [—1, 3] . Where does the largest value of f (z) occur? At what value
is f' () = 07 Can you explain the connection here?

40. Grapher: Use f (z) = 23 — 322 + 1 to answer the following:

(a) Graph both f (z) and f’(z) on [—1,3]. What is significant about
the graph of f (z) on intervals where f' (z) > 07?

(b) Graph both f(x)and f” () on [—1,3]. Are tangent lines to y =
f (z) above or below the curve over intervals where f” (z) > 07?

41. * Galileo determined that the acceleration due to gravity at the earth’s
surface is 32 feet per second per second by relating it to the velocity vp at
the bottom of an inclined plane as shown below.

|
B

1-2: Galileo’s experiment to measure the acceleration due to gravity

If the ball is initially at rest, the acceleration due to gravity g is given by

Y
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Derive this formula using the fact that the distance r (¢) the ball rolls along
the ramp t seconds after being released is

1
r(t) = §gt2 sin 0

42. Try it out! The final velocity vp is computed by measuring the time T'
required from the ball to roll from A to B after it has rolled across the
ramp. In this case,

(B—A4)°

2yT?

By making y very small in comparison to L, the time 7T is large enough to

measure with a stop watch or even a wrist watch. Try it out using values

like L = 4 feet, y = 3 inches and |B — A| = 4 feet. (Note: use a heavy ball

which will not slow appreciably between points A and B.)

g:

43. Show that if f (z) and g (z) are polynomials, then

d d d
FU@ -9 = (/@) - (90)
44. Show that if f (z) is a polynomial and k is constant, then

d

d
(k@) =k (@)

45. Write to Learn: Common sense tells us that the rate of change of a constant
is 0. In a short essay, use this common sense fact to justify the derivative
rule

if k is constant, then ila: =0
dx

2.2 The Product and Quotient Rules

The Product Rule

In the last section, we derived rules for differentiating powers and polynomials. In
this section, we derive rules for differentiating products and quotients of functions,
beginning with the derivative of a product.

If f (z) is a differentiable at x, then

f@+h)=f(x)+ [ (x)h+o(h)

Likewise, if g (x) is differentiable at x, then g(z+h) = g(z) + ¢’ () h + o (h).
Thus, the product f (x + h)g(x + h) is of the form

flx+h)g@+h)=[f(@)+f (@)h+o()]g(@)+g ()h+o(h)
Expanding the product on the right leads to the expression

f(@g) + [f(@)g(x)+ f(x)g (x)] h + higher order terms
The derivative of f (z) g () is the expression that is the coefficient of h:
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The Product Rule: The derivative of a product is given by

d

2 @ (@)= (@)g@)+f(x)g (@)

If u = f (x) and v = g (x), then in Liebniz notation the product rule is of the form

d (uv) —@U—i—u@
de — dz dx

and in fact, the product rule is often memorized using the mnemonic

(wv)" = v'v 4w’

(2.3)

Moreover, the product rule is the only rule for differentiating products that will
produce the same results as the rules in the last section.

EXAMPLE 1 Evaluate d%x?’ by applying the product rule to z2 - z.

Solution: We apply (2.3) with u = 2% and v = a:

(uv)’ o ©w + u
dix (xzac) = (dixxz) - + x2

As a result, the product rule applied to 2?2 - x yields

d
d_( 2~x):2x'x+x2'1:2x2+x2
x

which reduces to d% (x?’) = 322, as expected.

EXAMPLE 2 Evaluate d% x> (ac3 + 4x2) using the product rule:

Solution: We apply (2.3) with u = 2% and v = 23 + 422.

/

(uv)’ = u v + u v
a [3 (2 +42?)] = ix?’ (2 + 42?) + 3 a (2 + 42?)
dx dx dz
As a result, the product rule yields
dix [x3 (ac3 + 4x2)] = 32° (ac3 + 4x2) + a3 (3x2 + Sx)

= 32°+12z* + 32° + 82

62° + 202

Check your Reading | Evaluate - (25 + 42°) and explain why it produces the same result as applying

the product rule to 3 (23 + 4a%) .

More with the Product Rule

The product rule can be applied even when only partial information about a
function is given.

114
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EXAMPLE 3 Suppose that h (z) = 2% f (x) and that it is known that
f(5)=11and f'(5) = 7. What is 1’ (5)?

Solution: Since h(z) is the product of v = x and v = f (z), the
product rule implies that

(wv)’ = u’ v + u v
=[P f@] = (£2°) fl@) + 22 £f(@)
= 2z f(@) + 2* [f(2)

Thus, A’ (x) = 2z f (x) + 22 f' (x) , which implies that

2-5-f(5)+ (5 1 (5)
= 10-11425-7
285

I (5)

In fact, we can use the product rule to develop new rules for differentiation. For
example, if f () = 272, then 22f (z) = 1 and

d d

%l‘zf(l’) T dr

(F) f@+a (@) = o
2f (2) +2f (1) = 0

Substituting f (z) = 72 and solving for f’ (z) yields

20 -2+ 2%f (x) = 0
22f () = —227!
) = -2
Since f’(z) = “L2~2, this means that
%x_z = 2073 (2.4)

Indeed, similar methods will be used in the exercises to show that
d 12 1 _qp
il - 2.5
dxx 2x (25)

and clearly, both (2.4) and (2.5) are in the form implied by the power rule. That
is, the product rule implies that

ix” =ng"! (2.6)

dx

for any rational number n. In chapter 2 it will be shown that (2.6) holds for any
real number n.

d 1
EXAMPLE 4 Use (2.6) to evaluate — —
dx 22
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Solution: First, we write - as 272 and then we apply (2.6):

d o —2—1 -3
—272= 2 =2
2T x x
Writing the result in terms of fractions then yields
d1 =2
drz? a3

EXAMPLE 5 Use (2.6) to evaluate %W

Solution: First, we write v/22 as #2/3 and then we apply (2.6):

d o3 2 931 2 43
dz’ 3" —37

Writing the result in terms of fractions then yields
d s~ 2
dz " ° T 3z

Check your Reading| Why is Va2 the same as x2/37

The Quotient Rule

Suppose now that p(z) = 54(% Then g (z)p(x) = f(x) and the product rule

implies that
g (@)p () +g(@)p (@) = f ()

If we now solve for p’ (z), then we obtain

g@)p'(x) = f'(z)—g (2)p()
vy S@) =g (@)p(x)

Since p (z) = % , this leads to

i(fu)) F@-gd @ rwew-f@dw
dz \ g(z)

The result is known as the quotient rule for differentiating the ratio of two function:

The Quotient Rule: If f (z) and g (z) are polynomials, then

4 (F@)\_ f @) - f@)d @)
& (55) 9 (@) 27

Another proof of the quotient rule will be presented in the exercises in the next
section.
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EXAMPLE 5 Use the quotient rule to evaluate

i 1
de \2z+3

Solution: Comparison with (2.7) reveals that f (z) = 1 and g (z) =
2z + 3 . Thus, (2.7) implies that

i( 1 )[%(1}](2x+3)1~[d%(2x+3)]
dx (22 +3)*

2r + 3

Evaluating the derivatives and simplifying thus yields

i( 1 )_o.(2x+3)1.2_ —2
dr \2x+3 (22 +3)? (22 +3)*

EXAMPLE 6 Use the quotient rule to evaluate
d 72 4 27
dr \ z*+1

Solution: Comparison with (2.7) reveals that f(z) = 2% + 22 and
g(r) =2*+ 1. Thus, (2.7) implies that

d (242w (L (224 22)] (z* +1) — (2% + 22) [L (2% +1)]
dx<x4+1) (x4 + 1)

Evaluating the derivatives and simplifying thus yields

d <x2 + Qx) (e +2) (2 +1) — (2% 4 22) (42?)
de \ z*+1 (zt+1)
(2x5 + 2z + 2z + 2) — (4x5 + 8x4)
(24 + 1)
—22° — 62% + 22 + 2
(2t + 1)

Check your Reading | How would you use the quotient rule to evaluate %x’l?

Tangent Lines Revisited

Finally, let us not forget that f’ (p) is the slope of the tangent line to the graph
of f(x) at the input p. To determine the slope of the tangent line to the graph of
f(x) at © = p, we compute f’ (x) and then substitute z = p.

EXAMPLE 7 Find the equation of the tangent line to y = % at

p=3
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Solution: If we let f (z) = 1, then (2.6) implies that

fla)= ot = 2

As a result, the slope of the tangent line is

mer(3)=-() g

Since f (2) = 2, the tangent line is the line with slope m = 5* that
passes through (3, 2):

2-1: y= % — %x is tangent to y = %

EXAMPLE 8 Find the equation of the tangent line to y = 22/ (z + 6)
when p = 3.

Solution: To find f’ (z), we use the quotient rule:

@) d ( x? >: (£2?) (x+6) — 2L (2 +6)

T dz \z+6 (z +6)2
Evaluating the derivatives and simplifying yields

20(x+6)—22(1+0) a?+12z
(z +6) (z + 6)°

fi(z) =

As a result, the slope of the tangent line is

$+12-3 5
m=f0B)=——==3
(3+6) 9

Since f(3) = 33—_&3 = 1, the point of tangency is (3,1). Thus, the

equation of the tangent line is

yzl-i-g(x—?))
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which simplifies to y = —% + %x

2 //'
15 e
1
0.5 //
1 0p 1T 2 3 4 5
05 7 X
T
2-2: Graphs of f (z) = 25 and L3 (v) = —2 + 3z

Exercises:

Find f'(x) first by applying the product rule, and then by expanding the product
and using the power rule. Both methods should yield the same result.

1. f(z)=2? f(z)=2* 3. f(x)=a*1
f(@) =2t . fla)= w(fv+1) 6. f(z)=2*(z+3)
f(z)= (2x +1)(3z +4) 8. flx)=(x+7)(Bzx+4) 9. f(z)=2x+1)

10 f(z)=(2?+3) (B2 +1) 11. f(2) = (32®+ 1) 12, f(x) = (2?4 32)

Find f' (x):
13. f(x)= i 4. f(z)=273 15. f(z)= ¥z
22 -1

16. f(z)= V& 17. f(z)=273 18. f(x)= pr

19. f(z)=(Vx)P+x 20. flz)=a2(x>+42%) 21. f(z)=2"3(?—x)

xt —

2. f@)="5 1 2. f(2) = 5x1+1 2. f(z) = l&#ﬂ

2B ()= 2%. f(z)= i; 27 f(z) = %

2 2 3
28, f(z)= xi ] 29.  f(z)= xxi?ix 30. f(z)= xxiix

Find the equation of the tangent line to the curve for the given value of p. Then
graph the curve and the tangent line over [—4,4].

1
31. y=—, p=1 32. y=—, p=1
T T
10 T
33. = — =2 34. = =3
V=m0 P y=5_g P
22 +2 322 + 2z
. = — :—1 . = -—— :*2
35y B-5 P 36y 3+2x+1’ P
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Compute the following derivatives where it is assumed the function ¢'(x) exists.

S Al@)] . (G —Sa)g (@)
30. Lig(x)yal  40. Lig(x)]
22 glx)+2
n g R e
43. d%[:c:g/zg(x)] 44. d%;gi(gx(i)

45. The demand function for selling a particular brand of gloves is given by

B 50
2+ 0.1z

(a) What price will be charged for a pair of gloves if the demand is
x = 4007

(b) The function R(z) = xp (x) is the revenue function for selling this
particular brand of gloves. What is the revenue function in this
case?

p(x)

(c) In business settings, the derivative R’ (z) is often called the mar-
ginal revenue. What is the marginal revenue for the revenue func-
tion in (b)?

(d) What is the marginal revenue of selling 400 pairs of gloves? Give
an interpretation of R’(400).

46. Suppose the total cost of making z pairs of gloves is given by C (z) = 0.0222% —
0.2z + 1.5 in dollars.

(a) What is the cost of making 400 pairs of gloves? What is the average
cost per pair of glove when x = 4007

(b) In business settings, the derivative C’ () is often called the mar-
ginal cost. What is the marginal cost for C' (z)?

(c) What is the marginal cost of making 400 pairs of gloves? Give an
interpretation of C’(400).

47. Profit is defined as P(z) = R(x) — C(x) where R(z) is the revenue function
and C(x) is the cost function.

(a) What is the profit function P(x) for producing the gloves discussed
in exercises 45 and 46.7

(b) What is the profit in making and selling z = 400 pairs of gloves?
x = 500 pairs of gloves?

(¢) What is the marginal profit (i.e., the derivative P’ (x) ) in produc-
ing x pairs of gloves? Find P’(500) and give the correct units and
an interpretation?

48. In Quantum Mechanics the force between two gas molecules has two com-
ponents. There is an attractive force proportional to »~7 and a repulsive
force proportional to r~13, where r is the distance between molecules. In
the questions below, assume that the force acting between the two gas mole-
cules is

F(r) =0.017"7 = 0.0017~13

(a) Find F'(r).
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(b) What is the value of F'(r) and F’ (r) at r = 0.57 Which force is
dominating at this value for r?

(¢) If we increase r a little past r = 0.5, will F'(r) increase or decrease
in value?

(d) Grapher: Graph F(r) and F’(r) for r in [0.4,0.8]. At approxi-
mately what value for r do the effects of the two forces cancel one
another?

49. In this exercise, we use the product rule to find the derivative of f (z) = /x

(a) Explain why f (2)- f () = x and then use the product rule to show
that

2f () f' (x) =1 (2.8)
(b) Substitute \/z for f (x) in (2.8) and then solve for f’ (x).

50. Show that if n is a positive integer, then

d

— —n—1
dz

= —Nnx

Do so by applying the derivative to both sides of

an/,—’n — 1

n n—

and then solving for d%x* 1is known for

positive integers n).

. (ie., assume that L™ = na

51. Show that if k is a constant, then

= (kg (1)) = k- (2)

by applying the product rule to the product k - g () .

52. * Assume that we already know that
—a" = na" ! (2.9)

for some positive integer n. Use the product rule and (2.9) to show that

d%x"“ =(n+1)z" (2.10)

( Hint: Write 2"t as 2™ - x)

Remark 1 The process in exercise 52 is known as a proof by induction. Since
20 =1 and since %1 =0, we know that the power rule is true when n = 0. In our
proof by induction, we showed that if (2.9) is true, then so also is (2.10). That is,
we showed that true for n implies true for n 4+ 1. Thus, if the power rule is true
for n =0, then it must also be true for n = 1. And if the power rule is true for
n = 1, then it must also hold for n = 2, and so on. We thus conclude that the

power Tule holds for all non-negative integers, n.
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Composition
means using the
output from one
function as the
input to another
function.

2.3  The Chain Rule

Compositions of Functions

Although the derivative rules we have learned so far will allow us to compute the
derivative of any polynomial, they are not necessarily the most practical means to
do so. To illustrate, consider that application of the power rule to

r(z) = (2* + 1)20

requires the 21 term expansion implied by Pascal’s triangle.
Instead, it is more practical to consider r (x) to be a composition of functions,
where the composition of f with g, which is denoted by f o g, is defined to be

(fog)(x)=f(g(x))
That is, the output from ¢ (x) is used as the input to f (x), which is to say that
(fog)(x) = f (input)
where the input is g (). For example, if f (z) = 2?° and g (z) = 22 + 1, then
(fog)(x) = f (input) = (input)*’

where the input is 22 4+ 1. Replacing the input by 22 + 1 thus yields

(f o) (@) = (input)™ = (2> +1)*

EXAMPLE 1 What is the composition f o g of f(z) = 2%+ 3z + 1
and g (z) = a* 4+ 9?7
Solution: First, let us notice that we can write f as
f (input) = (input)® + 3 (input) + 1
Since g (z) = 2*+9, we now replace the “input” by x*+9, thus yielding
£ (input) = (z* +9)° + 3 (¢ +9) + 1

Since the input to f is the output from g, we can write f (input) =
f(g(x)) = (fog)(x). Thus, we have

(fog)(x):(x4+9)3+3(x4+9)+1

EXAMPLE 2 Write the function r (z) = (2 4 2) " as a composition
of two functions.

Solution: Although there are many ways to do so, notice that if we
let f (x) = x4, then we can write

f (input) = (input)™*
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Thus, if let g (z) = 23 + 2 , then the input is 2° + 2 and we have
f (input) = (2° +2) "

Since the input to f is the output from g, we can write f (input) =

flg(x)=(fog)(x). Thus,

(fog)(z) = («*+2)" = r(a)

and we can conclude that 7 = fog where f (z) = 2'* and g (z) = 2> +2.

Check your Reading |]f f(x)= (x2 + 2)4 and f (input) = (input)4 , then what s “input”?

The Chain Rule

The graph of a composition is of the form y = f (g (x)), or equivalently, y = f (u)
where u = g (x). Differential notation can then be used to motivate a rule for
differentiating compositions, in that intuitively we can write

dy _ dydu

dr  dudx (2.11)

Translating from differential notation to operator notation then yields

dy d du

DoLrw, Lepw, wd L=g@

As a result, (2.11) can be rewritten in operator form as

dx
and since u = g (x), this in turn can be written as

Lig@)=F (o@)g @

As will be shown later, we thus have

Chain Rule: The derivative of a composition is given by

Llg@]=rls@)] -9 ()

When using the chain rule, however, we often write it in the form
if(in ut) = f’ (input) iin ut (2.12)
dx put) = Pub) gz P '

where the input is g (x).
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EXAMPLE 3 Find #' (z) for r (z) = (22 + 1)

Solution: We can write r (z) in the form
r (z) = (input)’

where the input is equal to 22 + 1. The chain rule (2.12) says that

d . 20 . 19 d .
. (input)™ = 20 (input) . input

Replacing “input” with 2% + 1 and differentiating leads to

v () 20(x2+1)19d%(x2+1)

= 20(22+1)" (20)
40z (ac2 + 1)19

Certainly, most of us would prefer the computation in example 1 over the differ-
entiation of the 21 term expansion of r (z) = (22 + 1)20 . Indeed, the chain rule
is one of the most powerful techniques in calculus.

EXAMPLE 4 Find f (x) for the function f () = («® + 22)” + 1.

Solution: To do so, we write f (z) in the form
f () = (input)® + 1
where the input is 23 4+ 2x. The chain rule says that
dix [(input)5 + 1] = [5 (input)* + 0} (%input)
which means that
f'(x) = 5(input)? d%: (input)
= 5(® r20)" L (P 4 20)
dz

5 (2 +22)" (322 +2)

Check your Reading | Would you rather find f' (x) in example 4 using the product rule to evaluate

£ @) = o [ +22) (2% 4 22) (&% + 22) (2 + 22) (s + 20) + 1]
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Derivatives of Algebraic Functions

A proof of the chain rule is actually rather straightforward. If g is differentiable
at x, then g (x +h) =g (z) + ¢ (x) h+ o (h), so that

flg@+h)=flg(@)+g (x)h+o(h)
If we let X =g (z) and H= ¢ () h + o (h), then
flo(+h)=flg(@)+g (@) h+o(h)]=f(X+H)
However, supposing that f is differentiable at X implies that
fX+H)=f(X)+ f(X)H +o(H)
Since H = ¢/ () h + o (h) , we thus have the expansion
fX+H)=f(X)+ f(X)g (@2)h  + [ (X)o(h)+0o(H)
However, f (X +H) = f (g (z + h))and X = g (), so that
flal@+h)=flg@)+f(9()g (@) h +...

The derivative of f (g (z)) is the coefficient of h, which is f' (g (z)) ¢’ (x).

As a result, the chain rule applies to all differentiable functions. For example,
the chain rule also applies to algebraic functions, where an algebraic function is a
function defined using only integer powers, integer roots, and arithmetic.

EXAMPLE 5 Find f' (z) for f (x) = V22 + 1.

Solution: First, we write f (z) as

f(x)= (2% + 1)1/2
Consequently, we have
d . 12 1. —172 d .
’ _“ _ = -
ff(x) = o (input) 5 (input) . (input)

where the “input” is 22 + 1. It follows that

1 -1/2 d
fl(l') = §($2+1) a($2+1)
= % (acz + 1)71/2 2z
= z(2®+ 1)_1/2
EXAMPLE 6 Find f’ (z) for
1
T =y

Solution: We first rewrite the function as

f(x)= (x2 + 1)_1/3
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As a result, we have

" @) = - (input) ™

which according to the chain rule simplifies to

@) = = Ginput) ™ = (inpu)

Substituting x? + 1 for the input then yields

Fa) = (1) L@
%1(33%1)‘4/3 21

which simplifies to f’ (z) = _72 T (xz + 1)_4/3 :

Check your Reading| Write f' (z) = F z (22 +1) 43 in terms of radicals.

The Chain and Product Rules Together

The chain and product rules often occur together. Indeed, the derivative of a
quotient
df
dzr g (x

~—

~

can be considered the derivative of a product of f () with the composition [g (z)] " .

That is,
d f(x) d _

In exercise 44 this will be used to prove the quotient rule. However, for now we
will simply illustrate it with an example.

EXAMPLE 7 Evaluate the derivative

4
dr3x+1

using a combination of the product and chain rule.

Solution: The ratio 35—11 can be written as 22 (3z + 1), which

can then be written as 22 (input) ™" where the input is 3z + 1. This
then leads to

d _ d _ d _
£x2 (input) ™' = (axz) (input) " + acz% (input) ™"
Application of the chain rule thus yields

d 5. 1 (d 5\, 1, 9 . —2 d .
s (input)” " = (dwx ) (input)” " 4 2° (—1) (input) dxlnput
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Replacing the input by 3z 4+ 1 then implies that

o d
dz

23

-2

d%x? (Bz4+1)"" 203z + 1) =22 3z +1) (3z+1)
= 20Bz+1)""'—22Bz+1)"

= 2(B3z+1)>—322Bz+1)

Moreover, the result of the chain rule is a product of two functions. Thus, when the
first derivative involves the chain rule, the computation of the second derivative
often begins with the product rule.

EXAMPLE 8 Find f” (x) when f (z) = /(22 +1)*

Solution: Since f(z) = (* + 1)3/2 , we have
f (z)= d%: (input)®? = % (input)'/? dixinput
where the input is 22 4+ 1. As a result, the first derivative is

' (x) = g @+ 1)"? 22) =32 (22 + 1)

Since the chain rule produced a product, the second derivative
begins with the product rule,

F (z) = <% (3x)) @2+ 1)"% + (32) d% (@2 +1)"?

Application of the chain rule then yields

—1/2

f@) =3 (22 + 1) ¢ 31:% (22 +1) 72 (@0)

which simplifies to
322
Vaz+1

Since the common denominator is v/22 + 1, we obtain

[ (x)=3Va2+1+

1/2

i ~ (@2 +1)"* (22 +1) 322
241 x2+1
~ 3(2® +1) + 327
B x2+1
622 + 3

vz +1
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Exercises:
Find the derivative of each function below. The letters k and R denote constants
when they occur.

1 f(x)=(2z+1)? 2. flz)=Bx+1)> 3. fl(z)=(«2+1)"
4. f(x) = (23 +2)7 5. f(z)=(z*+ 1)1 6. p(r)=(3r+1)°
7. f(z) = (4a® 4+ 9)° 8. g(x)= (x + 1) 9. f(x)=+va2-1

g
10.  f(z)=va?+2z 11. f(z)=Vz 12. h(x)=va*+3

13. f(z)=vat+3z+2 14 g(z)=(Vr+1)° 15.  f(x) = v0.522 + 1.5

6. f(z) = (ka +1)? 17. f@)=(2+4) 18 f(2)=VR?—22
19. f(z)=Vkax+1 20. f(z)=+z+x 21. =1+ .z
Find f" (z) for each of the following and simplify completely (see 4 12 for 1 (x)).
22.  f(z) = (2 +2)7 23.  f(z)=(z*+ 1)1 24. p(x)=Bxr+1)°
25.  f(z)=(422+9)°  26. f(z)=(«®+1)° 27, f(z)=Va® -1
28. f(z)=+v22+2 29. g(z)=+vaz3 -1 30. h(z)=+Vvax*+3
Find f' (x) in terms of g(x) and ¢'(x).
3. f(z)= (22 +g(x))? 32.  f(z)=+/g(x) +20
33.  f(x) = 22g(5x) 34. f(x)=g(32%-5)
35.  f(z) =g(g(x)) 36.  f(x) =g(g(=?))

37. In each of the following, use the quotient rule in part 7 and the chain rule in
part 4. The result should be the same in each case.

d 1 - d _1

(a) ¢ p—— 1 a(x—i—l)
.od 1 Lood o, —1

(b) i p i a(:c +4)
ood 1 ood 4 —1

(¢) ¢ e 1 %(x +1)

38. Suppose that f (z) = (ac2 + 3)3 .
(a) Find f’ (x) using the chain rule.
(b) Find f’(x) by expanding the sum and applying the power rule
term-by-term.
(¢) Expand (a) so that it is the same as (b).

39. An object moving in a straight line has a velocity of v(¢) = 100 — 9.8¢.
Moreover, the Kinetic Energy of a moving object is

T = §mv2

where m is the mass and v is the velocity of the object. What is E and
what does it represent?
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40. The potential energy of an object in a certain gravitational field is given by

-1
T 457

where 7 is the distance from the object to the center of the gravitational
source. If the object is rising vertically in the field so that its height at time
tis r=t?/3, then what is <77

41. Suppose that the COs concentration c¢(t) in the atmosphere in parts per
million (ppm) at time ¢ years after 1939 (i.e., ¢ = 0 in the year 1939) is
defined explicitly by

c(t) = 1.44t + 280

Suppose also that the global temperature increase g (¢) in degrees Fahrenheit
is
g (c) =0.016¢ — 4.48

where c¢ is the CO5 concentration in the atmosphere in ppm.

(a) Compute ¢ (t) and ¢’ (¢), and then compute their product.

(b) Use composition to write the global temperature increase g as a
function of ¢.

(c) Since the ocean level rises one foot for every 3 degree increase in
global temperature, we define

R(9) =59

where R is the change in ocean level caused by g. Write R as a
function of ¢.

(d) Compute R’ (t). Explain why it is a third of the value of the product
in (a).

42. An object of constant mass m kg with a position at time ¢ of r (t) = 50t —4.9t>
has a velocity at time ¢ of v (t) = 50 — 9.8¢. The total energy of the object is

1
H= §mv2 + 9.8mr

What is H’ (t)? What is significant about this result?

43. In this exercise, we consider the function f (z) = /1 — a2

(a) Show that the graph of f (z) is the upper half of the unit circle.
(Hint: let y = f (z) and transform into an equation of a circle).

(b) What is the slope of the tangent line to the graph of f (z) at an
input p?

(c) What is the slope of the line through (0,0) and (p, V11— p2>?

(d) How are the slopes in (b) and (c) related? Why would we expect
this given what we know about the graph of f (x)?

44. Use the chain rule and the product rule to evaluate the following derivative:

LF@lg@)

Then simplify the result into the quotient rule.
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2
45. The parabola Qg (z) = 5 — % is the quadratic approzimation at x = 0 of
the upper half of the circle of radius 5, which is the graph of

fx)=v25—22

Answer the following to discover some of the properties of Qg ().

(a) Find the tangent line to f (x) when = 0 and the tangent line to
Qo () when z = 0 and show that they are the same.

(b) Grapher: Graph f (z) and Qo () on the domain [—5,5]. Is Q¢ (x)
above or below f (z) for « near 07

(¢) Since f () and Qg (x) are both practically the same as their tan-
gent line near x = 0, then they must also be “practically the same
as each other” near x = 0. In your opinion, are Qg (z) and f (z)
practically the same over the interval [—1,1]? Why or why not?
Use graphs to justify your answer.

(d) Show that f” (0) and Qf (0) are the same.

46. The parabola
- 175 51 25 4
@) =50 T35 ~ 51”

is the quadratic approzimation at x = 3 of f(x) = v/25 — x2. Answer the
following to discover some of the properties of Q3 ().

(a) Show that f (x) and Q3 () share the same tangent line when z = 3.
That is, find the tangent line to f () when x = 3 and the tangent
line to @3 () when x = 3 and show that they are the same.

(b) Grapher: Graph f (z) and Q3 (z) on the domain [—5,5]. Is Q3 (x)
above or below f (z) for x near 3?7 (answering may require some
zooming)

(¢) Show that f” (3) and Q% (3) are the same.

47. Write to Learn: The chain rule is closely related to the composition of
linear functions. Indeed, show that if

L(z)=mx+b and K(z)=nz+c

then the slope of the composition of L with K is equal to the product of
the slopes. Write a short essay detailing this computation and discussing its
relationship to the chain rule.

48. Write to Learn: An object in free fall in with a constant gravitational
acceleration of g has a height at time ¢ of

1
r(t) =710 + vot — §gt2
If its mass m is constant, then its total mechanical energy is
L 3
H = 5 + mgr

What is H' (t)? What does this say about H (t)? Write a short essay ex-
plaining why we might say that total mechanical energy is conserved.
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49. * The product rule is a special case of the chain rule. In particular, we can
obtain the product rule by applying the chain rule to

(f@)+g@)) = (f@)-g()) (2.13)

(a) Show that (2.13) simplifies to 4f (x) g (x) .
(b) Apply the chain rule to (2.13) and simplify.

2.4 Implicit Differentiation

Implicitly Defined Functions

In analytic geometry, each point in the xy-plane is assigned an z-coordinate and a
y-coordinate. An algebraic curve is then defined to be the set of all points whose
x and y coordinates satisfy an equation of the form

g(x,y) =k

where k is a number and where g (x,y) is a polynomial in both x and y. For
example, if f (z) is a polynomial, then its graph y = f () is an algebraic curve.
As another example, consider that the unit circle is the set of points in the plane
whose coordinates satisfy the equation 22 + 32 = 1.

-15

4-1: The Unit Circle

However, a function has only one output for each input in its domain and thus,
the graph of a function is intersected by a vertical line at most once. Consequently,
the unit circle is not the graph of a function. Instead, it is one of the many
algebraic curves that can be divided into sections which are graphs of functions.

araph of 5 £ ion
Ol a function

\_/
qC q. f“nCt :
{2 »
Graph © )

p
*p
T Graph
of a functic®
Entire curve is not the But certain sections are
graph of a function graphs of functions

4-2: An algebraic curve composed of graphs of functions.
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When an algebraic curve can be divided into sections, each of which is the graph
of a function, then we say that each section implicitly defines y as a function of z.

Implicitly Defined Functions
If a section of a curve in the xy-plane is the graph of a function,
then that section of the curve defines y implicitly as a function of x.

In contrast, an algebraic curve expressed in the form y = f (x) is said to define y
explicitly as a function of x.

EXAMPLE 1 Determine the functions which are defined implicitly
by the equation
22 +y? =25 (2.14)

Solution: If we solve for y in x2 + y? = 25, we obtain the explicitly
defined functions

y=25—x? and  y=-—25—212 (2.15)

Thus, the curve (2.15) implies the existence of two functions, as shown

below:
\ -5 -2
E

L heEE

i -
4-3: The two functions defined implicitly by z2 + y? = 25

Unfortunately, many algebraic curves have equations that cannot be solved for y.
For example, the equation
wy=5—1y" (2.16)

is an equation of the algebraic curve shown in figure 8-4.

15

-4 2 00 2 4

4-4: An implicitly defined function

The curve is clearly the graph of a function and thus (2.16) implicitly defines y as
a function of x. However, there are no techniques in algebra which can be used to
actually solve for y as a function of x.
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Check your Reading | Obtain the explicitly-defined functions in (2.15) by solving for y in x?+y? = 25.

Implicit Differentiation

Suppose a section of a curve g (x,y) = k defines y implicitly to be a function of
x and let P be a point on that section of the curve. Then % is the slope of the
tangent line at P.

y implied to be
a function of x

4-5: Slope of tangent line at P is dy/dx

To compute % given g (x,y) = k, we apply the derivative operator to g (z,y) = k,
use the chain rule to differentiate expressions in y, and then use the fact that

4, _ %

dxy Cdw

Often, we use the notation 3y’ = %, and we use the term implicit differentiation

to refer to the process for finding ¢’ given g (z,y) = k.
EXAMPLE 2 Use implicit differentiation to find 3’ when 224+y? = 25.

Solution: Application of the operator d% results in

d 5 d , d
— — = —95
dxx +dxy dx
d
2+ —y2 = 0 2.17
T+ oy (2.17)

Since y is implied to be a function of z, (2.17) is of the form

2x + difc (input)® = 0

where the input is y. As a result, we have
. 1 d o
2z + 2 (input) T (input) =0

Replacing “input” by y then yields

d
20 +2(y)' — =
z+2(y) - (v) 0
2x+2y@ =0
dx

Letting 3/ = % yields 2z + 2yy’ = 0, and solving for 3 yields

y =— (2.18)
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The key to implicit differentiation is the chain rule. In particular, if y is a function
of z, then the derivative of an expression in y is the product of a function in y and
the derivative 3. For example, in the computation above we saw that

d o
— % =2
dxy vy

In contrast, the derivative of 22 is simply 2z.

Moreover, as shown in (2.18), implicit differentiation produces an equation in-
volving x, y and the derivative 3'. Such equations are so important in applications
that they are given a name.

Definition 4.2 A first order differential equation is an equation in z,
y and 3’ which implicitly defines y as a function of z.

That is, implicit differentiation produces a differential equation of a curve.

EXAMPLE 3 Find a differential equation of the curve
22y =5—y

Solution: We first apply d% , using the product rule on the left and
the power rule on the right:

d d .
@ @) = 6=y
d
a o 2 @ N N
(wx)y+wdx@) 0——— ()
dy d
20 6 ¢
2ay + a5 W) v
Since - (y) =y’ , this simplifies to
2xy + 2%y = —TySy/' (2.19)

We then solve for 3 by isolating the terms containing y’,

22y 4+ TSy = —2xy (2.20)
factoring ¢’ from the terms on the left,

(2® + 7y%) y' = —2zy
and then dividing by (2% + 7y°) . The result is the differential equation

/ —2xy

= . 2.21
2 + 7y6 ( )

Y

EXAMPLE 4 Find a differential equation for the curve
(wy +1)° =2
Solution: Application of the derivative operator to both sides yields

3 d
:—(L‘z

d
— (3 t
(input)” =

dx
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where the input is xy + 1. As a result, we have

3 (input)? % (input) = 2z
3(z +1)zi(x +1) = 2z
3(zxy +1)° (dix xy) = 2

We then apply the product rule to the derivative of xy,

3(zy + 1) [(d%x) y+a <d%y>} =2z

which results in the equation

3(ay+1)>* (y+ay) = 22 (2.22)

Check your Reading |Solve for y' in (2.22). (Hint: first divide both sides by 3 (zy +1)° )

Inverse Functions and Differential Equations

If f (z) is differentiable, then & = f (y) implicitly defines a collection of functions
called inverses of f. Inverse functions will be important in chapter 6, where they
will be discussed in more detail. For now, however, let us simply explore tangent
lines to curves of the form x = f (y) using implicit differentiation.

EXAMPLE 5 Findy/ if x = 2. Then find the equation of the tangent
line to x = y? at the point (4,2).

Solution: To find ¢, we use implicit differentiation:

d d 4 /
—r=— = 1=2
dxx dz v
Solving for y' leads to 3y’ = 2_1y Thus, the slope of the tangent line to
r=1y%at (4,2) is
1 1
Mtan = 57av —

2(2) 4
and it follows that the equation of the tangent line is

1
y:2+1(1'*4)

which simplifies to y = Jz + 1.

4-6: y = x/4 + 1 is tangent to x = 3>
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If x = f (y), then implicit differentiation implies that

d d o /
wi=nfw = 1=y
Thus, the differential equation of a curve of the form x = f (y) is of the form
, 1
y = 2.23
f () (223)

Differential equations of the form (2.23) are very important in applications, as we
will see throughout this text.

EXAMPLE 6 What is the differential equation of the curve xz = /3?7

Solution: To find ¢, we use implicit differentiation:

d d 12 L 12

EhalpS 1=2

dz’ ~ dz? — 2Y Y
Solving for 3’ results in

1
/ 1/2
V=1 77=2
%y 1/2

Thus, the differential equation of x = |/ is
Y =2y

Check your Reading |Solve for y in x = /y. What is the result?

Tangent Lines to Algebraic Curves

A differential equation of an algebraic curve can be used to find the slope and
equation of the line tangent to the curve at a given point. In particular, to find
the slope, we simply evaluate 3’ at a given point.

EXAMPLE 7 Find the equation of the tangent line to the circle
22 +y? =25
at the point (4, 3).

Solution: We showed in example 2 that a differential equation of the

curve is
, -
Yy = —
Y
Substituting = 4, y = 3 into the equation 3’ = —z/y yields the slope
—4
m=—
3

The point-slope equation of the line through (z1,y;) with slope m is
given by
y=y1+m(x—1x1) (point-slope equation)
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Thus, the tangent line to 22 + y? = 25 at the point (4,3) is

which simplifies to y =

5

E
4-7: Tangent line to 2% + y? = 25 at (4,3)

EXAMPLE 8 Find the slope and equation of the tangent line to

2

Py=5—y"

at the point (2,1).

Solution: A differential equation of the curve is given in (2.21) by
—2zy
V== 6
T2+ 7y
Thus, the slope of the tangent line at the point (2, 1) is
—-2-2-1 4

M= 2716~ 11

and the equation of the tangent line is

4
y=1-7@-2)

which is shown below in figure 8-6:

-4 2 00 2 4

4-8: Tangent line to the graph of an implicitly defined function
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Exercises:
Use implicit differentiation to find a differential equation for each curve.

1. y=2x+3 2. y=22+1
3. 2y’ =2 4. 2 =22
5. =13 6. z=y*
7. 2?44y =1 8.  9x2416y% =25
9. 2%—3y2=2 10. 224+y3=3
11. z*—4?—-3=0 12. > —222+4=0
13. ay+y?=2 4. x> +2%y=1
15. 2?2 +2zy+9y2 =1 16. 32?2 — 22y +3y? =4
17. (z+y)® =8y 18. (z49)' ' =z+y
19. 22 +yt=(ay+1)> 20 (2+ y3)4 =2t + (zy +1)°
21, (zy+1)° =y 22. 2%y’ =2y
2. x=\y—1 2. z=+/1+y2

Find the equation of the tangent line to the curve at the point given. You found
y' in the ezercises above.

25.  xy? =2 at the point (2,1). 26. y? = 22 at the point (1,1)

27. x =y at the point (1,1) 28. x = y* at the point (1,1)

29. a3 — 3y? = 2 at the point (4.290, —5.065) 30. 224 y> =3 at the point (\/5, 1)

31.  (z+y)?® =8y at the point (1,1) 32 (x+4y)" =z +y at the point (0,1)

For each of the curves in 83-40 do the following:
(a) Find a differential equation of the curve.

(b) Solve for y to obtain an explicitly-defined function y = f (x) which is implic-
itly defined by the given equation.

(c) Differentiate y = f (x) and show that the result is the same as that in (a).

33. a2 =2 34. 922 — 182+ 49> +8y—23=0
35. 2?2 +4y2=1 36. 4x?+y?—6y=—5
37. a® —3y? =2 38. 2?2 —4y* +22+8y—-7=0

39. 22 +2xy+12—-1=0  40. 322 —-2zy+3y>=4

41. For every value of k, show that the functions y = ka? satisfy the differential
equation
zy =2y
Graph y = 22, y = 222, y = —22, y = —22% and y = 0 on the domain
[—1,1]. What do all of these curves have in common? What point do they
all pass through?

42. Show that for every value of k, the curves y = kx> + 1 satisfy the differential
equation
xy =3y—3

Graph the solutions which correspond to k = 0, 1, 2, and 3 on the domain
[—1,1]. What do all of these curves have in common? What point do they
all pass through?
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43. In analytic geometry, a curve can be defined by more than one equation (and
thus, has more than one differential equation). For example, squaring both
sides of 22 + y? = 25 results in the equation

ot 2222 + ot =625 (2.24)

Use implicit differentiation to find the differential equation of (2.24), and
then show that the slope of the tangent line at (4, 3) is

—4
T

Mtan =

44. Suppose the circle below has the equation 2% + 3% = R?

4-9: Tangent line to a circle
(a) Show that y' = ¢
(b) Show that the slope of the radius is £
(¢) Show that the radius and the tangent line are perpendicular
45. * Find the differential equation of the hyperbola
z? — y2 =1

and show that the line from the origin through (z, —y) is perpendicular to

the tangent line at a point (z,y)on the hyperbola. That is, show that line [
is perpendicular to line k in the figure below:

4-10: Tangent line to a hyperbola

2.5 Rates of Change

The Derivative as a Rate of Change

In this section, we further explore the derivative of a rate of change, especially
as it is used in various scientific and mathematical applications. Moreover, the
key to interpreting rates of change in applications is in including the wunits of
measurement in the result. Also, reverting to differential notation may help.
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EXAMPLE 1 A cylinder initially contains 500 ml of air at a pressure
of 1 atmosphere (atm). If the air in the cylinder is compressed by a
piston without changing its temperature, then Boyle’s law says that
the pressure P is related to the volume x by

_ 50
7.1?

What is P’ (250 ml)? What does it mean?

P

same temperature

500 ml < = <
. x ml
initially P

5-1: Boyles Law

Solution: Since we can write P (z) = 50027}, the derivative is
P’ (z) = —5002 2
As a result, when z = 250 ml, we have

_ —500 1
P’ (250) = —500(250) * = —— = ——

To understand what this result means, let’s change to differential no-

tation and include units. Since z is measures in ml, dx is also in ml;

and since P is in atmospheres, dP is also in atm. Thus, the pressure

is changing with respect to volume at a rate of

ap _ -1 atm
dr 125 ml
when the volume is x = 250 ml. We interpret this to mean that for

volumes close to 250 ml, the pressure increases by about 1 atm for each
125 ml decrease in volume.

EXAMPLE 2 Let y denote the concentration in moles per liter of the
chemical CH3C HO in the chemical reaction

CH3CHO — CHy+CO

If the initial concentration is 0.3 moles per liter and the temperature
is 20°C, then it can be shown that

3

v =510

where t is time in seconds since the reaction began. What is the initial
rate of the reaction?

Solution: The quotient rule implies that

(6t +10) 43— 34 (6t+10)  —18
(6t + 10) (6t + 10)*

() =

140 THE DERIVATIVE



Thus, the rate of change at t = 0 is 3’ (0), which is

—18
> =—0.18

Z/(O):m

Including units and differentials then yields our interpretation.. In
particular, y is in moles/liter and ¢ is in seconds, so that

dy _ 018 moles/ Liter

dt sec

Check your Reading | What is the initial rate of the reaction in example 37

Rates of Change in Economics

In economics, the total cost C (x) incurred in producing = units of a commodity
is called a cost function, and the instantaneous rate of change of cost with respect
to number of units produced is called the marginal cost. That is, marginal cost is
the derivative of the cost function.

Economists often interpret marginal cost using the difference quotient approx-

imation: o h o
+h)—
o ()~ E2 ]1 ()

Specifically, if h = 1, then the difference quotient approximation reduces to

C'(p)=C(p+1)—Cl(p)
and this in turn implies that
Clp+1)=C(p)+C (p)

That is, marginal cost can be interpreted to be the cost of making “the next” unit
of a commodity.

EXAMPLE 3 The total cost in making x tennis rackets (in thousands
of rackets) is given by C (x) = 20+1.22—0.01z2 in thousands of dollars.
What is the marginal cost of making 9,000 tennis rackets?

Solution: Since C’ (x) = 1.2 —0.02x, the marginal cost at 9,000 units
is

C'(9) =1.2-10.02(9) =1.02
To interpret this result, let’s first include units ( C' is in dollars and x
is in thousands of rackets):

thousands of dollars dollars
C’(9) =1.02 = 1.02
9) thousand rackets racket

The discussion immediately before this example gives us a means for
interpreting the result. In particular, after making 9,000 rackets, the
cost of the next racket (i.e., the 9,001%%) is about 1.02 dollars.
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Also in economics, if the price p is a function of the quantity  units of a commodity
demanded by a market, then p as a function of x is called a demand function. The
revenue R (z) for a demand function p (z) is given by R (x) = zp(x), which is
the price times the number sold, and the derivative R’ (x) of the revenue is called
the marginal revenue from selling = units of a commodity. The profit P (z) from
making and selling = units of a commodity is

P(z) = R(x) - C(z)

which is to say that profit is the difference between revenue and costs.

EXAMPLE 4 Suppose that the price p in thousands of dollars as a
function of the number x of a certain automobile available for sale is

p(z) =2+ 2070877

What is the marginal revenue from selling 100 automobiles?

Solution: Since Revenue = price x number sold, we have
R(z) = (24227 %%7) g = 20 + 2201
The marginal revenue function is thus
R (z) =2 +2(0.123) 70877

As a result, R’ (100) = 2 +2(0.123) (100)"**"" = 2.00433. Revenue is
measured in thousands of dollars, so that the marginal revenue from
selling 100 automobiles is

R’ (100) = $20, 043 per car sold

Check your Reading|Ab0ut how much revenue can we expect from selling the 101°¢ automobile in

example 4¢

Rate Problems

Many applications involve functions of the form y = f (x) in which z and y are
implicitly defined as functions of another variable ¢. In such applications, a curve
y = f(z) is actually a function of the form y(¢) = f [z (¢)] , and the derivative
y' (t) is of the form

dy d ...

ad ] 2.2

5 = g/ (input) (2.25)

where the input is z (t) . The chain rule in this case says that

d, .. /s d .
Ef (input) = f’ (input) pr (input)

where again, the input is z (¢) .
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EXAMPLE 5 Suppose that y = 22 + 2z, and suppose that x is a
function of ¢. Find % when z = 3 and % =T.
Solution: To begin with, we actually have
3
y () =[x @) +2[x ()]
As a result, the derivative %% is of the form

dy d /.
priln ([mput

where the input is z (¢) . Therefore, we have

]*+2 [input])

dy _ . 2 d .
i (3 [input]” + 2) o (input)
so that replacing the input by x (¢) leads to
dy 9 dz
&Y (3 9) &%
a B2y

When x = 3 and % =7, we thus have

W 3.3249).7
o = (3:3°+2).7=203

Example 5 illustrates that we must wait to substitute numerical values until the
final step.

Example 5 is also an example of a rate problem, which is an application in
which x and y are functions of a third variable ¢, and the goal is to determine %
given information about z, y, and %.

EXAMPLE 6 Suppose a circular oil slick is spreading at a rate of 2
miles per hour when the radius of the oil slick is 10 miles. How fast is
the area of the oil slick increasing?

5-2: An oil slick with radius r spreading at a rate of 2 miles per hour

Solution: If A () denotes the area of the oil slick at time ¢ and if r (¢)
denotes its radius at time ¢, then

As a result, the chain rule says that

dA — d finput]’
o = g inpu
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where the input is r (¢) . Thus, we have

% = 27 [input] % (input) = 27r (t) %r (t)
which in differential notation implies that
ﬁ = 2717“ﬂ
dt 7 dt

Since dr/dt = 2 miles per hour when r = 10 miles, the rate of change
of the area of the slick when r = 10 is
dA (miles)?

== —27-10-2 = 407 = 125.
- =2m-10 Om = 125.6637 ~———

Check your Reading | What does A (t) reduce to in example 6 when r(t) = +/40t?

More Rate Problems

Many rate problems require the use of geometric concepts, such as the Pythagorean
theorem, similar triangles, and volume formulas. Also, rate problems may occur
as equations of curves rather than graphs of functions.

144

EXAMPLE 7 A boat is pulled toward a dock by a rope attached to
its bow.

5-3: A boat being pulled toward a dock

If the top of the winch is 3 feet higher than the bow and if the rope
is pulled in at a rate of 2 feet per second, how fast is the boat moving
when it is 10 feet from the dock.

Solution: Let us let z denote the length of the rope from the winch
to the bow and let y denote the distance of the bow from the deck.
Then z, y, and the height 3 feet form a right triangle.

y
5-4: Right triangle diagram of figure 5-3

As a result, y? 49 = z2. Application of % to both sides of the equation
yield

d o d

il 9) — —

W) =g
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Since x and y are both functions of

a different variable ¢, we use the

chain rule to differentiate expressions in both z and y:

2 (output)
ar P dt

where the output is y and the input

d
2output - pr (output)

d
2_
ydt()
dy
Yat

d. d
4 =9=—

2
pr (output)

is x. As a result, we have
d
2output - 7 (output)

4 ()

2 —_
ST

d
dt

When y = 10, then 100 + 9 = 22, which means that = = v/109. Since

dt = 2 feet per second, we have

dy
105 = (\/109)
dy V109
dt 10
Exercises:
Find %

dt
units i your result.

1. y=t2+3, p=2 2.
3. y=3t+2, p=2 4.
5. Y= tz,p 2 6.
7. y=03Bt-2)"", p=1 8.
9. y=6t+7,p=3 10.

. d
In exercises 11 through 15, find 4}

dx

dt
ft 2.088 — 1t
sec sec

at given input p. Assume that y is in feet and t is in seconds, and include

y=03t2+23t+1, p=0.7
y=t34+2t, p=05

1
y=—4,p=1

\[

V243, p

using the given information.

11. y=6mr? & =-02,r=15

12. y=222 -5z, & =15 2=2
13. y+at=w, %L=-12=1

14. y— (20 +1)° =24, & =21, 7 =2

Ezxercises 15 - 28 ask you to determine a rate of change and interpret the result.

15. A spherical balloon has a volume in cubic inches of

4
=—-7r

3

Vi(r) ’

where r is the radius of the balloon in inches. Find % when r = 2 inches.
Interpret the result as a rate of change.
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16.

17.

18.

19.

20.

21.

A bridge over a canyon has a height h in feet of
h(x) =0.13z (50 — x)

where z is the distance in feet from one side of the canyon to a point on the

bridge.
M
h

J

5-5: A bridge across a canyon

Find 2% when x = 25 and interpret the result.

The average length L in centimeters of a fish chosen at random from a
particular population is given by

L (t) = 0.31 + 0.29t — 0.0037¢

where ¢ is time in days since hatching. What is % when ¢t = 10?7 Interpret
the result as a rate of change.

On a certain pond, the thickness of the layer of ice on the surface of the pond
satisfies

y(t) =Vt

where y is in inches and ¢ is in hours. How fast is the layer of ice increasing
after 3 hours? After 5 hours?

Let y denote the concentration in moles per liter of the chemical HI in the
chemical reaction
2HI — Hy + I,

If the initial concentration is 0.01 moles per liter and the temperature is
20°C, then it can be shown that

1

v(®) = —5 o157 100

where ¢ is time in seconds since the reaction began. What is the initial rate
of the reaction?

The enzymatic activity E (T) of a certain enzyme at temperature T in degrees
Celsius is given by

E(T) = 11.760 + 19.1156T — 0.22893T">

where enzymatic activity is measured in activity units (U).! What is the
rate of change % of enzymatic activity with respect to temperature when
the temperature is 20°C' ( which is considered to be “room temperature”)

Frazier furs are grown for six to ten years before being harvested for sale
as Christmas trees. Suppose the total cost of growing x Frazier furs for six
years is given by C (x) = 2100 + 1.5z + 0.00122 in dollars.

L An activity unit U is the amount of enzyme which will catalyse 1 micromole of a substrate
per minute under standard conditions.
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(a) What is C' (z)? What does it represent?

(b) What is the marginal cost of growing 1,000 Frazier furs for six
years? Be sure to include the units.

(c) If 1,000 Frazier fur trees are grown for six years, then about how
much would it cost to grow the “next” Frazier fur?

22. In exercise 21, what is the marginal cost of growing 750 Frazier furs for six
years? Be sure to include the units.

23. The price p per Frazier fur given a demand for z six year old Frazier furs is
given by p(z) = —0.01x + 35.

(a) What is the revenue function R(x) for selling six year old Frazier
firs?

(b) What are the units of R’(1000)?
(c) What is the marginal revenue of selling 1,000 six year old Frazier
firs? Give an interpretation of R'(1000).

(d) What is the marginal revenue of selling 750 six year old Frazier
firs? Give an interpretation of R'(750).

24. Profit is defined to be P(z) = R(x)—C(x) where R(x) is the revenue function
and C(x) is the cost function.

(a) What is the profit function P(x) for growing and selling six year
old Frazier firs (see 21 and 23)?

(b) What is P(1000) , the profit of growing and selling 1000 six year
old Frazier firs?

(¢) What are the units of P’(1000)?

(d) What is the marginal profit of growing and selling 1,000 six year
old Frazier firs? Give an interpretation of P’(1000).

25. Water is being pumped into cylindrical tank which has a radius of 4 feet.
The tank is initially empty and the volume of water pumped into the tank
at time t in minutes since pumping began is given by V(t) = 2t — 0.01¢2
cubic feet. How fast is the height h of the water rising after 100 minutes?
How would you interpret this result?

26. Water is being pumped into a tank which is initially empty at a constant
rate of 2 cubic feet per minute. The tank is in the shape of a right circular
cone that is 10 feet high and 20 feet wide across its top. ( Volume of a cone

= 3 m radius® - height ).

10 10

5-6: Water pumped into a cone
How fast is the height h of the water rising after 10 minutes?
27. The acceleration of an object due to the earth’s gravitational field is
—k

a(r)—ﬁ
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28.

where k = 95,194.14 % and 7 is the distance from the center of the earth

sec
(assuming the earth is a sphere with uniform density).

(a) What is the acceleration due to gravity at the earth’s surface? (
mean radius of earth = 3963 miles) What does it become when it
is converted into feet per sec?? (1 mile = 5280 feet)

(b) What is the acceleration due to gravity at 10 miles above the earth’s
surface (in miles per sec?)?

(c) What is the rate of change of the acceleration at the earth’s surface?
How quickly does the acceleration change as an object leaves the
earth’s surface? How does this relate to (a) and (b)?

Repeat exercise 27 for the acceleration due to gravity on the surface of Mars
-3
where k = 36,292.76 X5 (Mars has a mean radius of 2,106 miles).

sec2

Ezxercises 29 - 40 are rate problems.

29.

30.

31.

32.

33.

34.

35.

36.

37.
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A rectangle with a length of | and a width of 2 feet has a perimeter of
P = 2] 4+ 4. Find the rate at which the perimeter is increasing if the length
[ is increasing at the rate % = 3 ft./sec.

Find the rate at which the area of a rectangle is increasing if its width is
constant at 2 feet and if the length [ is increasing at the rate of % = 3 ft./sec.

If the radius of a spherical balloon is increasing at 1.2 em/ sec when the radius
is 12 ¢m, at what rate is the volume contained by the balloon increasing?
(Recall V = 3mr?)

If the volume contained by a spherical balloon is increasing at 10 cc/sec (a
cc is one cubic centimeter) when the radius is 15 c¢m, at what rate is the
radius increasing?

The surface area of a melting ice cube is decreasing at a rate of 0.3 in?/ min
when its dimensions are 2 x 2" x 2”. At what rate is the length of a side of
the cube decreasing?

The surface area of a melting ice cube is decreasing at a rate of 0.3 in?/ min
when its dimensions are 2" x 2" x 2”. At what rate is its volume decreasing?

A boy, 4’8" tall, notices his shadow lengthening as he walks away from the
base of a 16’ tall street lamp. If he walks away from the street lamp at a
rate of 3 ft./sec, at what rate is the tip of his shadow moving when he is
30 feet from the base of the pole?

A girl is approaching an intersection on her bicycle and another is standing
still on the other street which forms the intersection. The girl on the bicycle
is riding at 15 ft./sec and the two streets are straight and at right angles to
one another. At what rate are the girls approaching one another when the
girl riding the bicycle is 50 feet from the intersection and the other girl is
30 feet from the intersection?

A Basketball’s Velocity: An NBA player shoots a 3-pointer from 24 feet (
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3 point line is at 23’9”) that passes through the hoop 1.4 seconds later.

oy
P

1
~ 24 !
5-7: An NBA 3-pointer

It can be shown that the ball had to have traveled along a parabolic arc of
the form

y =8+ 1.39x — 0.0544>

Use the fact that the ball moved 24 feet horizontally in 1.4 seconds to deter-
mine the constant horizontal velocity %. What was the vertical velocity %%
of the ball initially (i.e., when z = 0)? What was the vertical velocity when

the ball fell through the hoop?

38. A wide receiver runs next to the right sideline of a football field at a constant
rate of 27 feet per second. When he crosses the 50 yard line, a defender is
crossing the 30 yard line running at a constant speed of 24 feet per second
towards him along the same sideline. On what yard line will they meet and
how fast will the distance between them be decreasing at that point?

39. * Suppose the defender in problem 38 above is on the 30 yard line, but is in the
middle of the field at about 25 yards from the sideline. If the defender runs
at a constant rate of 24 feet per second, what linear path must he pursue in
order to do so? How fast is the distance between them decreasing when the
defender and the receiver meet?

40. * A man walks across a bridge at a constant rate of 2 miles per hour when a
boat traveling at a constant rate of 30 miles per hour passes directly beneath
him at a right angle to his path.

uy
5 iles oe‘M

30 miles per hour

5-8: Walking above a speeding boat

If the man is exactly 8 feet above the boat when the boat passes directly
underneath, then how far apart are the man and the boat one minute later
(assuming each follows a straight path at a constant elevation)? How fast is
the distance between the man and the boat increasing at that time?
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2.6 The Exponential Function

The Exponential Function

In this section, we introduce the exponential function, a function that is in many
ways foundational to the study of calculus. In doing so, we also introduce the
new constant e, which is called Euler’s constant, as a universal constant similar
in stature to the universal constant .

To begin with, let’s recall that the compound interest formula says that if P
dollars are invested at an annual interest rate r compounded n times each year,
then the value of the investment after ¢ years is

A:P(1+%)m

For example, let’s suppose that we invest $1 at 100% interest for ¢ = 1 years. The
compound interest formula becomes

a=(1+7)
n

where n is the number of compoundings. Moreover, if n increases, then the value
of A increases as well.

once per year n=1 = A=(1+ %) = $2.00

twice per year n=2 = A= (1 + %)2 =$2.25

once per quarter n =4 = A= (1 + i)4 = $2.44

once per month n =12 = A=(1+ 1—12 P~ $2.61

once per day n = 365 = A=(1+ 3—(135)365 =$2.71

once per day n=28,670 = A= (1 + #60)8760 = $2.718
31,536,000

once per second n =31,536,000 — A= (1 + Wlfi,()(JO)

That is, as the number of compoundings per year increases, the value of the
investment increases accordingly, but only up to Fuler’s constant

e =2.7182818286...

Let’s suppose now that the annual interest rate is 200%, so that r = 2. Then

once per year n=1 — A=(1+32) =$3.00

twice per year n=2 = A=(1+ %)2 = $4.00

once per quarter n =4 = A=(1+ %)4 = $5.06

once per month  n = 12 = A=(1+ 1—22)12 = $6.36

once per day n = 365 = A=(1+ 3—25)365 = $7.35
once per day n = 8,670 = A=(1+ W%O)sm = $7.387
once per second n =31,536,000 — A= (1 + WM>31,536,000

The significance of the number 7.389... is that it is very close to

e? = (2.7182818286...)% = 7.389056 . . .
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That is, as the number n of compoundings approaches oo, the value of the invest-
ment approaches e”, where 7 is the annual interest rate. This discussion motivates
us to define a new function.

Definition 6.1: The exponential function is defined

where each n in the limit is a positive integer.

In particular, e® is the function in which the number e is raised to the power x.
Let’s now calculate the derivative of e*. To begin with, let’s notice that for
each n, we have

That is, we can write

() = 0+0) (0+0)

Now let’s assume (rather boldly!) that we can interchange the limit and the
derivative. Then

n n -1
L i (1 ¥ f) = lim <1+ f) lim <1+ f)
T n—oo n n—oo n n—oo n
d . . _ )
%e” = " (1+0) Lo

That is, the exponential function is its own derivative:

d

xT T
—e
dx

=€

EXAMPLE 1 Find the slope and the equation of the tangent line to
y =e® when z = 1.

Solution: Since y = e* implies that 3’ = %, the slope of the tangent
line is
y(1)=e =e

1

Moreover, y = €® implies that y (1) = e* = e, so that the tangent line

is the line through (1, e) with slope e:

y—e=e(x—1)
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Thus, y = ex, which is approximately y = 2.7182 x.

201
15

10

6-1: A tangent line to y = e”

Check your Reading | Why can we conclude that y (0) = 1 when y = a*?

The Exponential Function and the Chain Rule

In operator notation, the derivative of the exponential function is of the form

d
—et =" 2.2
ToC =e (2.26)

The derivative (2.26) can be written in chain rule form as
d

%einput — einput % (input)

2

EXAMPLE 2 Find f' (z) for f(z) =e™*".

Solution: The chain rule tells us that

d in i d.
— e put _ e1np11t_1n ut
dx dx P
where the input is —z2. Replacing “input” by “—z2” results in
d d
567””2 = e,ﬁ% (-2%) = -2z e (2.27)

EXAMPLE 3 Find f' (z) if f (z) = 2%e®.

2

Solution: Since z2e® is the product of 22 and e, we use the product

rule:
d o

d 2 2 d 2
- T _ T T =9 T x
dxxe (dxx)e +x (dwe) re” + e
EXAMPLE 4 Find f'(2) if f () = z (e® + 1)*/?

Solution: Here we must use a combination of the product rule and
the chain rule. Indeed,

d . d , d |,
f(z) = . (x (e” + 1)3/2) = (@1}) (e® + 1)3/2 + S (e® + 1)3/2
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Thus, the chain rule implies that
, 3. d , .
fla) = @+ )Y g @+ )Y (e + 1)
, 3 ,
- (eJ”—i-l)?’/Q—i—§alc(¢eJ”—i—1)1/2 e’

1/2

Finally, factoring out (e® 4+ 1)"/“ yields

fl(@) = (" +1)!/? (ew +1+ gxe“>

Second derivatives are similarly evaluated. However, it is worth remembering that
if the first derivative involves the chain rule, then the second derivative will often
begin with the product rule:

2

EXAMPLE 5 Find f” (x) for f(z) =e .

Solution: In example 2, we used the chain rule to obtain f’(x) =
—2ze~*". Thus, finding f” (x) begins with the product rule:

f(x) = di:z: <72xe*x2)
= L}% (295)} e (—2x) %e*ﬁ

We now use the chain rule to evaluate %e’xz (see (2.27) for details):

@e_“ = -2 4 (—2x) (*21’6_;82)
_ —z? 2 —a?
= 2e +4x%e
Factoring out 2¢= results in
az ;
et =27 (227 1) (2.28)

Check your Reading | Compute the derivative of e~* wusing the chain rule.

Properties of the Exponential Function

Since e = 2.7182818284 ... is a number, the properties of e* follow from the laws
of exponents for a number e raised to a power x.

Properties of e

(1) e’ =1 (4) €* > 0 for all
1

(2) e*te =e%e®  (5) e % = —

(3) b = (e)" )

Property (5) is especially useful when simplifying expressions involving exponential
functions.
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EXAMPLE 6 Simplify the expression

e (2.29)
to an expression with only one exponential.

Solution: Property (5) implies the more compactly written

1—e®

Now let us multiply the numerator and the denominator by e*:

e * ev e *e” e %e”
l—e ™) et (1—e ®)et e —e Tev

Property (2) implies that e™%e* = e~**% 5o that

e ® e~ Tt el 1

l—e @ er—e @t  er—e0 er—1

Since e > 1, the exponential e* becomes larger and larger without bound as x

approaches co. Consequently, e™% = e% approaches 0 as x approaches co.
207
2.5
15 2
1.5
107
T
5 \\
0.5
B
-1 00 1 X 2 3 -1 0o 1 X 2 3
6-2a: Graph of f (x) = €* 6-2b: Graph of f (z) =e™*

In general, e¥* for k > 0 becomes arbitrarily large as = approaches co. Thus,

lim e7*® = lim ix =0 if k>0 (2.30)

T—00 z—oo ek

Check your Reading | What does e**e™% simplify to?

Applications of the Exponential

Later in this text, we will consider a number of applications of the exponential,
as it is foundational to the study of differential equations. For now, let’s look at
applications that follow immediately from definition 6.1.

If n is very large, then definition 6.1 implies that

e (14 %) (2.31)
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Raising e to a power ¢ and multiplying by P then yields
nqt
Pl ~P[ (1+2)"]
n
If we now let x = r and consider n very large, then
r nt
Pet ~ P (1 + —) (2.32)
n

That is, the compound interest formula for very large values of n is very close to
an exponential function. This idea is quite useful in studying investments like real
estate and the stock market where the value of the investment is theoretically in
a continual state of change.

EXAMPLE 7 What is the approximate value after 3 years of an
investment of $5, 000 with a projected annual rate of 12% if the number
of compoundings is not known specifically but is known to be quite
large (such as an investment in the stock market)?

Solution: Since n, the number of compoundings per year, is not
known but is very large, we use the fact that

r nt
A:P<1+—) ~ Pe't
n
If P =$5,000, r =0.12, and ¢t = 3, then

A = 5000e%12 3 = $7,166.64

The compound interest idea also occurs in non-financial applications. For example,
suppose a population is growing at a rate of k% per unit time, which is to say that
if dt is sufficiently close to 0, then between time ¢ and time ¢ 4 dt the population
will increase by kdt %. To illustrate, suppose that k = 20% per hour. Then
from time ¢ = 2 hours to time ¢ + dt = 2.01 hours, the population increases by
approximately kdt = 0.2 %. The parameter k is called the intrinsic growth rate
of the population.

Let’s suppose the population has a population of P at time ¢ = 0, and let’s
determine about how large A (t) the population will be after ¢ hours. To do so,
we choose a large positive integer n and divide the interval [0, ¢] into n equal time

periods, each of which has a duration of dt = £.

L L | | L L L ry
T T T I T T T T

0 t
6.3: The interval [0, t] partitioned into periods of duration dt = £

v

o
N

The population increases by about kdt = % % over each time period. For example,

over the first time period the population increases by about % % of the initial

population P, which is £ P. Thus, at time %, the population is approximately the

n
sum of the initial population P and the increase during [O, %]

A<i>zP+EP=P(1+ﬁ>
n n n
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During the period [£,2L] | the population increases by about £ % of A (L), so

n
that

2
A0 A2 -9

n n n \n n n n
Similarly, A (2£) ~ P (1 + %)3 and continuing across each time period leads to

A(t)A(%) zp<1+%)n

In the limit as n approaches oo, we obtain the exact population of

n—oo

A(t)= P lim <1+ﬁ> = Pt
n

Thus, the population at time ¢ is given by A (t) = Pekt.

EXAMPLE 8 A certain bacteria culture is increasing at an intrinsic
rate of about 20% per minute. If there are 100 bacteria initially, about
how many bacteria will there be after 7 hours?

Solution: Since P = 100 and k& = 80% per hour, the population at
time ¢ in minutes is given by

A(t) = 1008t
After ¢t = 7 hours the bacteria population will be
A(7) = 100> = 27,042 bacteria

Exercises:
Simplify each expression to an expression involving a single exponential
1. e %e?® 2. (e””/z — 1) (e””/z + 1)
3. e~ T (ez + 621) 4. (eSx + egz) efgx
5. 4 6. ¢ -1
er —2 e?r —1
- _ 1 x
(A 8
T —x 2z T
et —e et —4e” +4
9. — 10. ——
et —1 er —2

Find the slope and the equation of the tangent line at the given value of p.

11. f(x)=e*, p=2 12. f(x)=e"+e® p=1

13. f(x)=xe % p=1 4. f(x)=2%"2 p=

15, f(x)=e*—e* p=1 16. f(z)=e*—e* p=0
e _ 1 e 1

17. == = 18. == =1

7. f(z) 2 P=0 8. f(z) =y P
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Find the derivative f' (x) and second derivative f" (x) of each function below.

31.

32.

33.

34.

35

36

37.

38.

19. f(z)=ze™® 2. f(z)=a%" 21. f(z)= o—c?/2

22. f(x)= eV 23. f(zx)=¢€'/* 2. f(z) = e—1/2°

B J@=VE % f@) w2 f)= e e
1 +1 2 4

B. f)=o—— 9. fl)= xew 30.  f(z) = xe5f

What is the value after 5 years of an investment of $10,000 at an annual
rate of 12% if it is compounded monthly? If it is compounded daily? If it
is compounded hourly? Compare these values with the value obtained from
the exponential approximation of compound interest in (2.32).

If n is too large, then roundoff error forces us to use (2.32) instead of the
compound interest formula. For example, compute the values in exercise 31
if the investment is compounded once every second, once every millisecond (
= 1,000 times per second), once every nanosecond (= 10° times each second).
Do you trust these calculations? Or do you suspect roundoff error might be
making the compound interest formula unreliable?

Ace mutuals are an investment that consistently have somewhere between
a 9 and a 15 percent annual interest rate. If an investor invests $20,000 in
Ace mutuals, what is approximately the highest and the lowest values they
can expect for their investment after 5 years (assuming that the number of
compoundings per year is very large)?

Suppose that $1000 is placed in a savings account with an annual interest
rate of 4% compounded daily. How much difference would there be between
the exponential approximation and the compound interest formula in (2.32)
after 20 years?

. The world population in 1950 was 2.52 billion people, and at any given time

it has been growing at an intrinsic rate of about 1.875% annually since then.
What is the exponential function model for world population? About how
many people are in the world at present, based on this model? About how
many people will there be in 20507

. Repeat exercise 35 for the population of the United States, which was at

150.697 million in 1950 and at any given time has been growing at an intrinsic
rate of about 1.236% annually since then.

Grapher: In probability, the bell curve, which is also known as the standard
normal density, is the graph of the function f (z) = e /2,
(a) Find f’ (x) and f” (x).
(b) Graph f (x) and f’ (z) on the same domain [—2,2].
(¢) Where does the largest value of f(z) occur? At what value is
f (x) = 0? What is the connection here?

(d) At what two values is f” (z) = 07 (the absolute value of these two
numbers is called the standard deviation of the standard normal
density)

Grapher: The function f(z) = ze™* is sometimes called the alpha function.
It occurs frequently in applications in probability and biology.
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(a) Find f'(x).

(b) Graph y = f(z) and y = f'(z) on the same domain [0, 5].

(¢) Where does the largest value of f(z) occur? At what value is
/' (x) = 0? What is the connection here?

39. Numerical: Use the definition of the derivative to explain the identity

lim
h—0 h

Complete the following table as a means of verifying the limit above

h |—0.01 -0.001 -0.0001 — 0 <« 0.0001 0.001 0.01

-1 | — 7«
h

40. Grapher: Graph the function e* along with the function
eTth _ o
—
for h = 0.01 over the interval [—2,2]. Why are the two so similar?
41. Show that the tangent linetoy=e* at =0 isy=1+x.

42. Let Lo (x) =1+ z (i.e., the tangent line in 41). Show that the tangent line
toy=e%atx=pis
y=e"Lo(x—p)

43. Computer Algebra System: If n = 1000, then definition 5.1 implies that

1000
v n (1 )
¢ ( * 1000

Use a computer algebra system to expand the quantity on the right as a
polynomial in z, and then let x = 1 in the first 5 terms to obtain the

approximation
14+1+ L + L + !
er o e
2 6 24
44. Write to Learn: Write an essay in which you use definition 5.1 to explain
why
m
lim =— =0
r—oo e

for any positive power m. (Hint: you may want to use (2.31) and assume
that n > m).
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2.7 The Natural Logarithm

Definition of the Natural Logarithm

The graph of the exponential function y = e* is shown in figure 7-1.

Noow AN g o N

/

-2 -1 0o % 2

7-1: Graph of y = e”

Not only is there only one y for each z, but there is also only one x for each
y > 0. As a result, the curve z = e¥ implicitly defines y as a function of x. The
function defined implicitly by = = € is called the natural logarithm and is denoted
y=1In(z).

Graph of In(x)

2
7-2: The curve x = e¥ implicitly defines y = In (z).

Notice, however, that In (z) is defined only for z > 0.

Definition 7.1: The natural logarithm y = In(x) is the function
defined implicitly by the curve x = e¥.

Since y = In (z) is the same as x = e¥, replacing y by In (z) yields z = e™®),
Similarly, In (e*) = x. We say that e* and In (x) are inverses of each other because
of these two properties.

Theorem 7.2: If x > 0, then In (z) and e® cancel under composition.
That is,
In(e®) =2z and " =g,

For example, the fact that In(z) is the inverse of e allows us to use In(x) to
isolate k in the function y = Pe**. Solving for k in this fashion is important in
many applications.

THE NATURAL LOGARITHM 159



EXAMPLE 1 Find k given that y (t) = 3¢ and y (2) =7

Solution: Since y(2) =7, welet t =2 and y = 7 in y = 3¢ :
7=3¢%

We then divide both sides of the equation by 3

We take the natural logarithm of both sides to eliminate the exponen-

tial:
7
In(e**) = In(=
n(e™) = In ( 3>
7
2k = In|( <
(5)
Finally, we divide both sides by 2 to obtain

1 7
==In(= ) =0.42364

Check your Reading | What is the value of In(e)?

Properties of the Natural Logarithm

The properties of the natural logarithm follow from the laws of exponents. To
illustrate, consider that if a = e and b = €¥, then In (a) = z, In (b) = y, and

In (ab) =1In(e”e?) =In (e"") =z +y =In(a) +1n (b)
Moreover, if a = e®, then x = In (a), so that
In(a") =In((€*)") =In(e"™) =rz =rln(a)

An important corollary of these three is that
a
In (E) =In(a) —In(d)

The derivative of In (x) begins with the fact that if y = In (z), then ¥ = z.
Implicit differentiation applied to e¥ = z yields

vy =1

Since x = €Y, the equation ey’ = 1 reduces to xy’ = 1, which implies that
y' = 1/x. That is,

d 1
which in chain rule form is written
d . d .
. In (input) = p— %mput (2.34)
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Simplify  using
the  properties
of the logarithm
before applying
the derivative.

In summary, In (x) has the following properties.

Properties of In(x)

EXAMPLE 2 Find f’ (z) for f(z) =1n(e® + 1)

Solution: To begin with, we notice that - In (e” + 1) is given by

a (input)

d
Bl TG =
n (input) input dx

dz
where the input is e* + 1. As a result, we have

1 d,, e’
_ 1) =
eg”Jrld:c(eJr) e? +1

d
Zn(e" +1) =
dxn(e+)

Whenever possible, the properties of the logarithm should be used to simplify a
function before it is differentiated.

EXAMPLE 3 Find f'(x) for f(z) =In (22* — 23) and z > 0.

Solution: Since 2z* — 23 = 23 (22 — 1), we can write f (7) as
f(z)=In[2® (22 — 1)]
after which properties of the logarithm yield
f(x)=1In (x?’) +In(2z—-1)=3In(z)+In(2z-1)
Consequently, the derivative of f (x) is

d 1 d 3 2
/ _ . - —_ e
f(x)73dxln(x)+2x—1dx(2x b x+2x—1

Check your Reading | What is f' (x) when f(z) =1n (133)?

Logarithmic Differentiation

The properties of the logarithm can also be used to simplify some derivative com-
putations. In particular, the following algorithm, which is called logarithmic dif-
ferentiation, can be used to compute y' given y = f (z):

i. Apply In (z) to both sides of y = f ()
ii. Simplify using the properties of the natural logarithm
_ (@)

iii. Apply - and use the fact that 4y, [f ()] 0

dx

iv. Solve for 3/
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This process works even when f (x) < 0, as is shown in exercise 41.

EXAMPLE 4 Find the derivative of
T

_ 2.
2 +1 (2.35)

y:

Solution: We first apply In () to both sides,

m@)=m(;%7)7

We then simplify using the properties of the logarithm:
In(y)=In(xz) —In (x2 +1)
Application of the derivative to both sides yields

d d

d
aln() I In (z® +1)

In(z) - —
L (22 +1)
241

1
T

@ =

after which we solve for y':

p_g (Y 2%
y=y z x2+1

The result is the derivative of (2.35):
da x oz 1 2
dr \z2+1) 22+1\xz 22+1

EXAMPLE 5 Find 3’ when

e“Vax? —2
T (2.36)

Solution: Application of In (x) and simplification with the properties
of In (x) yields

e*a? —2

In(e”) +1In (2° — 2)1/2 —In(z—1)*

= x+%ln(x272)f4ln(x71)

Application of the derivative yields

d _d 1 9

Eln() = dx<x+21n(:c 2) —4ln(x 1))
SN E T N T
Y r—1
;o 1 2x 1
vo= ( 2 —2 Yroi
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which reduces to the final result

,efVa?—2 142 _ 4
¥y = (z —1)* 22-2 z-1

Check your Reading |H0w involved would it be to compute the derivative of (2.36) without logarithmic

differentiation?

Proofs with Logarithms

Even though mathematics frequently involves graphing, computation, and math-
ematical modeling, a large part of mathematics is devoted to proving that a given
mathematical statement is either true or false. This is analogous to a prosecu-
tor proving that a defendant is guilty beyond a reasonable doubt, except that in
mathematics the burden of proof is much heavier. In mathematical proofs, a proof
must leave no doubt as to the truth or falsity of a statement.

That is, we must assume that certain a priori facts are already known to be
true beyond any doubt, and then these facts must be used to test the validity of
new statements. Let’s conclude by assuming that the properties of the natural
logarithm are true beyond any doubt, and let’s see if we can use them to show
that other mathematical statements are valid.

EXAMPLE 6 Use logarithmic differentiation to y = gi(% to prove
the quotient rule when f and g are positive and differentiable for all z.

Solution: Since y = f (z) /g (x), the natural logarithm yields

) =t (L) (@) - )

Application of the derivative then yields

y d d _ @) (@)
m —%111(10(13))—%111(9(13))—

We then find a common denominator:

y _ @@ [ (@) _ @) - f@)d ()
(

y  f@g@)  fl@)g(x) f(x)g(x)

Since y = gﬂ(f)l, this implies that

L (@@ —f@)d @ f@) (@)@ - ) @)
yy( (@) g (@) )gu>< ( )

d f(z
dz g(z)’

df) [y —f(x)d ()

dv g () lg (x)]?

which ends the proof.

Since y' = cancellation then yields
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Exercises:
Find the value of k for which y (t) = Per*.

L. yt)=¢eM, y1)=2 2. y(t)=3eM, y(1)=9
3. y(t)=15eM y(5)=2 4. y(t) = 4.5k, y(1)=3
5. yt)=2eM, y(1)=1 6. y(t)=32e y(1)=3
7oy =€, y(1)=1 8. y(t)=4e" y(4) =

Find f'(x). You may want to simplify before computing the derivative.

9. f(z) =1In(2?) 10.  f(z) =1In(2® +2) 11.  f(x)=2%In ()
12.  f(x)=2%In(x) 13.  f(z)=e"In(z) 14.  f(z) =In(2?)In(z)

15, f(x)zln(xil> 16. f(x):1n(;1i+‘;’> 17, f(x)zln(

18. f(x)zln( i > 19. f(:z:)zln( e ) 20, f(z) =1In(e~"v/aT—1)

Use logarithmic differentiation to find 1.

Tr+6 222 + 7 2?21
21. = — 22. = 23. =
Y= 1 4 z—4 Y ed®
U oy - 95 yma-D(—2) (-3 2 y——tEFD
C YT e g S Y= - Y=
W T T
27. y:M 28. y= e“+
e*(4x — 8) e +2
1 x
29. y<1+5> 30, y=avr3+322+3z+1

Write to Learn: The applications 31-40 represent a series of short proofs using
the properties of logarithms and exponentials. In each, the result should be a
short essay explaining and justifying each step in the proof. Assume that f(x)
and g (x) are differentiable functions.

31. Use the properties (1), (2), and (3) of the logarithm to prove that

a
In (E) =In(a) — In(b)
for all a > 0 and b > 0.
32. Apply logarithmic differentiation to y = 2" to prove that

_1,7’ _ 7"1’7‘71

dx

for all real numbers 7.

33. Apply logarithmic differentiation to y = f (x) g (x) and thus obtain the prod-
uct rule.

34. Use logarithmic differentiation to prove the chain rule formula for the expo-
nential function: p

%ef(w) =@ f (1)
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35. Use logarithmic differentiation to prove that if y = f (z) g (x), then

!/ !/ !
vy_I .9
vy f 9
36. Use logarithmic differentiation to prove that if y = 5((3 , then
v_I _d
vy f 9

37. Apply the logarithm to y = a® to show that a® = e*'™(®) for all a > 0. Then
apply logarithmic differentiation to y = a® to prove that

d%lca”” =a"In(a)

38. Let’s prove a special case of the chain rule. Apply logarithmic differentiation
toy = [f (z)]" to show that

L@ =nlf @ F @)

given that (2.34) is true.
39. In the next chapter, we will prove the theorem that says
“If B’ (z) = 0 for all x in (a,b), then h(z) is constant on (a,b)”
Use it and the following steps to prove that if @ > 0 and x > 0, then
In(az) =In(x) + 1In(a) (2.37)
(a) Show that h’ () = 0 when
h(z) =In(az) — In(z)

(Note: Since we are proving (2.37), we cannot use it to simplify
In (ax) . Instead, use the chain rule to differentiate ln (ax)).
(b) Show that if C' is a constant which satisfies

C =1n(ax) — In (z)

then C = 1In(a) (Hint: let £ = 1). Then solve for In (az) in order
to obtain (2.37).

40. In the next chapter, we will prove the theorem that says
“If ' () =0 for all x in (a,b), then h(x) is constant on (a,b)”
Use it and the following steps to prove that if x > 0 and r is constant, then
In(2") =rln(z) (2.38)
(a) Show that I/ () = 0 when
h(z)=rln(xz) —In(z")

(Note: Since we are proving (2.38), we cannot use it to simplify
In (ax) . Instead, use the chain rule to differentiate In (az) .
(b) Show that if C' is a constant which satisfies

C=rhn(z)—In(z")
then C'= 0 (Hint: let x = 1). Solve for In (") to obtain (2.38).

41. Write to Learn: In a short essay, apply logarithmic differentiation to
y2 = [f (2)]* and explain why it justifies the use of logarithmic differentiation
even when f (z) <0.
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2.8 The Sine and Cosine

The Sine and Cosine Functions

In this section, we continue exploring differentiation by developing derivative rules
for the trigonometric functions. Before we do so, however, let us first review some
of the basic ideas from trigonometry.

To begin with, let 6 be the distance along the unit circle from the z-axis to a
point P on the circle (i.e., 8 is in radians). Then the z-coordinate of P is defined
to be cos (0) ( “cosine of theta”) and the y-coordinate of P is defined to be sin (6)
(sine of theta” ).

P(cos(0),sin(0))

6 o

(1,0)

—— cos(6)—

8-1: The Unit Circle
Since small changes in the angle 6 cause only small changes in the coordinates,
the functions sin (6) and cos (#) are continuous for all 6.
Some common sines and cosines are shown below:

6 |0 § § 3§ 3
sin(0) [0 5 ¢ P 1
cos(0) | 1 3§ Ag 10

8-2: Some common values of sin (f) and cos (6)

These cosine-sine pairs correspond to points on the unit circle:

0.1) L
—— (2 92
z V2 V2
2 (T,T

WERE
29 2

(1,0)

8-3: Some common Cosine-Sine pairs

The unit circle definition implies that sin (6) oscillates between —1 and 1 with
a period of 2.

o 3y
‘ > A N
N\ (%7 -\ = sin®)
(@ L 3n A
| \\622 2 | \
—TE\\\ \ 21 5; 3n
\ \ 2

8-4: The graph of the sine function
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Likewise, —1 < cos (0) < 1, and cos (6 + 27) = cos () for all 6:

_—
=}
™)

3
2

T\ A\ A\ = cos(0)

ST
N

8-5: Graph of the cosine function
Moreover, figures 8-4 and 8-5 imply that if n is an integer, then

sin (nm) =0 and cos <<n + %) 71') =0

Equivalently, if m is an odd integer, then cos (%) =0.
EXAMPLE 1 Solve the equation cos (z) — 2sin (z) cos (z) = 0.

Solution: Factoring leads to
cos (z) (1 —2sin(z)) =0

Thus, cos () = 0, which implies that x = (n + %) 7 for any integer
n. Also, 1 — 2sin(z) = 0, or sin (z) = 1. However, sin (z) = 1 occurs
twice on the unit circle—once in the first quadrant and once in the

second quadrant.
! /6
I

)
{ \

Since sin (0) has a period of 2m, the solutions to sin (z) = § are

5
1}:%—‘1-27171', x:%—i—Qnﬂ'

Check your Reading| What is the set of all the solutions to the equation in example 17

Derivatives and Identities

Let’s use the unit circle to obtain the derivative of the sine function. Let 6 and
h be acute positive angles with h small enough that 6 4+ h is in the 1st quadrant.
Then let A be the point with coordinates (cos (8 + h),sin (0 + h)), and let C be
the point with coordinates (cos (6),sin (9)).

sin(0+h) RN 4
o h\ sin(0+h)-sin(0) i |AC| Ah
sin(0) 1 B C C

B

T

0 I
8-6: A is (cos (0 + h),sin (0 + h)) and C is (cos (6) ,sin (9))
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If h is sufficiently small, then & is approximately the same as |AC|, which is the
length of the segment AC. Since |AB| = sin (6 + h) — sin (), triangle AABC
implies that

sin (0 4 h) —sin (9) _ sin (04 h) —sin (0)
h - |AC|

= cos ()

where « is the angle ZBAC. L
___To determine angle a, we use the fact that the radius OP intersects the chord
AC in a right angle and bisects angle ZAOC.

N A
o\ P L ABP = /OBR
4 BYL C which means that
h _
9+ﬁ G+Z = o
2 g
1o, R |

8-7: Line segment OP bisects line segment AB

Right triangles AORB and AAPB are similar, which implies that ZABP =
Z/0OBP, and thus, that o = 0 + % This means that

sm(@—i—h})L—Sln(G) ~ cos <9+/§1>

Moreover, h and |AC| become arbitrarily close as h approaches 0 (a concept we
will justify further at the end of this section), so that

lim sin (0 + h) — sin (0)
h—0 h

. h
= ’llli%cos (9 + 5) = cos (0)
Thus, the limit definition of the derivative implies that

d .
2 5in (0) = cos (9) (2.39)

We often write (2.39) in chain rule form as

4

T (input) (2.40)

d . . :
2p 50 (input) = cos (input)

EXAMPLE 2 Find y’ (6) when y (0) = sin (46) .

Solution: The chain rule (2.40) implies that
2 sin (input) = cos (nput) = (input)
g Sin (input) = cos (input) — (inpu

where the input of 460. As a result,

4 sin (46) = cos (40) %

pT (40) = 4 cos (40)
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Don’t forget
the negative
when differenti-
ating the cosine
function

Likewise, the trigonometric identities
cos () = sin (g — 9) and sin (0) = cos (g — 9)

imply that

C%cos(ﬁ): difgsin (gf@ = —cos (g*9> = —sin (0)

Thus, the derivative of cos (6) is the negative of the sine function:

d .

20 08 (0) = —sin (0) (2.41)
In chain rule form, we write

d

70 (input) (2.42)

d . o
29 &8 (input) = — sin (input)

EXAMPLE 3 What is the slope and equation of the tangent line to
Y = T COS (xz) at x =07

Solution: The product rule implies that
Y (x) = dix [#cos (z%)] = (diix) cos (2%) + xdix cos (z?)
The chain rule then implies that

d
/ _ 2\ i (22) 4 2
Y (x) = cos(2®) —sin (2?) e
= cos (2°) — 2xsin (2°)
As a result, the slope of the tangent line is
y' (0) = cos (0) — Osin (0) = 1
Moreover, y (0) = 0cos (02) = 0, so that the equation of the tangent
line is
y=0+1(x—-0)==x

which is shown along with the function y (x) =  cos (x?) in the figure
below:

-4

8-8: The line y = x is tangent to y = x cos (2?)
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The unit circle can also be used to establish the following basic identities:

sin(z+a) = sin(x)cos(a)+ cos (z)sin (a) (2.43)
cos(x+a) = cos(z)cos(a)—sin(z)sin(a) (2.44)
sin(—z) = —sin(x) (2.45)
cos(—x) = cos(x) (2.46)
These identities are then used to obtain the Pythagorean identities
cos? (x) +sin? (z) = 1
1+tan® (z) = sec? (x)
1+cot?(x) = csc?(x)
as well as the double angle identities
2sin (z) cos (z) = sin (2x) 2cos? (x) — 1 = cos (27)
cos? () — sin? (x) = cos (2z) 1 — 2sin? (z) = cos (2z)
The double angle identities then lead to
2 1 1 ) 1 1
cos® () = 5 + 5 cos (2x) and sin” (x) = 5~ 5 cos (2x) (2.47)

Each of these identities can also be obtained directly from the unit circle.
EXAMPLE 4 Find f” (x) when f () = sin (x) cos ().

Solution: We begin with the product rule:

fa) = L lsin(r)cos (o)

_ [d% sin (x)] cos (x) + sin (z) [d% cos (ac)}

cos (x) cos (x) + sin (z) [— sin (z)]

= cos? (x) — sin? ()
Before computing f” (x), let us apply an identity to f/ (z):
f' (z) = cos® (z) — sin? (x) = cos (2z)
As a result, the second derivative is of the form
' (x)= a cos (input) = — sin (input) a input
dx dx
where the input is 2z. Finally, we have

1" (z) = —sin (2z) dilx (22) = —2sin (2z)

Check your Reading | What is the derivative of g (x) = cos® (z) + sin? (z)?
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Harmonic Oscillations and Rates of Change

A harmonic oscillation is a function of the form
y (t) = acos (wt) + bsin (wt) + M (2.48)

where a, b, w, and M are constants. Often, the variable ¢ denotes time, in which
case the Greek letter omega, w, represents the angular velocity of the oscillation.

EXAMPLE 5 Tides: The height h in feet above or below sea level
of the ocean near Bridgeport, Connecticut, at time ¢ in hours since
midnight on Sept. 1, 1991, is given by

h (t) = 3.35 — 0.0175 cos (0.506¢) + 3.184 sin (0.506¢)

How fast is the ocean level rising at 10 a.m?

Solution: The derivative of h (t) is given by
1’ (t) = 0.0175 (0.506) sin (0.506t) + 3.184 (0.506) cos (0.506t)

Since 10 a.m. corresponds to t = 10 hours, the ocean level at 10 a.m.
is changing at a rate of

R (10) = 0.0175(0.506) sin (5.06) + 3.184 (0.506) cos (5.06)
0.54 feet per hour

The period of a harmonic oscillation (2.48) is the smallest number 7' > 0 such that
y(t+T)=y(t) for all t. It is related to the angular velocity by the formula

T 2"
w

and the graph of y () over one period is called a cycle. The number of cycles that
occur per unit time is the frequency of the oscillation, which is given by

1
I=7

Frequencies are often measured in hertz, where 1 hertz is one cycle per second.
The amplitude of the oscillation is given by

A, =Va?+ b2

and the graph of the oscillation is a shifted sine wave oscillating about the line

y
M+4,,| period ——1
/\y\ ,,,,,,,,,, N
M-,
t

8-9: Simple Oscillation about the mean value M
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EXAMPLE 6 What is the period of the tide in example 57 How high
is high tide?

Solution: The graph of h (t) over the first 24 hours is shown below:

0 5 10 t 15 20

8-10: Tides are an oscillation in sea level
Since w = 0.506, the period of the tide is

2w
T= 0506 — 12.42 hours

The amplitude of the oscillation is

Ay = \/(—0.0175)2 + (3.184) = 3.184 feet

Thus, high tide is the sum of the mean value M = 3.35 and the am-
plitude A,, = 3.184 feet, which is

M+ A, =335+ 3.184 = 6.534 feet

Check your Reading | How low 1is low tide in example 27

Proof that - sin () = cos (/) using the Unit Circle

The derivative formulas for the trigonometric functions follow from

d .
2 5in (0) = cos (9) (2.49)

Thus, we conclude this chapter with a “rigorous” proof of (2.49). To do so, how-
ever, we will need the following basic ideas about a sector with length s of a circle
with radius r subtending an angle 6.

, / s=r0 - / Area= 3720
/) /)

8-11: Arclength and Area for the arc of a circle
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EXAMPLE 7 Show that

i S0 (h)

h—0 h =1

Solution: Suppose @ is a sector of the unit circle subtending a
small positive angle h:

o cos(h) R 'Q
8-12: Relationship of sin (k) to h

The secant PQ is shorter than the arc FC\), and the side PR is shorter
than the hypotenuse PQ. As a result,

sin (h) < h

Suppose now that AR is the arc of a circle centered at O with radius
cos (h) subtending angle ZAOR.

0

8-13: Relationship of & cos (h) to sin (h)

The area of sector ORA is less than the area of triangle AOPQ, and
since segment OR is common to both, the respective area formulas
imply that hcos (h) < sin (h) .
Combining the two yields the inequality
hcos (h) <sin(h) < h

Division by A thus implies that

cos (h) < smh(h) <1
Application of the limit as h approaches 0 then yields
lim cos (h) < lim sin (h) <1
h—0 h—0
< pm SRy
h—0 h

By the sandwich theorem, we conclude that

sin (h)

im =1
h—0 h
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Notice now that the length of a chord that spans an angle h on the unit circle is
2sin (%) .

P
9;\&%) [PO| = 2sin(£)
- / :g\o@

g h\ -

o 1
8-14: Length of a Chord of a Circle

As aresult, the length of the chord AC in figures 7-6 and 7-7 is actually 2sin (h/2).

A
sin(0+h)-+ < |
o) ZSIHS%) sin(0+4)-sin(0) ;\ 2sin(g)
sin(0)+ B p . )
h
0 sin(0-+4)-sin(0)
0, I W = cos(a) = Cos(9+%)

8-15: Actual values for AABC

Now let’s prove that the derivative of sin () is cos (). Since o = 6 + % as we
showed earlier, we have

. sin(@+h) —sin(0) h

A sn (h/2) = jimcos (043

. sin (0 + h) — sin (0) h . h

fo ( h Tsn(rz)) T e {0t 3

. sin(0+ h) —sin(6) . h/2 L h
(flfi’% h gy )~ Hmeos(0tg

Let us now let u = h/2. Then u approaches 0 as h approaches 0 and

(% sin <9)) <li“ sinuw)) -

(d%sin(e)> @ = cos ()

(d%sin(e)> (%) — cos(0)

which simplifies to - sin (6) = cos (), which completes the proof.
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Exercises
Find /' (t) for each of the following:

1. y(t) =sin(3t) 2. y(t) = cos(3t)

3. y(t) =cos(rnt) 4. y(t) =sin (72t)

5. y(t) cos (V7 t) 6. y(t) =12sin (/7 t)

7. y(t) =t% +sin(2t) 8. y(t) =2t— cos(3t)

9. y(t)=etcos(3t) 10.  y(t) = e ¥3sin (7t)
11.  y(t) = sin (¢) sin (3t) 12.  y(t) =sin (¢) cos (2t)
13.  y(t) =sin®(¢) 14. y(t) =cos® ()

Find " (x). You may want to simplify with trigonometric identities either initially
or after the 1st derivative.

15, f(z) = sin® (z) 16.  f(x) = cos? (3x)

17.  f(x) = (cosz +sinx)’ 18. f(x) = (cos x — sin x)2

19.  f(t) =cos*(t) —sin* ()  20. f(t) = cos* (t) +sin* (¢)
21.  f(z) = 3sin(x) —sin®*(z)  22.  f(z) = 2sin*(x) — 2sin’(z)
28 alt) =1 fié?(t) 24 1) = siﬁczi)(t—) 1

Find the period, frequency, and amplitude of the oscillation. Then find rate of
change of the harmonic oscillation at the given input..

25.  y(t) =sin (3t), =0 26. y(t)=cos(3t), p=0

27.  y(t) =b5cos (7rt) p=73 28. y(t)=sin(x*), p=0

29. y(t):cos()fsm(t), pfg 30. y(t)=cos(t)+sin(t), p=mw
31l. y(t) =cos(3t) +sin(3t), =0 32.  y(t) = /8cos(t) — v/8sin ()

33. Find the equation of the tangent line to y = sin (2z) at p = =, and then
graph both the curve and the line over [0, 27] .

34. Find the equation of the tangent line to y = sin (z) + cos (x) at p = 0, and
then graph both the curve and the line over [—7, 7] .

35. The price p per pound of ground beef at time ¢ in years since 1980 (and up
to 1998) is approximately the same as the function

2
p(t) = 1.85 +0.15sin (gt)

How fast is the price of ground beef growing in 19857 In 19957 2

36. Elmo’s ice cream shop notes that if y denotes the number of customers per
week at ¢ weeks since the beginning of the year, then

y (t) =200 + 20 cos (21615) — 20+/3sin (%t)

How fast is the number of customers per week increasing after 13 weeks?

2Based on Bureau of Labor Statistics data and on examples from Stefan Wagner and Steven
R. Costenoble of Hofstra University.
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37.

38.

If y (t) denotes the number of hours of daylight in Johnson City, TN, on the
day which is ¢ days after the beginning of 1999, then

27 . 27
y (t) = 12.2 — 2. 2855 cos (% t> + 0.4036 sin (% t>

What is the amplitude and period of the oscillation? How fast is the length
of the day changing on the first day of the year?

The average monthly temperatures y in Denver, Colorado at ¢ months after
the beginning of the year can be closely approximated by the function

y =516 — 10.95v/3 cos (%t) — 10.95sin (%t)

Which month is the coldest month of the year? Which is the hottest month?
How fast is the average monthly temperature changing in June?

39. Household current in the United states typically has a voltage of about 117

40.

41.

42.
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volts oscillating at 60 cycles per second. The amplitude is defined to be
A, =2 voltage
Explain why the voltage at an AC wall outlet can be modeled by the function

V (t) = 165sin(1207t)

Write to Learn: In some parts of Europe, the voltage at a wall outlet
is given by g(t) = 320sin(607t). Describe the differences in amplitude and
frequency between this voltage and the voltage at a wall outlet in the US (as
described above). ( One can actually discern the flicker in an incandescent

lamp powered with the voltage described by g(t) )

The “A” below middle “C” on a piano produces a sound wave whose funda-
mental pitch can be modeled by

y (t) = 60 sin (8807t)

What is the frequency of the fundamental pitch of the “A” below middle
“C”? How many complete oscillations occur each second? How fast is the
sound wave oscillating initially (i.e., when ¢t = 0)7

Use trigonometry and example 7 to establish the limit

i €% (h)—1 _

h—0 h 0

Then use the identity
sin (A + B) = sin (A4) cos (B) + sin (B) cos (A)
and the limits

lim sin (h) _1, iy % (h)—1 _

h—0 h h—0 h 0

to compute the derivative of f (z) = sin (z) using the limit definition of the
derivative.
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Derivatives  of
trigonometric

functions  that
start with “c”
have a negative

sign.

43. Write to Learn: In figures 8-4, 8-5, and 8-15, the chord BC has length
|BC| = cos (0) — cos (6 + h)

for € in the first quadrant and h a sufficiently small positive angle. Mimic
the discussion in the first section to suggest that

cos(@—i—h})L—cos(G) ~ —gin <9+%)

Then mimic the discussion at the end of the section to actually prove that

i €% (04 h) — cos (0)
h—0 h

= —sin (0)
43. Trigonometry Review Exercises: Find all solutions to the following:

(a) cos?(x) —sin?(x) =0  (b) 4cos?(z)+1=4cos(x)
(c) sin(x) —2sin®(z) =0  (d) 2sin®(z)+1 = 3sin ()

2.9 Additional Functions

Derivatives of Tangent, Secant, Cotangent, and Cosecant

The derivatives of the remaining trigonometric functions follow from the deriva-
tives of the sine and cosine functions. For example,

d <sin (J:)> _ [ sin (z)] cos (z) — sin(z) [ cos ()]
dx \ cos (x) cos? ()
_ [cos (z)] cos () — sin(x)[—sin (z)]
cos? (z)
cos? () + sin? ()

cos? (x)

Simplifying with the identity cos? (x) + sin? (x) = 1 thus yields

d (sin(z)) 1 d -
dx (cos (:c)) ~ cos? (z) or Ir tan (z) = sec? (z)

Derivatives of the remaining trigonometric functions are similarly obtained and
are summarized in the table below:

£ sin (z) = cos (z) 4 cos (z) = —sin (z)
£ tan (z) = sec? (z) £ cot (z) = — csc? (z)
4 sec (z) = sec (z) tan (z) 4 cse (z) = — csc (z) cot (2)

EXAMPLE 1 Find the equation of the tangent line to y = x tan (z)
at p=.
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Solution: The product rule implies that the derivative is
f () = <di:;x) tan (x) + xdi:c tan (z)
= tan(z) + zsec? (z)

As aresult, f'(7) = tan (7) +7sec? (7) = m. Since f (7) = wtan (7) =
0, the linearization at 7 is

y=0+7(x—m)

Thus, y = 7z — 72 is tangent to y = x tan (x) when z = 7.

107
5
N /
- 0 1
5
j /

9-1: y = mx — w2 is tangent to y = xtan (z)

Chain rule forms follow by replacing x by a given input and multiplying by the
derivative of that input. For example, the chain rule form of the derivative of
tan (x) is

d . 2 d .
T tan (input) = sec” (input) o (input)

EXAMPLE 2 Find f’ (z) for csc (22 +1).

Solution: The chain rule implies that the derivative is of the form

d d
7 ¢ (input) = — csc (input) cot (input) T (input)
where the input is 22 4+ 1. Thus, we have
i cot (x2 + 1) = —csc (ac2 + 1) cot (ac2 + 1) i (ac2 + 1)
dx dz
= —2xcsc (ac2 + 1) cot (x2 + 1)

Check your Reading | What is the derivative of cos® (z) + sin? (z)?

Chain Rule and Identities

Often the chain rule must be used more than once in derivatives involving trig
functions. In such instances, it will be important to progress through the compu-
tation in a neat and organized fashion.
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EXAMPLE 3 Find f’ (z) for f (z) = tan? (2%).

Solution: Since tan? (z%) = [tan (x3)]2 , the chain rule leads to

d . 2 op 1 d .
o [input]” = 2 [input] o input

where the input is tan (2%) . The result is

L ) <l 4) e

We apply the chain rule again to obtain

dix [tan (2°) ]2 = 2 [tan (2%)] dix tan (input)

= 2[tan (2%)] sec? (input) difc input

where the input is 23. This simplifies to

d% [tan (+%)]° = 2 [tan ()] sec” (=) d%xg
_ 9tan (x?’) sec? (x?’) . (3x2)

= 62%tan (x3) sec? (x3)

As before, identities are often used to simplify derivative calculations.
EXAMPLE 4 Find f'(z) when f (z) = sec* (z) — sec? (z) tan? (z)

Solution: To begin with, we can factor out sec? (x) to obtain
f (@) = sec? (z) [sec® (z) — tan® (z)]
We then simplify f (z) using the identity sec? (z) = 1 + tan? (z):
f (x) = sec? (z) 1+ tan? (x) — tan? (z)] = sec? (z)

Finally, since sec? (z) = (sec ac)2 , we apply the chain rule with an input
of sec (z):

f(z)= 4 (inpu‘c)2 =2 (input)1 d

T o (input)

Replacing the input by sec (z) then leads to
, d
/' (x) = 2sec(x) o Sec (x) = 2sec (x) [sec (z) tan (z)]

which simplifies to f’ (r) = 2sec? (z) tan (z) .
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Check your Reading | What is the derivative of cos® (z) + sin? (z)?

Exponential and Logarithms with Arbitrary Bases

If y = a® for some fixed base a > 0, then In(y) = In(a¢*) = zln(a). Thus,
y = e*"(@) which leads us to define a® to be

a® = e*n@) (2.50)
Moreover, if y = a”, then In (y) = z1n (a) and logarithmic differentiation yields

/
% =1In(a) = vy =yln(a)

Since y = a”, this yields the following:
iax = a”In (a) (2.51)
de '

In chain rule form, this rule becomes

d ; d
input — input :
e a In (a) . (input)

where a > 0.
EXAMPLE 5 Find 3/ when y = 25(®),

Solution: Since y = 2"Put if the input is sin (), application of (2.51)

yields

d . ; d
/ — input — input s
Yy _dx2 2 In (2) . (input)

Since the input is sin (x) , this in turn becomes

y =25 1 (2) dix (sinz) = 25" In (2) cos (z)

In addition, we define y = log, (z) to mean that x = a¥. However, x = a¥ implies
that

In (z
In(z) =yln(a), y= lnEa§
Consequently, the logarithm base a is given by
_In(x)
loga (CL’) - In (CL)

where a > 0.

EXAMPLE 6 What is the slope and equation of the tangent line to
y =logqy () at © =17
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Solution: To begin with, log,, (z) = %1%, so that

) 1 d 1

= ] - -
™ (10) dzx n () 2 1n (10)
Thus, the slope of the tangent line at x =1 is

Y (1) = —

= ——=0434
T (10) ~ 4343

Since y (0) = logy, (1) = 0, the equation of the tangent line at x = 1 is
y=0+0.4343 (x — 1) = 0.4343 (z — 1)

9-2: The line y = 0.4343 (x — 1) is tangent to y = log;, () at (1,0).

Check your Reading | What is the slope of the tangent line to y = cosh (z) at © =07

Derivatives of Functions of the form [f ()"

The definition (2.50) implies that functions of the form [f (x)]’ @) are defined

[f (x)]g(w) — 9(=) In[f(2)]

Logarithmic differentiation is then used to find the derivative of a function of the
form [f (l‘)]g(w) .

EXAMPLE 7 Find ' when y = (22 +1)".

Solution: To do so, we apply the natural logarithm to obtain
In(y) =In (2* + 1)I =zln (2* +1)

Thus, via the product rule we obtain

Yy d
= ix ln(acz—i—l)—i—xiln(acz—i—l)
dx dx
2x
= ln(xz—i-l)—i—xeJrl

As a result, we obtain

22
2+ 1

y'zy{ln(xz—i—l)—i-
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which after substituting y = (2% +1)" yields

d z 222
@) =) 1n(:c2+1)+x2—+1

Exercises:
Find the first derivative of each of the following: .

31.

32.
33.
34.
35.

36.
37.

38.

182

1. f(x) =tan(2x) 2. f(x)=sec(3x)

3. f(x)=a2cot(x) 4.  f(x) =xcsc(2x)

5. f(x) = tan® (2%) 6. f(x)=sec?(2x+7)

7. f(x) = e"sec(2x) 8. f(x)=In(cscx)

9. f(x)=2sin(x)csc(2x) 10.  f(x) = 1In(cotx)
11.  f(z) =In(secx) 12. f(z) = gln (tanx)
13.  f(x) = e *sin(e®) 14.  f(x) = e ®sec(e”)
15.  f(xz) =1In(secz + tanx) 16.  f(x) =1In(cscz + cotx)

17. y=23" 18. y=57*

19. y=g2 2. y=1°

21. y= 101n(z) 29. y=m" sin(z)

23.  y=logg () 24.  y=logs(x)

25. y=logy (z*+1) 26. y=1logy, (2x+3)
27. y=a* 28, y= (@)

29. y= <1 + i)z 30, y=(x+ 1)@

Find the slope and equation of the tangent line to y = tan (z) at the following
points: x = —m,x =0,and x =7

Find the slope and equation of the tangent line to y = 10* at =z = 1.
Find the slope and equation of the tangent line to y = sec (x) at p = . .
Find the slope and equation of the tangent line to y = tan (x3) at p=0.

Use the definition of log, (x) to show that

log, (8) = 1252

~ log, (a)
for any positive numbers a, b, and c.
What is significant about the function log, (x)? What is its derivative?
Consider f(z) = zV*.

(a) Determine the domain of f (z) using the fact that In (z) is defined
only when = > 0.

(b) Graph the function on its domain with the grapher.

Consider f(x) = (—x)vVet10,

(a) Determine the domain of f (z) using the fact that In (z) is defined
only when = > 0.
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(b) Graph the function on its domain with the grapher.

39. What is significant about the function z'/™(*)  What is its derivative?

40. Mathematical Gibberish.

(a) Explain why the function f(x) = In(x)vV'~% is not defined for any
x.

(b) Input the function into a grapher and attempt to graph the func-
tion. Also, try to evaluate the function at a particular value or
generate a table of values. What happens?

41. Use the identity
tan (A) + tan (B)

tan (4+B) = 1 —tan (A) tan (B)
and the limit
to compute the derivative of f (z) = tan (z) using the limit definition of the

derivative.

42. Write to Learn: A trigonometric function cy is a cofunction of a trig
function f if

cr(¢) = f(0)

when ¢ is the complementary angle of 0 (i.e., ¢+60 = T ). Write a short essay
in which you use the definition of a cofunction to explain why derivatives of
trigonometric functions that start with “¢” have a negative sign in front.
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Self Test

A variety of questions are asked in a variety of ways in the problems below. Answer
as many of the questions below as possible before looking at the answers in the back

of the book.

1. Answer each statement as true or false.

(a) Applying the product rule to z? - 3 will yield a different result than
applying the power rule to z°.

(b) Lz =naz"~! is called the power rule.

(c) &l@® =2)f(2)] = 22f'(2) + (2° - 2) f(=).

(@) TF Fa+ 1) = £+ B Bk + 12, then () = 2o

(e) The derivative function, f’(z), is the function which gives the rate of

change of the function f(z) at the input x.

(f) If y = 22 where x and y are functions of ¢, then

Ay _ g,
dt T dt

(g) The point (2, 1) lies on the curve z% + 3% = 3.

(h) The curve given by y = a3
2x = 3a2.

(i) If C(x) is the cost of producing x objects, then C’(100) is the approxi-
mate cost of producing the 101%¢ object.

— 22 satisfies the differential equation y’ +

(j) The equation d%k: = 0 where k is a constant function says that k£ has
no rate of change at any particular input value. (Note: Recall that a
vertical line has no slope and a horizontal line has 0 slope.)

2. Answer each statement as true or false. If false, determine the reason.
(a) The natural logarithm, In(x), is the inverse function of the exponential
function, e*.
(b) There is a real number r such that e™(") # In(e").
(c¢) The natural logarithm, In(x), is defined for all real numbers x.
(d

)

)

) agb
e) One of the properties of the logarithm is that In(a + b) = In(a) In(b).

)

)

)

One of the law of exponents states that e®® = e%e’.

(
(
(¢) If y = sin (z), then 3" = —sin (x).
(h) If y = cot (z), then ¢’ is negative.

f) The exponential function is the only function equal to its derivative.

3. Ify=1In (xQ) , then 3/ is not equal to which of the following:

@ % 0 2 @ & @ 2
4. In(e3*”=7) simplifies to
(a) In(322-7) (b) ln(e3m2) +1In(e™") (c) 32%2-7 (d)
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10.
11.

12.
13.
14.
15.

16.

. 2sin (%I) cos (%””) is the derivative of which of the following functions:

(a) sin(x) (b) cos(x) (¢) sin(2x) (d) cos(22)

1\3
. What is f/(z) if f(x) = (ﬁJr%) ?

o a(a ) v 3 (57 m)

@ () s @ () ()

. What is f'(z) if f(z) = /g(z)?

(a) —2=g'(z) (b) 2\/ﬁg’(ﬂf) (©)3 \/i<_@> (d)v/g(x)g'(x)

g(z)

. Find the slope of the tangent line to the curve given by 2 4+ 3> = 3 at the

point (2, —1).

(a) — 4/3 (b) —3/4 (c)4/3 (d) 3/4

. A cistern is in the shape of an inverted right circular cone with base radius

r = 3 ft. and height h = 5 ft. . If rain is falling such that it is filling the
cistern at a rate of 2.35 ft.2/hour (equivalent to 1” of rain per hour) , find
the rate at which the water level is rising when the height of the water 2 ft..
(Hint: the volume of a right circular cone is given by V' = %mﬂh. )
(a) about 6 inches per hour (b) about 9 inches per hour (c) about 1 foot per hour

What is the tangent line to f () = 3z + 27

A reed oscillates up and down, causing its free end to have a vertical displace-
ment y cm from horizontal at time ¢ in seconds satisfying y = 3sin (4407t) .

What is the amplitude, period, and frequency of the oscillation? How fast is
the end of the reed oscillating when y = 37 How fast is the reed oscillating
when y = 07

What is the derivative of f () = sin (2% 4 1)?

What is the derivative of f ()

z(x+1)(z+2)(x+3)?
What is the derivative of y = 22*?

What is the slope and equation of the tangent line to y = tan? (z + sin (2z))
at x =n?

Blue Spruce are grown for eight to twelve years before being harvested for
sale as Christmas trees. Suppose the total cost of growing = Blue Spruce for
eight years is given by C () = 2800 + 1.32 + 0.00222 in dollars. What is the
marginal cost of growing 850 Blue Spruce for eight years? Give the units.
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17. Write to Learn: In a couple of sentences, use the logarithm and the fact
that |z| = V22 to prove that

d 1
%1n(|13|) =

18. Write to Learn: A sphere of radius r has a volume of

4
V= §7rr3

and a surface area of S = 47r2. Derive the equation

av
=5

and then explain it geometrically by discussing why a small change in the
radius should cause a small change in volume that is approximately the same
as the surface area of the sphere.

The Next Step... The Q-Derivative

Is the concept of the limit absolutely necessary for calculus? Is there some way
to “do” all of calculus similar to the “drop higher powers of A” method in chapter
1?7 Indeed there is, and our next step is to briefly describe a new type of calculus
that does not require limits.

When we say calculus without limits, then we are saying that we can define the
derivative, develop analogues of differentiation rules, and recover the interpretation
of the derivative as a slope of a tangent line and as a rate of change. To do so,
however, requires that we first develop a different type of difference quotient.

To begin with, let’s recall that the derivative is defined by the limit

h—0 h

For example, if f (z) = 22, then f (z + h) = (z + h)* and

: +h)?—a? . 2xh+4h®

(o) = tim TN 2T g, 2R (2 g my =2

Fo=m= M TR e =
Moreover, we can transform the limit by letting » = x + h. In particular,

h = r —x and r approaches x as h approaches 0, so that the definition of the

derivative becomes

V) — fig 2 = (@) 0 59
fi@) = lim —=—— (2.52)
For example, if f (x) = 22, then f(r) = r? and
2 _ 2 B
F(2) = lim = iy U ) = 2
r—r T —X r—T r—x r—x

Let’s suppose now that we let » = gx, where ¢ is a number. Then ¢ = r/x and
as r approaches x, the number ¢ must approach 1. Thus, (2.52) becomes

f/ (l‘) = lim f(qac) — f (l‘)

q—1 qr —x
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For example, if f (x) = 22, then f (qz) = ¢*x? and

Notice that the final limit involves only ¢, which is unlike the other two calculations
of the derivative of f (z) = 2.

It is this separation of the limit from the variable z that allows us to “do”
calculus without limits. To begin with, we let ¢ be a fixed number that is close to
1 (e.g., let ¢ = 1.01). We then define the g-integers [n] to be numbers of the form

and we notice that the g-integers [0] and [1] reduce to 0 and 1, respectively:

01 1-1 11 g¢-1
0] =4 —————o0, =4 _94— -
q—1 q—1 q—1 q—1

However, the other g-integers reduce to the ordinary integers only in the limit as
q approaches 1. For example,

2
qg -1
=4
q
which is not equal to 2 for any ¢ # 1. Yet in the limit we have
21 D(g—1
lim [2] = lim & = g D@D L
q—1 q—1 q— 1 q—1 q— 1 q—1

We now define the ¢-derivative to be the difference quotient

f(gz) — f (=)

qQr —x

f(x) =

This is not the ordinary derivative, but it does reduce to the ordinary derivative
in the limit as q approaches 1. For example, if f (x) = 22, then

B R (o L T s A
f @) = gr—z  (¢g—1)=z —<q1>x—[2]x

and thus, f?(z) approaches f’ (z) as q approaches 1.

It can be shown that the g-derivative satisfies rules similar to the rules of the
ordinary derivative. For example, if we let d—i‘?—JE denote the g-derivative operator,
then

Ga (1 (2)+g (@) = 11 (x) + ¢ (x)

dqx
Moreover, the power rule takes on a very familiar form for positive integers n,

dq n __
dut 2" = [n]x

n—1

as does the g-product rule for two functions f (z) and g (x):

g
dgx

[f (@) g (2)] = f9 () g (x) + f (qx) g* ()

There is also a g-chain rule, a g-exponential function, ¢-logarithms, g-trigonometric
functions, and a host of other g-analogues of ordinary calculus.
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Moreover, as the examples above show, the limit concept is required only to
reduce g-calculus results to results in ordinary calculus—limits are not required
for the g-calculus itself! Those interested in learning more might want to read the
undergraduate textbook Quantum Calculus by Victor Kac and Pokman Cheung
(Springer Verlag; ISBN: 0387953418; 1st edition, December 15, 2001).3

Write to Learn In a short essay, derive the g-derivative of f () = 2® and then
explain what it reduces to as g approaches 1.

Write to Learn Write a short essay in which you derive the g-product rule

g
dgx

[f (@) g (2)] = f* () g (z) + [ (qz) g* (x)

(Hint: you might want to start on the right and simplify to the left of the
above equation).

Write to Learn Go to the library or search the internet to find out more about
the g-calculus. Present your findings in a written report.

Group Learning Even though the g-calculus avoids the limit concept, it will not
ever replace the usual calculus. This is because some of the most important
results about the g-calculus are stated in terms of the ordinary calculus. For
example, if f (z) is a polynomial of degree n, then it can be shown that

2 n—1
g — % 4 — T xq—=x
fq (x) = f’ (x)+qTf// (x)-l—%f’” (JJ)+ . __i_%f(n) (J:)
(2.53)
where f(") (z) is the ordinary derivative and n! = n-(n—1)-...-2-1

is the product of the first n positive integers. Have each member of the
group perform one of the following steps. Report your results in either a
presentation or a formal paper.

(a) Verify (2.53) for f () =1 and f () = z.
(b) Verify (2.53) for f (z) = 22 by showing that
dq

2 _ gl
@x =f(z)+

TEEy.
(c) Verify (2.53) for f (z) = 2 by showing that

o

dgx

Tq—2x

" (qu—x)z n
" (@) + L (@)

6
(d) Verify (2.53) for f (z) = 2* by showing that

EIA _ fl (1’)+xq — xfll ($)+(xq — x)z flll (1’)+(xq — x)gf(4) (1’)
dqx 2 6 24

Advanced Contexts:

Logarithms were introduced independent of limits and even calculus itself. In
fact, long before computers became commonplace, logarithms were often used in
calculations. These computations were based primarily on the properties

In (ab) =1n(a) + 1n (b) and In(a") =rln(a)

3Much of this material was adapted from the online newsletter “This Week’s Finds in Math-
ematical Physics (Week 183)” by John Baez (http://math.ucr.edu/home/baez/).
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In particular, this property allows the product of two numbers a and b to be
reduced to the sum of two logarithms, In (a) and In (b) . For example, to compute
2 -3, we could first estimate In (2) and In (3):

In(2) = 0.6931471805
In(3) = 1.0986122887

and then add these expressions together:
In(2) +1n(3) =1.79175 94692

The result is In (6) , which thus implies that 2 -3 = 6.

This concept resulted in a mechanical device called a slide rule, which was
comprised of two “rulers” marked off in units of logarithms of decimal numbers.
To compute the product a-b, the number “0” on the upper ruler was aligned with
the number a on the lower ruler. The number b was then located on the upper
ruler, so that the product a - b was the corresponding number on the lower ruler.

For example, to compute the product of 1.2 and 2.0, we would first align the
number In (1.2) on the lower ruler with “0” on the upper ruler:

2. Move to In(2.0) on upper

1. Align In(1.2)

) ) N N VN
on lower with \\'_\» Q'b‘ \\"o \\c'b Q’ Q’q’ Q’b‘ ,»b
0 on upper - X(‘) \‘Q \f \‘Q \‘Q TQ \T \‘Q \‘Q |

] P R R B
GGG »
0 P W WP PP

\0& \&‘k \Qk \0& AN\ \k‘ \0 \0 &‘

\

3. Product of 2 and 1.2 is 2.4.

NS-1: A Slide Rule is marked in logarithmic units

The number In (2.0) would then be located on the upper ruler. Having done so,
the product of 1.2 and 2.0 is the corresponding location on the lower ruler. Thus,
the slide rule tells us that 1.2 x 2.0 = 2.4.

1. Use the two tables below to label two metric rulers

Location | 0 4.0cm 73cm  10lcm 125cm 146 cm  16.5cm 182 cm
Label |0 In(1.25) In(1.5) In(1.75) In(2) In(2.25) In(2.5) In(2.75)

Location 19.8cm 21.2cm 225cm 23.8cm  24.9 26.0 27.1
Label In(3) In(3.25) In(3.5) In(3.75) In(4) In(4.25) In(4.5)

and then use them to compute 1.5 x 2.5.

2. Logarithms were originally invented by John Napier. However, Napier defined
the logarithm of N to be the number L for which

N =107 (1—10"7)"
Show that L is of the form
L =log, (107"N)
What is a?

3. How would you do division with a slide rule? For example, how would you
compute 2.4 = 2.07
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3. APPLICATIONS OF THE DERIV-
ATIVE

Calculus was developed independently in the late seventeenth century by both Sir
Isaac Newton of England and Gottfried Leibniz of Germany. However, Newton and
Leibniz did not develop calculus in the context of functions. In fact, the function
concept was not established until a two volume treatise by Euler published in
1748.! Instead, both Newton and Leibniz viewed calculus as a tool to be applied
in the study of analytic geometry.

Unfortunately, the original formulations of calculus were based on intuition
rather than rigor, and as a result, calculus seemed to produce contradictory results.
In the early 1800’s, the mathematician Augustin-Louis Cauchy sought to rectify
this situation by establishing an axiomatic foundation of Calculus similar in form
to the axiomatic foundations of geometry established by Euclid. His principal tool
in this endeavor was the Mean Value Theorem, which even today is considered
foundational to much of calculus.

In particular, the Mean Value theorem is the basis for the tools used in graphing
functions and in finding their extreme values. In this chapter, we begin with the
Mean Value theorem and its implications, which in turn sets the stage for the
applications of the derivative in the second part of this chapter. The result will
provide valuable insights into how concepts such as tangents and rates of change
are applied to real-world problems.

3.1 The Mean Value Theorem

The Mean Value Theorem

While limits and derivatives are fundamental concepts in calculus, they alone are
not sufficient to allow calculus to be as applicable and widely-used as it is today.
Instead, as we will see in this section, the theoretical foundation of calculus is the
Mean Value Theorem.

Suppose f (z) is defined on [a,b]. If the secant line through (a, f (a)) and
(b, f (b)) is translated vertically, then at least for the function in the figure below,
the result is a family of secant lines that becomes closer and closer to a tangent

THowever, Gottfried Liebniz did use the term “function” in a manner consistent with the
function concept we use today.
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line at some input ¢ in (a,b).

—— "‘ (b./))

y=fx)

a c b
1-1: One of the parallels is a tangent line to the curve

Thus, the slope f’(c) of the tangent line must be the same as the slope of the
secant line, which means that

TO-T@ _ g (31)

However, this concept is not valid for all functions f (x). In the plots below,
the secant line through (a, f (a)) and (b, f (b)) is also translated vertically, but in
these cases without implying the existence of a tangent line parallel to the original
secant.

fis not continuous on [a,b] f has a cusp at a point in [a,b]

1-2: Figure 1-1 requires continuity and differentiability of f

Figure 1-2 illustrates why f () must be continuous on [a, b] and differentiable on
(a,b) in order for (3.1) to hold. Given these conditions, however, the following
theorem can be established (though the proof is beyond this text).

The Mean Value Theorem: If f (x) is continuous on [a,b] and is
differentiable on (a,b), then there is a number ¢ in (a, b) such that

fO)=fla) _ g
“b-a T |
/,/,/,,,,,/,/slope? ()

slope= LEL

|
c b
1-3: The Mean Value Theorem

A more useful form of the Mean Value Theorem follows from 2 observations: First,
if f(x) is differentiable on an open interval containing [a,b], then f (x) must be
continuous on [a,b]. Second, (3.2) is equivalent to f (b) — f (a) = f' (¢) (b—a).
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The Mean Value Theorem (Restated): If f(z) is differentiable
on an open interval containing [a, b], then there is a number ¢ in [a, D]
such that

f@)=f(a)=f"(c)(b—a) (3-3)

This latter version of the Mean Value theorem (MVT) holds even when a = b
(i.e., even when [a,b] is a single point). This makes it quite useful in proving the
fundamental theorems in calculus, such as the one below:

Theorem 1.2: If f'(z) =0 for all z in (p,q), then f (z) is constant
over (p,q).

Proof. If [a,b] is contained in (p, q), then the MVT implies that
)= f(a)=f(c)(b—a)

for some ¢ in [a,b]. However, f'(c) = 0 since ¢ is in (p,q), which
implies that

f®)=fl@)=0 or  f(b)=F(a)

for all a,b in (p,q). Thus, all the outputs of f (x) over (p,q) are the
same, which is to say that f (x) is constant. Wl

We will not prove the Mean Value theorem here, as the proof requires some re-
markable results from the study of the topology of the real line. However, a sketch
of the proof is included in the appendix for completeness.

Check your Reading How do we obtain (3.3) from (3.2)?

Differentials Revisited

Let’s look at another example in which the Mean Value theorem is used to establish
an important result in calculus. Recall that the differentials of x and y, which
are denoted by dz and dy, respectively, are defined to be small changes along the
tangent line to the curve at a point (z,¥).

(xtdx,y+dy)

dy

1-4: The differentials dz and dy

Thus, if y = f (z) passes through (x,y), then f’(z) is the slope of the tangent
line at (x,y) and consequently,

dy = f' (z)dx (3.4)

Equivalently, we can write (3.4) in the form dy = ¢’ dx.
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EXAMPLE 1 Find the differential dy for the curve y = 2% + 2x.
Solution: Since ' = 322 + 2, the differential dy is dy = (32% + 2) da
EXAMPLE 2 Find dy for y = xsin (z) .

Solution: Since 3’ = sin (z) + z cos (z), the differential is

dy = [sin (x) + z cos (x)] dx

Suppose now that f (z) has a continuous derivative on a neighborhood of a point
p. If a=pand b= p+ dx, then the MVT implies that

flp+dx)—f(p)=f'(c)dx

The quantity Ay = f (p + dx) — f (p) is the change in y = f (x) over [p,p + dz].
Moreover, the MVT implies that

Ay = f'(c)dx

for some ¢ in [a,b] . Since f’ is continuous, it follows that f’ (¢) ~ f’ (p) when dx
is sufficiently close to 0. As a result, Ay ~ dy. That is, the MVT implies that the
change Ay is closely approximated by the differential dy when dz is close to 0.

EXAMPLE 3 Find Ay and dy for f () = 23 when p =1 and dx = 0.05.

Solution: Since Ay = f (p+dz) — f (p), we have
Ay = f(1.05) — f (1) = (1.05)* — 1> = 0.157625
Since f' (x) = 322, we have f’ (1) = 3 and
dy = f'(1)dz =3-0.05=0.15

which closely approximates the actual value of Ay = 0.157625.

Check your Reading| By how much does Ay differ from dy in example 27
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Tolerances and Differentials

Graphically, dy is a change in y along the tangent line, while Ay is the resulting
change in y along the curve.

1-5: dy is close to Ay for dx close to 0

The fact that Ay ~ dy when dz is sufficiently close to 0 is thus a reflection of the
fact that a tangent line is practically the same as a small section of the curve.

EXAMPLE 4 Find Ay and dy for f (z) = % + 22 when p = 1 and
dx = 0.1, and then illustrate them graphically.

Solution: Since p =1, and p+ dz = 1.1, we have

Ay = f(L1)—-f(1)
= (L1’ +2(11) - (13+2-1)
0.531

To find dy, we first notice that f’ (x) = 322 + 2z so that f' (1) = 5. As
a result, the differential dy is

dy = f'(z)dx = f'(1) (0.1) =5-0.1=0.5

which closely approximates the actual value of Ay = 0.531.

35
34
33. |
3.2, dy=0.‘5
31

3. Y
dx = 0.1

29
098 1 1.02 1.04 1.06 1.08 1.1 1.12

1-6: dy approximates dy

As a result, dy can be used to approximate Ay in applications where dzx is suffi-
ciently close to 0. In particular, a tolerance is defined to be the maximum allowable
error in the measurement of a quantity, so that if dz is the tolerance for a quantity
x, then dy is often used as an approximation of the tolerance in y.
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EXAMPLE 5 Find the volume V and approximate the tolerance dV/
of a sphere whose radius is measured to be 5 inches to within a tolerance
of %6 of an inch.

1-7: Sphere with radius of 5 £ 1—16 inches.

Solution: The volume of a sphere with radius r is given by

V= %171'7“3 (3.5)

which implies that the volume of a sphere with radius 5 inches is

4
V= §7r(5)3 = g ~ 523.6 in®

Since V' = 47r?, the differential is dV = 4nr2dr. Thus,

1
dV = 4 (5)* 5 = 196 in®

That is, the sphere’s volume is 523.6 in?, give or take about 19.6 in3.

EXAMPLE 6 A right cylindrical hole is bored through a block of
steel with a uniform width of 48 cm. If the radius of the hole is 5 cm
to within a tolerance of 1 mm, then what is the tolerance in the volume
of the resulting hole?

.

48 cm

1-8: Hole drilled through a block

Solution: If r is the radius of the hole, then the volume of the hole is
V = 7r? - 48 since the height of the hole is 48 cm. Moreover, V' (r) =
967r and thus, V' (1) = 96 - 7 - 5 = 1507.96. Since dr = 1 mm = 0.1
cm, we have

dV =V’ (1)dr = 1507.96 - 0.1 = 150.796 cm®

Check your Reading | What is the volume of the hole in example 67
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Proofs Based on the Mean Value Theorem

The mathematician Augustin-Louis Cauchy tried to base all of calculus on the
Mean Value theorem, much like Euclid based geomety on his 5 postulates. Al-
though he was not completely successful, much of his program is still used today.
That is, the Mean Value theorem continues to be used in graduate and undergrad-
uate mathematics courses to prove many of the theorems of calculus.

EXAMPLE 7 Use the MVT to prove that if b > 1, then

In(b) <b—1

Solution: To do so, we apply the MVT in the form (3.3) to the
function f(z) = In(z) on [1,b]. That is, since f/(z) = 1, there is a
number ¢ in [1, b] such that

1n(b)—1n(1):%(b—1)

However, c in [1, b] implies that ¢ > 1, which means that % < 1. Since
In (1) = 0, this yields

Let’s conclude with one more example of how the Mean Value Theorem is used as
the foundation for Calculus.

EXAMPLE 8 Suppose that f(z) is continuous and differentiable
everywhere. Use the MVT to prove that if f (x) is periodic with period
T, then f’ (¢) = 0 for infinitely many values of c.

Solution: Actually, the proof is quite easy. Since f(0) = f(T), the
MVT implies that there is a number ¢; in (0,7") such that

/ f(@) - f(0)
= = O
[ (e1) =0
Likewise, the MVT implies that there is a number ¢y in (T, 2T) such
e Fer) - £ (@)
/ fr— _ fr—
and continuing for (27,3T), (3T,4T),..., we select infinitely many
numbers ¢, ¢, ... at which the derivative vanishes (i.e, is equal to 0).
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Exercises:
Compute the differential dy.

1. y=ax2 2. y=2a3

3. y=sin(z) 4. y=cos(x)

5. y=tan(x) 6. y=sec(x)

7. y=e¢e" 8. y=2%

9. y= V1—2a? 10. y =sin (xQ)

Find dy and Ay for the given values of p and Ax = dx. Would you conclude that
dy is a good approximation of Ay?

1. f(z)=2?% p=1, dv=0.01 12, f(z) =2% 42z, p=2, do =0.02
13. fx)=a%+22% p=2de=01 14. f(z)=(x—1)?2, p=0, dx=0.01
15. f(z)=2zx+3,p=1,dcr=02 16. f(ac)—3x—1 p=—15,dzr =02
17. y=-0322+0.72+0.5 18. y=4x>+ 35z — 15

= 0.2, dx = 0.001 p=10, dr =0.1
19. zy=1,z=0.5, de =0.1 20. , =144, der =0.1

Exercises 21-28 involve tolerances and differentials as approximations.

21. A certain rectangle has a length which is twice its width. The length is 1 cm
measured to within a tolerance of 0.1 cm. Estimate the maximum error in
calculating the area of the rectangle using this length. (Hint: calculate dA.)

22. If a cube with has sides of length x = 2 cm to within a tolerance of 0.1 cm,
then what is the tolerance in the volume of the cube?

23. A thin circular disk has a radius r = 10 cm measured to within a tolerance
of 0.3 cm. Estimate the maximum error in calculating the area of the disk
using this measurement. (Hint: calculate dA.)

24. The circumference of the top of a soup can is measured to be 9%” to within
a 1/16 of an inch.

(a) Express the area of a circle as a function of the circumference of
the circle (Hint: r = C/27)

(b) What is the area of the top of the can?

(¢) About how much variation in the area computation is possible given
that the circumference is accurate only to a sixteenth of an inch?

25. The volume of a pyramid is one-third the height times the area of the base. If
a pyramid has a square base with the length of one side being 100m measured
to within a tolerance of 0.1m, estimate the maximum error in the volume
measurement as a function of the height, h.

26. A cylindrical hole is to be bored in a block of metal. The hole is to have
a capacity of 50cc (cc is cubic centimeters), a height of h = 6.351cm and a
radius of R = 1.583cm. The volume must be accurate to within 0.2cc, that
is |[dV| < 0.2. The volume of a cylinder is given by V = 7w R2h.

(a) If we assume that the height h is without error, to what tolerance
dr must we keep the radius in order for [dV| < 0.2.

(b) If we assume that the radius R will be perfect, to what tolerance
dh must we keep the height?
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27. A copper wire 3mm in diameter is to be covered with a plastic insulation

28.

0.5 mm thick. Use differentials to estimate the volume of the plastic neces-
sary to coat a roll of copper wire 100m (100,000 mm) in length.

A spherical shell has a radius of 100 cm and a thickness of 0.1 cm. Use
differentials to approximate the volume of the shell.

Ezercises 29-40 use the Mean Value Theorem to prove results in calculus.

29.

30.

31.

32.

33.

34.

35.

Use the Mean Value Theorem to prove that if f' (z) = 1 for all z in (a,b)
and if f (x) is continuous on [a,b], then

fO)=fla)=b-a
Use the Mean Value theorem to prove that if b > a > 1, then
b —a' > 10(b—a)
(Hint: let f (z) = 2'° and notice that if ¢ > a, then also ¢ > 1).
Use the Mean value theorem to prove that if b > a, then

sin (b) —sin(a) <b—a

Use the Mean value theorem to prove that if 0 < a < b, then

b
@J;

(Hint: let f () = /az and notice that f (a) = a, f (b) = v/ab and \/g <1.)

Rolle’s Theorem: Show that if f (a) = f(b) =0, if f(x) is continuous on
[a,b], and if f (z) is differentiable on (a,b), then there is a ¢ in (a,b) such
that f'(c) =0.

a c b
1-9: Rolle’s Theorem

Suppose that f (z) is periodic with a period T' > 0, and suppose that f” (z) =
p(z) f (x), where p () > 0 for all z. Show that f (x) must have at least one
real zero. (Hint: Show that f’(z) is periodic, and then apply the MVT to
1! (x) over [0,T7).

Use the Mean value theorem to prove the following: If there is a number
6 < 1 such that |f’ (z)| < 6 for all z in an interval (p,q), then

£ (0) = f(a)| <6[b—al (3.6)

for all intervals [a,b] in (p,q). ( A function that satisfies (3.6) is called a
contraction ).
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36. Find the Error: If f(z) = tan(z), then f’ (x) = sec? (r) and thus on the

interval [0,b], where b > 2, we have
tan (b) — tan (0) = sec? (c) (b — 0)

for some number c in (0,b) . However, sec? (¢) > 1, so that
tan (b) = sec? (¢) (b—0) > b—0

That is, if b > 2, then tan (b) > b (Note: This conclusion can’t be true since
if b = 7, then tan (7) =0 ).

37. Graph f’(x) on the interval given. Estimate min[f’(z)] (i.e. the minimum

38.

39.

40.

3.2

value of f'(x) on the given interval) and max[f’(z)] (the maximum value of

f'(z) on the given interval ).> Compare each to the quantity &%ﬁ

(a) f(x)=3z—22%on [-1,1] (b) f(x)=3zY? -z on[1,3]
(¢) f(x)=2%+3zon[-1,1] (d)  f(x)=e® on [0,In(2)]

The results in the previous exercise lead to the following conjecture: If f(x)
is continuous on [a,b] and differentiable on (a,b), then

minf/(2)] < LT < o ) (37)

Prove this result with the Mean Value Theorem.

Use the theorem in exercise 38 to prove theorem 1.2. (i.e., use (3.7) to show
that if f/(x) = 0 on (a,b), then f(x) is a constant function on (a,b) ).

Write to Learn: At 3:00 p.m., the odometer on your automobile reads
15,000 miles. At 4:00 p.m., the odometer on your automobile reads 15,060
miles. Let r (f) denote your odometer reading in miles at time ¢ in hours
since noon, and then write a short essay in which you apply and interpret the
Mean Value Theorem to r (t) over [3,4]. What instrument measures r’ (¢)?

What does the Mean Value theorem imply about r’ (¢) at some time ¢ in
[3,4]7

L'Hopital's Rule

L’Hopital’s Rule for % Forms

Suppose that f(z) and g (z) are differentiable in a neighborhood of p and that

both

f(p)=0and g(p) =0.
y=fix)
V
ﬁ
y=g(x)

2-1: f(p)=g() =0

21f available, the “trace” option can be used to estimate the maximum and the minimum of

(@)
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If x is close to p, then the curves y = f (z) and y = g (x) are practically the same
as their tangent lines at (p,0).

\ y=fx) zoom centered at |
\\W / N /
ﬂ ﬁ \

\ y=gx)

2-2: Linearization is Used to Evaluate Limits

Since f (p) = g (p) = 0, their tangent lines are, respectively,
y=f(p)(@-p) and y=g(p)(z—p)

If x is approaching p, then f (x) ~ f' (p) (x — p) and g (x) =~ ¢’ (p) (x — p) , which
if ¢’ (p) # 0 implies that
fl) ) @—p)  f(p

B g(@) g0 (@—p) 70 (38)

This idea can be generalized into L’Hopital’s rule (pronounced “Low-pi-tal”).

L’Hopital’s Rule: If f(z) and g (x) are differentiable on an open
interval (a,b) containing p, except possibly at p itself, and if lim %
T—p

is of the form %, then

lim M = lim f'(z)
e=pg(z) a=pg (2)

(3.9)
when both limits exist.

Unlike (3.8), L’Hopital’s rule holds even if ¢’ (p) = 0. In operator notation, L’Ho6pi-
tal’s rule says that if lim f (z) =lim g (z) = 0, then
T—p T—p

W l@ A @
Mg = L)

(3.10)

EXAMPLE 1 Use L’Hopital’s rule to evaluate

I 22 —1
1m
x—1 pr — 1

Solution: First we notice that the limit is of the form %. As a result,
(3.10) says that

2_1 4 (22 -1 2t 2
1imx :limwzlim—x* =
z—1 x—1 =1 o (xfl) z—1 1 1

X

Notice that at p = 1, the tangent line to y = 22 —1is y = 2 (z — 1). Thus, example
1 can be summarized as saying that 22 — 1 can be replaced by 2 (z — 1) for x near
1, so that the limit is the ratio of 2 (x — 1) to (x — 1), which is 2.
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EXAMPLE 2 Use L’'Hopital’s rule to evaluate
i ST (x)

x—0 xT

Solution: The limit is of the form %, so that

. d -
£ sin (z
lim (z) = lim 42—~ (@) = lim =2 (z) =cos(0) =1
r—0 €T r—0 %x z—0 1

The last limit is due to the fact that cos (z) is continuous at x = 0.

Not surprisingly, the proof of (3.9) follows from the Mean Value theorem. If x > p,
then the MVT implies that there are numbers ¢ and d in (p,x) such that

f@-f@=F(@-p and g(x)—gp) =g () (x-p)
Since f (p) = g(p) = 0, then f (z) = f'(c) (z —p) and g(x) = ¢’ (d) (x —p), so

that , ,
A B G LC o) N
a—pt g(x)  a—pt g (d)(x—p) o—pt g (d)
However, as x approaches p, then ¢ and d also approach p, so that
f@) @)

z—pt g (l’) o z—pt gl (l’)

if both limits exist. The proof for z < p is similar.

Check your Reading | How would evaluate the limit in example 1 without using L’Hoépital’s rule?

Infinite Limits and Limits to Infinity

If f(z) and g (z) both approach oo as = approaches a number p, then

AC))
25 g9(z)

is of the form 22. Similarly, if f (x) and g (x) both approach oo as 2 approaches
00, then the limit to oo of % is also of the form 2. L’Hopital’s rule also holds

for limits of the form <2 when the limit of % also exists.

EXAMPLE 3 Evaluate the limit

4
o +1
lim ————— 3.11
M 2013 (3:11)
Solution: As z goes to oo, the quantity z* also goes to co. Thus,
(3.11) is of the form 22 and can be evaluated using L'Hépital’s rule :

1 . L (2t +1) . 4a®

1. B —————] =
ro0 TH 1 27 + 3 wggod%(x‘*—i-Qx—i-S) roo 473 + 2
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4z°
4x3+42

The limit lim is also of the form <2, and thus, we apply L’Hopi-
Tr— 00

tal’s rule again:
423 _ L4 (42%) . 1222

im ——— = lim =&~ 7 — ] =1
oo 423 + 2 zggod_ﬁi@xmrg) s 1222

In summary, we showed that

i — 5L gy A, 120
s—oo 4+ 20 +3 ae—ccdxd3+2  a—oo 1222
EXAMPLE 4 Evaluate the limit

27 —1

Solution: Since 2% approaches co as x approaches oo, the limit is of
the form 2. Thus,

oo

lim = lim = lim ————= =1

2 -1 . L@r-1) 2%In(2)
d

It is important to notice that L’Hopital’s rule is not always helpful. For example,

x —
lim & (3.12)

r—oo eT — e~ T

is of the form 2. Application of L'Hépital’s rule yields

_ d / x —r _

. ez+ez ) %(el_,’_e JL) ) eziez

lim —— = d T N lim ——

rz—o0 eT — e~ 7T @00 < (em — e*f) z—oo e + e~ T
T

The resulting limit is also of the form 2, and L’Hopital’s rule yields

T —x d (,x _ ,—=x T —z
e —e" @ (e" —e™™) . €T e
rx—o0 e¥ 4 % z—00 di (el’ + e—l’) r—o0 ¥ — e~ %
T

That is, I’Hopital’s rule simply takes us back to where we started!
In addition, application of L’Hépital’s rule to limits which do exist may result
in limits which do not exist. For example, in the exercises, we will show that

. x+sin(z) 1
Bl s B (8.13)
as is implied by the graph of f (z) = %inix) below:

0.9
0.8
0.7
0.6 /\
0.5 \/

20 40 60 80 100

X

2-3: L’Hopital’s rule does not apply to all 2 forms
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However, even though the limit (3.13) is of the form 22, L’Hopital’s rule yields

g 250 _ o g @sin@) 1 cos(@)

The last limit does not exist because cos () does not have a horizontal asymptote.

Check your Reading | How would we evaluate (3.12)%

L’Hopital’s rule
only applies to

limits of the form

0 x
Ooroo

Limits of the form 0 - c©

X

Although L’Hopital’s rule only applies to limits of the form % or 22, there are
limits in different forms that can be simplified to a valid L’Hopital’s rule form. To
illustrate, consider that if

lim f(x)=0 and lim g (z) = 00

T—p T—p
then the limit
lim [f (z) g (2)]

T—p
is said to be in 0- oo form. A limit of the form 0 - oo can be converted into a valid
form by taking the reciprocal of either f (z) or g (x).

EXAMPLE 5 FEvaluate the limit
lim (2°e™") (3.14)

Tr— 00
Solution: Since 22 goes to co and e™* goes to 0 as = approaches oo,
the limit (3.14) is of the form 0 - co. Thus, we change e~* into = and
apply L’Hopital’s rule:

2
9 x 2z

lim (x e_””) = lim — = lim —
T—00 r—oo eT r—o0 e¥
The resulting limit is of the form <2, so we apply L’Hopital’s rule again:

lim (xQef””) = lim Z_x = lim 2 =0

T—00 r—oo ev r—o0 e

EXAMPLE 6 Evaluate

zli%l+ zln (x)

Solution: Since In (z) has a vertical asymptote at « = 0, the limit is
of the form 0 - oo . Thus, we convert it to

lim In(z) (xl)
z—0t T

which is of the form 22. Consequently, L’Hopital’s rule implies that

1 1 1
lim n(@) _ /@ = lim — + (—afz)
e—0t 7L a0t —272 a0t X

.1 .
— = lim - 2’=— lim =0
r—0t X r—0t
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Check your Reading | What is the horizontal asymptote of f(x) = x%e~*?

Other Indeterminate Forms

The relationship of e” to In (x) can be used to evaluate limits of the form

lim [f (z)]9") (3.15)

T—p

In particular, if (3.15) is in one of the forms 0°, oc® or 1%, then we apply the
following theorem

Theorem 8.2: If lim In ([f (ac)]g(x)) = L, then lim [f (x)]g(x) =k

T—p T—p

That is, we first evaluate the logarithm of (3.15). If (3.15) is in one of the forms
09, 0o® or 1°°, then the result will reduce to a valid L'Hépital’s form. We then
apply the exponential, if the limit exists.

EXAMPLE 7 Evaluate the limit
lim (2 + HYe
Solution: Since the limit is of the form 1°°, we apply the logarithm

to obtain

. 1 1 1
lirr(l)ln(x—i-l)l/l =lim—ln(z+1) = lin%%

rx—0

which is of the form %. Application of the derivative results in

d 1 1
. arn(r+1 s e
lim In (z + 1)1/ = ljm 4= —~ nix ) = lim &L = O+ g
x—0 x—0 IoT z—0 1 1
Theorem 8.2 then implies that
lim (z+ 1)/ =¢' =e
x—0

In reality, there is little need to try to remember the forms 0%, 0co® or 1°°. Theorem
8.2 applies to any limit of the form lim [f (ac)]g(m). The forms 0°, co® or 1*° are
T—p

simply those which simplify to a valid L’Hoépital’s form.

EXAMPLE 8 Apply theorem 2.2 to

lim [L’l/ In(x)
z—0t

Solution: To begin with, we apply the logarithm to obtain

lim In [xl/ln(””)} = lim In(z)= lim 1=1
z—0+ z—0+ In (l‘) z—0t
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As a result, theorem 2.2 implies that

lim xl/ln(w) — 61

r—0t

Notice that the form of the limit did not come into play.

Exercises:
Determine the form and evaluate the limit if it exists. If the limit does not exist,
explain why not.

206

11.

13.

15.

17.

19.

21.

23.

25.

27.

(= V2)T
hm e e———
(L‘*)\/ﬁ $2 - 2

1m
z—0 e’ —e™*

lim In(2z+1)
z—0 x

lim sin (2z)
z—0 x
1-— 2

i 1=0522)
sin” (x)

r—0

lim 22— 2
sin? (z)
z—0 1 — cos (4x)

. 2x + 5
lim

r—o0 I —

2
lim L\/E

r—00 sz — \/5

In (x)

lim
r—oo X

] eZz —1
lim ———
z—o0 2% 4 ]

2sin (x) cos (x)

10.

12.

14. lim

16. lim

18.  lim

20. lim

’ 2 -9
im
z—-3 r+ 3

lim 2 —2x
z—-3 g3 + 422 — 3z — 18

x*+3x—-14

Jr—1

lim 7@ — 1)3/2
el 2t — 222 41

lim

r—1

) 6218 -1
lim ——
2—0 €3% 4 e~

lim In(z)
z—1x —1

sin (z)
2—0 1 — cos (z)

cos(h)—1
h—0 h?

sin? ()
e=m (g —7)?

cos* (x) — cos (27)

=0 sin® (z)
im 5 — 3

. Va? —4x
24, lim ————
z=00 2 — \/x — 2

22.

. In (x)

eI

28.

m —
z—00 T + e~ 7%
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29.  lim 23%e~® 30.  lim /ze™®

. . (1 . x
31. lim xsin | — 32. lim zln
£—00 T T—00 1+
. . 1
33. Ilg& In(z)In(x+ 1) 34 lim cos (1)
35.  lim 2® 36.  lim z'/T
z—0t T—00
37.  lim z8n@ 38. lim (142)Y"
r—07t x—0
n(x 1 v
39.  lim (1+22)"") 40.  lim <1+ —2>
T—00 T—00 €T

41. In this exercise, we explore the limit

32—z -2
fim = (3.16)

(a) Numerical: Complete the table

z |09 099 0999 — 0 « 1001 101 1.1

3z’ —x—2 |

Valald
o — T

Use it to estimate the value of the limit (3.16).
(b) Evaluate the limit (3.16) using L’hopital’s rule.

(¢) Evaluate the limit (3.16) by factoring the numerator, canceling and
using continuity.

42. In this exercise, we explore the limit

622 + bx — 4
s e 05 (347
(a) Numerical: Complete the table
T | 0.49 0499 04999 — 0 <« 0.5001 0.501 0.51
So~tha—d | - 77—
Use it to estimate the value of the limit (3.17).
(b) Evaluate the limit (3.17) using L’hopital’s rule.
(c) Evaluate the limit (3.17) by factoring the numerator, canceling and
using continuity.
43. In this exercise, we explore the limit
) th -1
i 619
(a) Numerical: Complete the table
h | -0.01 -0.001 -0.0001 — 0 <« 0.0001 0.001 0.01

— 777

e 1 |
eh—1

Use it to estimate the value of the limit (3.18).
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(b) Evaluate the limit (3.18) using L’Hopital’s rule.

(c) Evaluate the limit (3.18) by factoring the numerator, canceling and
using continuity.

44. In this exercise, we explore the limit

lim 2!/ @) (3.19)

r—3

(a) Numerical: Complete the table
z |29 299 2999 — 0 «— 3.001 3.0l 3.1

— 777

1’1 In(x) |

Use it to estimate the value of the limit (3.19).
(b) Use theorem 2.2 to evaluate (3.19).

(¢) Use the definition of [f (2)]?“) to simplify 21/ 12(@) What is signif-
icant about the function x!/m(®)?

45. In this exercise, we evaluate the limit

. x+sin(x)
lim >\
T |
(a) Use the fact that —1 < sin(z) < 1 and the sandwich theorem to
show that

(3.20)

sin () _o

lim
T—00 x
(b) Divide the numerator and denominator of (3.20) by z, and then
use part a to evaluate the limit.

46. In this exercise, we evaluate the limit

2
lim & + cos ()

Jm =0 (3.21)

(a) Use the fact that —1 < cos(x) < 1 and the sandwich theorem to

show that
cos (x)

lim = 0
r—o0 I

(b) Divide the numerator and denominator of (3.21) by z, and then
use part a to evaluate the limit.

47. Show that if f’ (z) is continuous, then

(hint: take derivatives with respect to h). Then draw a diagram which shows

why
fla+h)—flx—h)
2h
can also be considered a secant line approximation of f’ ().

48. Use L’Hopital’s rule to show that if f” (z) is continuous, then

lim fx+2h)=2f(x+h)+ f(2)
h—0 h2

= f"(x)

(hint: take derivatives with respect to h).
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49. Write to learn: In a short essay, show that

f 0@ @)

e f(z) emp g (@)

and explain why if the first limit is of the form 22 , then the second limit is

of the form %.

50. Write to Learn: In section 2.6, definition 6.1, the exponential function is
defined by the limit

¢ = lim (1+f>"
n

n—o0o

In a short essay, show that e®e” = e**" by explaining why

- h r\"
ele}l = lim (1 -+ T+ + x_z)
n n

and then computing the limit using L’hopital’s rule.
51. Write to Learn: Let’s apply linearization directly to the limit

o3 4+322 -5 +1
lim
r—1 r—1

Show that if y = 22 + 322 — 5z + 1, then its tangent line at z =1 is
y=4(x—1)
Then in a short essay, explain why

. 234322 —-br+1 . 4(x—-1)
lim = lim ——*
r—1 r—1 z—1 x—1

52. Write to Learn: Let’s apply linearization directly to the limit
. x® + 22— 12
ILmQ x2 —4

Show that the tangent lines at z = 2 of y = 2% + 22 — 12 and y = 2% — 4 are,
respectively,

y=16(x —2) and y=4(x—2)
Then in a short essay, explain why
lim e} +a?—12 lim 16 (x — 2)
T—2 2 —4 _w—>2 4(1’72)

3.3  Absolute and Relative Extrema

Relative Extrema

Many applications of calculus require the identification of the extreme values—i.e.,
the highs and lows—of a given function. The derivative can be used to determine

where the extreme values, or extrema, of a function occur. We begin with some
definitions.
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Definition 3.1: A function f (x) has a relative maximum at x = p if
there is a neighborhood (a, b) of p such that f (p) > f (z) for all z in
(a,b). A function f (x) has a relative minimum at x = p if there is a
neighborhood (a,b) of p such that f (p) < f (z) for all z in (a,b).

relative
maximum
\ no max
| or min
I T
1 2! 1
| C
C 1 | 3
I
I
|
relative
minimum

3-1: Relative Extrema

Notice that the extrema in the figure above occur at inputs where the tangent line
is horizontal (see ¢; above), or where the function has a cusp (see ¢y above).
To see this mathematically, notice that if f (z) is differentiable at x = p, then

flo+h)=f)+f (p)h+o(h)
Subtracting f (p) from both sides thus yields

fr®)h+o(h)=Ffm+h)—f(p)

Suppose now that f (z) has a maximum at = p. Then the quantity f (p + h) —
f (p) must be negative for h sufficiently small, which implies that f’ (p) h < 0 for
all h (positive or negative) sufficiently close to 0. However,

h<0= f(p) >0, h>0= f(p)<0

and we can have both f’(p) < 0 and f’'(p) > 0 only if f/ (p) = 0. Similarly, if
f (z) has a minimum at x = p and is differentiable at @ = p, then f’ (p) = 0.
Since extrema can also occur at cusps, we are led to the following definition:

Definition 3.2: Let ¢ be in the domain of a function f (z). If f' (¢) =0
or if f’(c) does not exist, then c is called a critical point of f (x).

In particular, a critical point ¢ for which f’(¢) = 0 is also known as a stationary
point of f(x).

Thus, the extrema of a function must occur at the critical points of a function,
although not all critical points lead to extrema as shown by c3 above. Examination
of the graph of f (x) can be used to determine if and what type of extremum occurs
at a given critical point..

EXAMPLE 1 Identify any extrema of f (x) = 2* — 423 + 1.

Solution: Since f’(x) = 42® — 1222 is a polynomial, f’ () exists for
all x. Thus, the critical points occur where f’ (x) = 0.

422 — 1222 = 0
42 (x—=3) = 0
r = 0,3
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It follows that the critical points of f (z) = 2* —42® +1 are z = 0 and
x = 3. We now graph the function f (z) over an interval containing
the critical points 0 and 3.

5
1\¥9\ 1 3 3 4

0
-57

-107

-15

-207

-25

3-2: A relative minimum at x = 3

Clearly, f (x) = 2* — 423 + 1 does not have an extremum at 2 = 0, but
it does have a relative minimum at x = 3.

Check your Reading | Why can a function have an extremum at an input where a cusp occurs?

Relative Extrema of Algebraic Functions

Algebraic functions with exponents between 0 and 1 often have cusps. Moreover,
if f(x) is an algebraic function, then a cusp occurs at a point p where f (p) is
defined but f’ (p) does not exist.

EXAMPLE 2 Identify any extrema of f (x) = (z — 1)2/3 .

Solution: To do so, we first compute the derivative:

2

() = 2 (1 — -1/3 _
F@ == = =

Notice that f’ (z) is not defined at x = 1, although f (1) is defined. As
a result, x = 1 is a nonstationary critical point of f (x), and indeed, a
minimum occurs at x = 1, as is shown below:

25
15

0.5

-3 -2 -1 00 T, 2 3

3-3: A relative minimum at z = 1
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However, if neither f (p) nor f’(p) exist, then p is not a critical point of f (x)
because p is not in the domain of f.

EXAMPLE 3 Identify any extrema of

1
Solution: f (x) has a derivative of
-1
!/
xT)=—""=
0=

Clearly, neither the derivative f’ (x) nor the function f (z) are defined
at © = 1. Indeed, x = 1 is a vertical asymptote of the function f (),
as is shown below:

10

-10°
3-4: f(z) = =L has no relative extrema

Since x = 1 is not a critical point of f (x), the function f (z) has no
critical points and thus has no relative extrema.

Check your Reading |Does fx)= ﬁ have any critical points?

The Extreme Value Theorem

If f(p) > f(x) for all real numbers x in [a,b], then f (p) is called an absolute
mazimum of f(x) over [a,b]. Likewise, if f (p) < f(x) for all real numbers z in
[a,b], then f (p) is called an absolute minimum of f (z) over [a,b].

|
|

A/ absolute maximum at x=c
|

absolute minimum at x=a

a c¢ d b
3-5: Absolute Extrema

The Extreme Value Theorem says that if a function f (x) is continuous on [a, b],
then it attains its absolute maximum and its absolute minimum on [a, b] , although
an absolute extremum may occur at an endpoint of [a, b] .

EXAMPLE 4 Determine the absolute extrema of f(x) = 2z — ?
over [0,2].
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Solution: Since f (x) has a derivative of
ff(x)=2-2z
the critical points of f (z) are the values of x where f’ (z) = 0:
2—2x =0, r=1

The graph of f (x) = 2z — 22 shows us that the absolute maximum of
f (z) occurs at z = 1.

0.8
0.6
0.4

0.2

[} 0.5 } 15 2
3-6

Moreover, the absolute minimum occurs at both x = 0 and x = 2.

EXAMPLE 5 Determine the absolute extrema of the function
f@)=(=7)(x-2)%
over [0, 3].

Solution: Applying the product rule leads to

d 2/3 d 2/3
' I _ V2 (g —
P = |ga-n|@-2 - -2

= (-2 + % (x—7)(x—2)""

Transforming from a negative exponent to a fraction yields

2(x—=1T)

f@)=(@-2* "+ ——=5
3(x— 2)1/3

Clearly, the derivative does not exist when & = 2. Since f(2) = 0
implies that f (2) is defined, = 2 is a critical point of f ().

To find the stationary points, we set f’ (z) equal to 0 and solve

for x:
o 9)2/3 2(x=1)
-2 +3(x—2)1/3 0
—2(x—=T7)
=2 = ST

Multiplying both sides by 3 (z — 2)1/ 3 yields

3(x—-2)3 (2 -2 =20+ 14
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When find-
ing absolute
extrema over

[a,b], use only
the critical
points in [a, D] .

Adding exponents and expanding thus yields

3(x—2) = —2r+14
3z —6 —2x + 14
S5z 20
r = 4

Thus, the critical points of f (x) are z =2 and z = 4.

However, = 4 is not in the interval [0, 3], so we ignore it. The
graph of f (x) over [0, 3] is shown below:

0 05 1 5 2 25 3

-107

3-7

Clearly, f(z) = (x = 7)(x — 2)2/3 attains its absolute maximum at
x = 2, and attains its absolute minimum at z = 0.

The extreme value theorem is rather amazing, since it applies even to fractal
interpolation functions like the one on page 79! However, because it applies to
such functions, the extreme value theorem cannot be proven until a later course.

Check your Reading | Why did we ignore the critical point © = 47

Applications to Revenue

Finding extrema is a common task in many applications. For example, in business
applications we are often given the relationship between the price p of a product
and the demand z for that product, and we are asked to find the price and demand
which lead to a maximum revenue. To do so, we use the fact that

Revenue = Price x Number Sold

EXAMPLE 6 Suppose Acme Airlines charges a $300 base price for a
seat on an airplane, and suppose they add $2 for each unsold seat on
that airplane. Determine how many seats should be sold on a 200 seat
airplane in order to maximize revenue.

Solution: If p denotes the price per seat, then

p =300 + 2 x “the number of unsold seats”
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If we let = denote the number of seats which have been sold, then the
number of unsold seats is 200 — x and thus p becomes

p =300+ 2(200 —z) =700 — 2z
If R denotes the revenue from the sale of seats, then
R = px = (700 — 22) = 7002 — 222

Since there are only 200 seats on the airplane, we must find the absolute
maximum of R (x) = 700z — 222 over [0,200] . Since R’ (x) = 700 — 4z,
the critical point(s) are

700 — 4z =0, :c:%:l%

The graph of R (z) = 700z — 222 over [0,200] is shown below:

60000
50000
40000
30000
20000

10000

[} 50 190 150 200

3-8

Clearly, the absolute maximum occurs at z = 175 seats.

Exercises:

Grapher: Find the critical points of the following functions, and then graph the
function to determine the extremum, if any, that occurs at each critical point.

f(z) = 22 2. f(x)=2a* 3. f(x)=2a
4, f(x)=2a" flx)=a*3 6. f(x)=2a3>
7. f(z) =2z —2? 8. f(x)=222-5x+3
9. f(x)=2a%-3z 10.  f(z) =% — 322 +2
11. f(z) =22 522 +x+1 12. f(z)=-323—222 42 -5
13. f(z)=az?+br+c,a>0 4. f(z)=ar’+br+ec, a<0
1

Find the critical points of f(x) and then determine the absolute extrema of the
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continuous function f(x) over the given interval.

17.
19.
21.
23.

25.
27.

29.
31.
33.

35.

36.

37.

38.

39.

f (z) = 2% — 4z over [0, 4] 18.  f(x) = 2% + 3z over [~2,2]

f(x) =3z + 2 over [1,5] 20.  f(z) =2z —1 over [-1,1]

f(z) = 2® — 322 over [—1,1] 22.  f(x)=a*—82% over [—1,1]

f(z) = 2* — 222 over [0, 3] 24.  f(x) = 2% — 82> + 1822 over [-2,2]
f () = cos (x?) over [0,7] 26. f(x) = cos®(x) over [0, 7]

f(x) = xsin(z) over [—1,1] 28.  f(x) =sin? (z) over [1,3]

f(x) = (z—3)** over [0,4) 30. f(x)= (2222 +1)"" over [-2,2]
f(x) =z (x—1)*3 over [0, 5] 32 f(x) =25 (2 — 1)*3 over [-2,2]

f () = 243 — 222/3 over [0,4] 3. f(z) = (213 - 1)2 over [—2,0]

Suppose Acme airlines charges $480 plus $3 for every unsold seat. On a 200
hundred seat airplane, how many seats should be sold in order to maximize
revenue?

Suppose Acme airlines charges $250 plus $2 for every unsold seat. On a 200
hundred seat airplane, how many seats should be sold in order to maximize
revenue?

On the interval [0,1],the function f(z) = =z is larger than g(x) = z2. At
which value of z in the interval [0,1] is f (z) — g (x) the greatest? What is
f (z) — g (z) for this x-value?

On the interval [0, 1], the function f(x) = 2 is larger than g(x) = xP*! when
p > 0. At which value of z in the interval [0,1] is f (z) — g (z) the greatest?
What is f (z) — g («) for this z-value?

Betty starts a summer daycare program for first through third graders in
her home. She enrolls 15 students initially, and the enrollment increases
by about 5 children per week for the first few weeks. From experience, she
knows that the enrollment will peak and then taper to 0 by the end of the 12
week summer session (when the kids return to school). Thus, her enrollment
f (z) as a function of the number of weeks = since she began the daycare
can be modeled by the function

25
=1 o2
f(x) 5+ 5z i

Use f () to answer the following questions.

(a) Show that f (0) = 15. How does this relate to Betty’s daycare?

(b) Show that f’ (0) = 5. How does this relate to Betty’s daycare?

(¢) Find the absolute extrema of f (x) over [0,12]. Why does the ab-
solute minimum occur at x = 127

(d) If Betty has space for 30 children in her home, will she have to
turn any children away? That is, will the predicted maximum
enrollment exceed 30 students?

40. The next summer, Betty enrolls 13 children initially and enrollment increases

216

by about 7 children per week to begin with. This leads to an enrollment
function of

97
f(x)713+7x7mx

Use f (z) to answer the following questions.
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Graphs  should
be wused only
after the critical
points have been
determined.

—~
&

) Show that f (0) = 13. How does this relate to Betty’s daycare?
(b) Show that f’ (0) = 7. How does this relate to Betty’s daycare?

) Find the absolute extrema of f (z) over [0,12]. Why does the ab-
solute minimum occur at x = 127

(d) If Betty has space for 30 children in her home, will she have to
turn any children away? That is, will the predicted maximum
enrollment exceed 30 students?

—
o

41. In this exercise, we show that graphs should be used only after the critical
points have been determined.

(a) Graph f (z) = 23 — 1122 — 162 over [—5,5] . Does it appear to have
any extrema?

(b) Zoom centered on the maximum in (a) until you can estimate the
z-coordinate of the maximum to four decimal places. How many
zooms were required?

(c) Find the critical point(s) of f(z) = a® — 1122 — 162 by solving
f'(x) =0
(d) Graph f(z) over an interval containing all of the critical points,

and then use that graph to explain why graphs alone are not suffi-
cient for identifying the extrema of a function.

42. Graph f (z) = 2* —32% — 92+ 1 over [—2,2], and then find its critical points.
Are all of the critical points in [—2,2]? Is the graph of f (x) over [-2,2] an
accurate depiction of the function? Explain.

43. Graph f(x) = 2% — 81z* — 22 + 81 over [-5, 5], and then find its critical
points. Are all of the critical points in [—5,5]7 Is the graph of f (z) over
[—5,5] an accurate depiction of the function? Explain.

44. Show that if f (x) is differentiable at = p and if f (z) has a minimum at
x = p, then f’(p) = 0.

3.4 Monotonicity

Monotonicity

In the last section, we identified extrema by finding critical points and then observ-
ing the graph of a function. In this section, we introduce techniques for obtaining
information about the graph of a function from its derivatives. We begin this
process with the following definition.

Definition 4.1 If f (a) < f(b) whenever a < bin (p,q), then f (z)
is said to be increasing on (p,q). If f(a) > f(b) whenever a < b in
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(p,q), then f (z) is said to be decreasing on (p,q) .

f{x) increasing on (p,q) flx) decreasing on (p,q)
p q p q

4-1: Increasing and Decreasing Functions

When a function is increasing on (p,q), then its tangent lines over (p,q) have
positive slopes, and thus, f'(z) > 0 for all z in (p,q) .

Ax) increasing on (p,q) Sfx) decreasing on (p,q)

negative
slopes

p q p q
4-2: Increasing functions have tangent lines with positive slopes

Conversely, suppose that f/(x) > 0 on (p,q) and that a < b in (p,q). Then
b—a>0and f'(c) >0 for all ¢in [a,b]. As a result, the Mean Value theorem
says that

fO)=f(a)=f(c)(b—a)>0

which implies that f (b) > f(a). Thus, if a < bin (p,q), then f(a) < f(b) in
(p,q) , so that f (x) is increasing on (p, q) .

First Derivative Test: If f' () > 0 for all z in (p,q), then f(z) is
increasing over (p,q). Likewise, if f'(z) < 0 for all  in (p,q), then
f () is decreasing over (p,q) .

We say that f (z) is monotone on (p,q) if f’' (x) does not change signs over (p, q) .

To use the first derivative test, we first determine the intervals of monotonicity
by finding all the points where f’(z) can change signs and then testing the sign
of f'(x) between those points. We will then see that a function increases to a
maximum and then decreases immediately thereafter, and likewise, decreases to a
minimum and then increases immediately afterward.

R deC‘/. f
& ‘ ) IS
g \y i
é» | 2. —Inc
N ! L& ad

4-3: Monotonicity and Extrema

However, there need not be an extremum at each critical point, as is shown at cg
in figure 6-2.
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EXAMPLE 1 Determine the intervals of monotonicity and identify
the extrema of

f(z)=2a%—3z

Solution: The points where f’(x) can change signs are the critical
points, which are solutions to f’(x) = 0. Since f’ (z) = 322 — 3, we

have
32°-3 = 0
3(*=1) = 0
3(x—1)(z+1) = 0
As aresult, f'(z) =0if x = —1,1. Since f’ (z) is continuous for all z,

we need only check a single point in the intervals (—oo,—1), (—1,1)
and (1, 00), respectively, in order to determine the sign of f’ on these
intervals. Since © = —2 is in (—o0, —1), the calculation

F(=2)=3(-2%-3=9>0

implies that f/(x) > 0 for z in (—oo, —1) and thus, that f(z) is in-
creasing on the interval (—oo, —1). Moreover,

F1(0)=-3<0

implies that f’ (z) < 0 for z in (—1,1) and thus, that f (z) is decreasing
on the interval (—1,1). Since z = 2 is in (1, 00), the calculation
4—-1 3
’ _ - _ 2
F@=a=5>0
implies that f’ (x) > 0 for z in (1, 00) and thus, that f (z) is increas-
ing on the interval (1,00). It follows that f (z) must have a relative

maximum at x = —1 and a relative minimum at x = 1.
3
2
1
2 1 0 L 2
-1
24
-3
4-4: Relative extrema at x = —1 and x =1

Check your Reading |Are the extrema in figure 6-8 also absolute extrema? Explain.

Vertical Asymptotes, Cusps, and Vertical Tangents

The derivative may change signs at points of discontinuity and points of non-
differentiability, even though such points may not correspond to extrema.
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EXAMPLE 2 Find the intervals of monotonicity and the extrema of

422
r) = ———-—
0=t
Solution: The quotient rule yields a first derivative of
, —16x
r)=—"-""—
R

The numerator is 0 when x = 0, and the denominator is 0 when x = 2.
Since x = 0, 2 are the only points where the derivative can change sign,
f’ (x) is continuous and single-signed on each of the intervals (—oo, 0) ,
(0,2), and (2, 00). Testing in these intervals yields

f(-1)=-3<0 = f(z)\ on(-00,0)
ff1)y=16>0 = f(z) / on(0,2)
f1(3)=-48<0 = f(z)\,on (2,00)

Since z = 0 is a critical point of f, the table above implies that f has
a relative minimum at x = 0. However, x = 2 is not a critical point of
f since x = 2 is a vertical asymptote of f. Thus, there is no extremum
at x = 2.

141
12+
10t

N N o @

-4 -2 00 2 4 8 8 10 12

4-5: Vertical asymptote at © = 2

However, extrema can occur at points of non-differentiability, as is shown in the
next example.

EXAMPLE 3 Find the extrema, the inflection points, and the inter-
vals of monotonicity and concavity of

f (@) =a'/?(x - 3)"°
Solution: The product rule implies that
1 2 _
f(z) = 552/3 (z—3)*° + §x1/3 (z—3)"1/3

which simplifies to
, z—1
)= —
[ (@) (e 3
The numerator is 0 when & = 1, and the denominator is 0 when z =
0, 3. Thus, we must test for the sign of f' (z) on (—o0,0), (0,1), (1, 3),

and (3,00).
ffi-1)=2>0 = f(x) /" on (—o0,0)
f(05)=1474 <0 = f(z) ~on(0,1)
ff2)=-025<0 = f(z)\,on(L,3)
ff4)=119>0 = f(x) / on (3,00)
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Since f is defined and continuous at x = 1 and x = 3, the function f
has a relative maximum at x = 1 and a relative minimum at x = 3.

4-6: Graph of {/xz (z — 3)?

Check your Reading | What are the points of non-differentiability in figure 4-6¢

Simple Curve Sketching

There are functions whose graphs cannot be produced with a grapher. Fortunately,
the extrema and intervals of monotonicity can be used to produce a crude sketch
of a function even when graphers fail.

Stationary points correspond to horizontal tangents. Similarly, points of non-
differentiability may correspond to cusps or vertical tangents (although they may
also correspond to discontinuities). Intervals of monotonicity then lead to a game
of “connect the dots” in which tangency and other features of the graph are pre-
served.

EXAMPLE 4 Sketch the graph of f (x) = 52° — 9a°.

Solution: Since f' (z) = 4528 — 45x*, the critical points satisfy
452% — 452 = 0
452* (2t —1) = 0
Since 2* = 0 when z = 0 and 2* — 1 = 0 when 2 = +1, the stationary

points are at —1,0,1. Thus, we must test for the sign of f/(z) on
(—o0,-1), (-=1,0), (0,1), and (1,00).

f'(-2)=10,800 >0 = f(x) /" on (—o0,—1)
f(-0.5)=-263<0 = f(x)\, on(-1,0)
7105)=-2.63<0 = f(z)\, on(0,1)
f'(2)=10,800 >0 = f(z) /on (1,00)

Notice now that f(—1) =4, f(0) =0, and f (1) = —4. Thus, we place
short horizontal tangents at the points (—1,4), (0,0), and (1,—4).

monotonicity .~ ‘\ ‘\ ‘ e

—0—4

P

4-7: Monotonicity and Extrema

MONOTONICITY 221



The curve increases to tangency at (—1,4), and then decreases to
tangency at (0,0) . To do so, it must have at least an “S” shape between
(—1,4) and (0,0). Likewise, in decreasing to (1,—4), and then the
curve increases afterwards.

monotonicity 7 ‘\ ‘\ ‘ e

/
/I

4-8: Crude sketch of y = 52° — 92°

D

If there are any horizontal asymptotes, they should also be included in the sketch.

EXAMPLE 5 Sketch the graph of f (x) = x%e~2.

Solution: Since f’ (z) = 2we~* — x2e~%, the critical points satisfy

xe ¥ (2—2)=0

Since e™* # 0, the critical points are z = 0 and x = 2. Thus, we must
test for the sign of f/ (z) on (—o00,0), (0,2), and (2, 00).

f(-1)=-3¢e1<0 = f(z)\, on(—,0)
)=e1>0 = f(x) /" on(0,2)
f(3)=-3e"1<0 = f(z) \,on (2,00)

Since f(0) = 0 and f(2) = 4e!, we place short horizontal tangents
at (0,0) and (2,4e7!) . In addition,

2
. _ . . 2z .
lim 22 ® = lim — lim — lim — =0
T—00 r—o0 e¥ r—o0 et rz—o0 e

11818
11818

xT

However, as x approaches —oo, the exponential e™® approaches oo,

so that there is the horizontal asymptote of y = 0 applies only as x
approaches oo.

monotonicity ‘ A ‘ NS

4e°l e

4-9: Monotonicity and Extrema

The graph decreases to (0,0). Then to preserve tangency, it increases
in an “S” shape to (2,4e!). Finally, it decreases to the horizontal
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asymptote as x approaches co.

monotonicity ™\ ‘ A

V‘V\»

4-10: Crude Sketch of y=2xe"

Check your Reading | What does the graph of f (x) = 5z° — 925 over [—2,2] look like on a grapher?

Monotonicity Given the Graph of f'(x)

Monotonicity can also be ascertained from the graph of the derivative f’ (x) of a
function f (x). In particular, when the graph of f’(x) is above the z-axis, then
/() > 0 and the function itself is increasing. When the graph of f’ (z) is below
the z-axis, then f/ () < 0 and f is decreasing.

< f1)<0>—— f1(x)>0 S S0 >
J y=(x)

4-11: Graph of f' (x)

In addition, stationary points of f (x) are zeroes of [’ (z).

EXAMPLE 6 Sketch the graph of f(x) given the graph of f’(z)
shown in figure 4-12.

-1 0. 1 2 3

-1

4-12: Graph of f/ (x)

Solution: The graph of f’(z) crosses the z-axis at = 0,2, which
implies that = 0,2 are stationary points of f(z). Moreover, the
graph is above the z-axis for x in (—00,0) and (2,00), thus implying
that f (z) is increasing on (—o0,0) and (2, 00) . Likewise, f/ (z) < 0 on
(0,2) implies that f () is decreasing on (0,2).
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Although we don’t know the y-values of the stationary points, we
can place short horizontal tangents to help determine the graph.

monotonicity A ‘ N\ | e
I T
0 2

&

[P S

4-13: Monotonicity and Extrema

Connecting these points then provides some indication of what the
graph of the function f (x) might look like.

7

monotonicity e ‘ N
I ]
0 2

4-14: Crude Sketch of y = f (z)

EXAMPLE 7 Sketch the graph of f(x) given the graph of f’(z)
shown in figure 4-15.

4 2 00 2 4

4-15: Graph of [ (x)

Solution: Notice that the graph of f’(x) is completely above the z-
axis. Thus, f/(z) > 0 for all z and f (z) is always increasing with no
horizontal tangents or extrema of any kind. Thus, the graph of f (x)
is simply a curve which is always increasing

4-16: Function is increasing everywhere
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Exercises:

Find the intervals of monotonicity and the extrema of the following functions.

Make a crude sketch of the graph using monotonicity and extrema.
results by comparing to a graph of the function produced with a grapher.

2.

1. f(x)=2%2-22

(
3. f(x)
5. f(x)
7. f(z)
9. f(x)
11. f(=)
13. f(z) =
15.  f(=)
17 f(x)
19.  f(z)
21, f(=x)
23.  f(x)

4.
6.
8.
10.
12.

14.

16.
18.

20.

22.
24.

f(z) =a*—222
fle)y=4—"Tx
f(z) =527 — T2®
f(x) = 225 — 52?
f(x) = 2" (z - 5)*
4
fle)= xzx—i- 1
f (@)= (-1
f(x) = x%3 — 421/3
f(x) =xe 3
fl@x)=x—¢€"
f ) =2 —In(z)

Verify your

Determine the intervals of monotonicity and the location of the extrema of the
function f(x) given the graph of its derivative f'(x).

25. Graph of [ (z):

27. Graph of [ (z):

29. Graph of [ (z):

MONOTONICITY

20

15:

10:

-10y

-15

26. Graph of f/ (z):

28. Graph of f/ (z):

30. Graph of [ (z):
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31. Suppose an object in free fall has a height at time ¢ of r (¢), and suppose
that its velocity function over [0,4] is as in figure 4-17.

60
40

20

-207

-40]

-607

4-17: Graph of v (t)

(a) Find the intervals of monotonicity and extrema of r ().
(b) Sketch the graph of r () . When does it attain its maximum height?
(¢) If v (t) is linear, then what does the acceleration a (t) look like?

32. Suppose an object in free fall has a height at time ¢ of r (), and suppose
that its velocity function over [0, 4] is as in figure 4-18.

40

20

-207

-40}

4-18: Graph of v (t)

(a) Find the intervals of monotonicity and extrema for ¢ in [0, 4].
(b) Sketch the graph of r (t) . When does it attain its maximum height?
(¢) What does the acceleration a (t) look like?

33. Find the intervals of monotonicity and extrema of the function f (z) = z*
for x > 0. What is significant about the extrema of f7

34. If n > 2 is a positive integer, then how many maxima does the function
f(x) = 2™e~* have? How many minima?

35. Write to Learn: Suppose an object traveling along a line has a position of

r (t) on the line at time ¢ and suppose its velocity function is as shown in
figure 4-19,

4-19: Graph of velocity v (t)

Write a short essay describing its motion between time t = 0 and ¢t = 5, and
explain how you arrived at that description.
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36. Write to Learn: Suppose an object traveling along a line has a position of

37.

38.

39.

40.

r (t) on the line at time ¢ and suppose its velocity function is as shown in
figure 4-20,

BN W N

o 1\/ ¢ 5

I

4-20: Graph of velocity v (t)

Write a short essay describing its motion between time t = 0 and ¢t = 5, and
explain how you arrived at that description.

Use monotonicity and extrema to sketch the graph of y (z) = az? + bz + ¢
with a, b, ¢ positive.

Use monotonicity and extrema to sketch the graph of y (r) = —az? + bz + ¢
with a, b, ¢ positive.

Use monotonicity and extrema to sketch the graph of y (z) = 2° + az with
a positive.

3

Use monotonicity and extrema to sketch the graph of y (x) = x° — azx with a

positive.

3.5 Concavity

Concavity and Inflection Points

The use of monotonicity to identify extrema requires that all intervals of monotonic-
ity be identified. However, the points where a derivative changes sign may be
difficult to calculate or even to estimate. Thus, in this section, we introduce a
method for identifying extrema known as the second derivative test that uses the
second derivative at the critical point instead.

If the graph of a function f (x) is above its tangent lines over (a,b), then we

say that f (x) is concave up over (a,b). Similarly, if the graph of f (z) is below its
tangent lines over (a,b), then we say that f () is concave down over (a,b).

Concave Up Concave Down

_
\ / / \
P q P q P q P q

5-1: Concavity
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Suppose now that f” (z) > 0 on (p,q) and let @ and b be in (p, q) such that a < b.
The Mean Value theorem says that there is a number ¢ in (a, b) such that

However, f”(z) > 0 on (p,q) implies that f’(z) is increasing on (p,q). Thus,
f'(¢)> f'(a) and
f)—fl) _
e M C)
Thus, the line through (a, f (a)) with slope &%Q is above the tangent line
y = L, (z), which is the line through (a, f (a)) with slope f/ (a).

Ly(b) “slope = f'(a) 3:22)

8
SHEE—-

5-2: Tangent line is below the secant line

It follows that f (b) > L, (b) for all a < b in (p, q) , which is to say that the graph
of f(x) is above its tangent lines for all x in (p,q).

Theorem 5.1: If "/ () > 0 on (p,q), then f (z) is concave up over
(p,q), and if f”(x) < 0 on (p,q), then f(z) is concave down over

(p,q)-

In addition, an inflection point is a point on the graph of a function where there
is a change in concavity:

P q
5-3: Inflections points

An inflection point must be in dom (f). Thus, a vertical asymptote cannot be an
inflection point.

EXAMPLE 1 Find the intervals of concavity and the inflection points
of
f(z) =23z

Solution: Since f’ (r) = 322 — 3, the second derivative is f” (z) = 6x.
Since f” (x) can only change signs at x = 0, we test f” (z) at points
on either side of 0:
f"(-1)=—-6<0 = f(z)is concave down on (—o0,0)
f"(1)y=6>0 = f(x) is concave up on (0, 0)

Moreover, since f” (x) changes signs at x = 0, an inflection point must
occur at z = 0.

228 APPLICATIONS OF THE DERIVATIVE



We often use CU and C'D to denote concave up and concave down, respectively.

EXAMPLE 2 Find the intervals of concavity and the inflection points
of

f(x) = we™
Solution: Since f’ () = e~ % — ze™?, the second derivative is
f"(x)=—-€e"—e " +ae " =(x—2)e "

Thus, we test for the sign of f” (x) on (—0c0,2) and (2, 00) :

f7(0)=(0-2)e"=-2<0 = f(z)CDon (—00,2)
"B)=B-2e3=e>>0 = f(x) CUon (2,00)

As a result, the inflection point is at = = 2.

0.41

0.2] \H
1 1 2 X 3

-0/27

.47
-0.67
-0.87

KE!

5-4: Graph of f (x) = ze™®

Check your Reading |Is it possible for f” (p) =0 and p not be an inflection point of f7

Extrema and Concavity

Let us observe that if f(x) is second differentiable at © = p and if f(x) has
a relative maximum at x = p, then f’(p) = 0 and the graph of f(x) must be
concave down in the vicinity of p.

maximum minimum

horizontal, f(p)=0

m C:,mcave up,
f'w) < 0 ro>0 v

horizontal, f(q)=0

p q
5-5: Concavity can be used to identify extrema

Likewise, if f (x) has a relative minimum at z = p, then f’ (p) = 0 and the graph
of f(x) is concave up in the vicinity of 2 = p. The converses of these statements
are also true, as is given by the following theorem.
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The Second Derivative Test: If ' (p) = 0 and f” (p) < 0, then
f (z) has a maximum at x = p. If f/ (¢) =0 and f” (¢) > 0, then f (x)
has a minimum at x = q.

Unfortunately, if f' (¢) = f” (¢) = 0, then the second derivative test provides no
information and another method must be used.

EXAMPLE 3 Use the second derivative test to identify the extrema
of f(x) =2® - 3z%
Solution: Since f’ (z) = 322 — 6z, setting f’ (r) = 0 yields

322 —6x =0, 3x(z—2)=0

Thus, the stationary points are x = 0 and 2. Moreover, the second
derivative is f” (x) = 62 — 6, so that the second derivative test yields

f7(0)=6-0—-6=-6<0 = f(z) has a maximum at x =0
f"(2)=6-2—-6=6>0 = f(z) has a minimum at x =0

These results are confirmed by the graph of f (z) = 2® — 322 below:

5-6
EXAMPLE 4 Identify the extrema of f (z) = xe??.

Solution: Since f’ (x) = €2¥ + 2ze®, the stationary points satisfy
e* (1422) =0
Since e2* > 0 for all z, the stationary point is the solution to
14+22x=0
which is # = —1/2. In addition, f” (z) = 4% + 4ze** and [ (F) =

4e~t — 2e71 = 0.74 > 0. Thus, f(x) = xe?® has a minimum at x =
—1/2.

If p is a stationary point of f (x) and if f” (p) = 0, then the second derivative test
provides no information. This is because there may be a maximum, a minimum,
or an inflection point at p. For exaample, if f (x) = 23, then f” (0) = 0 and there
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is a point of inflection at x = 0, but if g (x) = z#, then ¢” (0) = 0 and there is a
minimum at x = 0.

[N - )
N AN O @

=]

[N
N
N
-
(=]
=
N

S & A HO
[N S =)

5-7Ta: Graph of f (z) = 2° 5-7b: Graph of g (z) = x*

EXAMPLE 5 Find the extrema of

f (&) =3cos (t*)

Solution: Using the chain rule, it can be shown that
f(t) = —3sin () %ﬁ’ = —9t*sin ()
Critical points occur when sin (t3) = 0, so the critical points are
t2=0,n,2m,... or t:(),\%_r,ﬁ,...
The second derivative begins with the product rule,
1) = T (
= - <%9t2) sin (%) — QtZ% sin (¢°)

after which we apply the chain rule:

—9t% sin (t3))

d
/() = —18tsin (%) — 9t cos () &ts
= —18tsin (t3) — 27t* cos (t3)
At the stationary point ¢ = /7 we have

£ (V) = 18 msin (m) = 27 () cos (m) =27 ()" > 0

Thus, there is a relative minimum at ¢ = /. Likewise, it is easy to
show that
" (\3/27r) <0, f" <\3/37r) >0,

so there is a maximum at ¢t = /27, a minimum at v/37 < 0, and so
on.

At the critical point t = 0, we have f” (0) = 0 and thus, the second
derivative test yields no information about f (¢) at ¢ = 0. However, the
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graph of f (t) = cos (*) has a maximum, and not an inflection point,

at ¢t =0.
S
1
|
1 0.5 0p 0.5 t 1 15
K
2|
-3
5-8: f”(0) =0 at a maximum
o

Check your Reading | Where is < on the x-axis in figure 5-77

Graphs of Harmonic Oscillations

Recall that a harmonic oscillation is a function of the form
y (t) = acos (wt) + bsin (wt) + M

where a, b, w, and M are constants. The extrema of a harmonic oscillation are
determined using the second derivative test, which in turn often requires the use
of the following table:

o |0 § % 5 3
tan(d) [0 5= 1 V3 VA

5-3: Reference angles for tan (0)

In the table, V A stands for vertical asymptote.

EXAMPLE 6 Tides: The height h in feet above or below sea level
of the ocean near Bridgeport, Connecticut, at time ¢ in hours since
midnight on Sept. 1, 1991, is approximated by

h(t) = 3.35 — 3cos (%) + 33 sin (3)

2

How long after ¢ = 0 does the first high tide occur?

Solution: Since /' (t) = 0 when Z*sin (%) + 33 cos (£) = 0, the
stationary points are the solution to

N wo
@
=B

VR

N o+

~~_
I
‘c,o

)
B
Q
o
wn

7N

N |+

N~~~
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Thus, table 6.3 implies that % = % +nm, where n is any integer, and
as a result, the critical points are of the form

2w
t=—+2n
3 + 2nm
The second derivative is h” (t) = =2 cos (£) — 3%45 sin (£) . The first
positive critical point occurs when n = 0, which yields ¢ = %” and

2 -3 127 33 127
" _ e —_— - Q] —_ P
h<3> 4cos<23) 1 sm<23) 1.5<0

Thus, h (t) has a maximum at ¢ = %’T = 2.0944, so that the first high
tide occurs at 2:06 a.m.

0 2 4 ? 8 10 12

5-9: High Tide first occurs at 2:06 a.m.

The extrema, the amplitude, and the period of an oscillation can be used to
construct its graph. In fact, periodicity can be used to extend the graph of the
oscillation over a single period to the graph of the function on the whole line.

EXAMPLE 7 Determine the amplitude, period, extrema and graph
of the function

y (t) = 2v/3 cos (47t) + 2sin (4nt)

Solution: Since w = 4, the period is

2 1
T‘E‘§ sec

Moreover, since a = 2v/3 and b = 2, the amplitude is
Ay =+/22-3+22=16=4

Since y' (t) = —8m\/3sin (4t) +8 cos (47t) , the critical points of y (t)
are solutions to the following equation:

8mV/3sin (47t) 87 cos (4mt)
sin (47t)
— 1
cos (47t)
1
tan (47t) = —&
rt) =
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Table 6.1 implies that
At = % + nmw

where n is an integer. Thus, the extrema are located at

€

t=
24

+

13

Since y (3) = 4, there is a maximum at ¢ = 3, a minimum at t =
141 i i S
571 T 7, @ maximum again at ¢t = 53 + 35, and so on.

5-10: Extrema and Period determines a harmonic oscillation

Check your Reading |Show that if f (x) = z*, then f (0) = 0. What type of extremum does f (x) = x*
have at x =07

Extrema that Cannot be Easily Visualized

The graph of a There are functions whose extrema cannot be easily visualized. For example, the
function  may graph of the function f (z) = 422 + cos (3x) appears to reach a minimum when
have features x = 0.

which cannot
be observed 16
visually. 1

N
iR

) i 2
5-11

However, this is not the case. Zooming centered at the origin reveals that there is
actually a maximum at x = 0.
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Fortunately, the second derivative test can be employed when visualization and

graphing proves to be unreliable.

EXAMPLE 8 Given f (x) = 422 + cos (3x) , show that f/(0) = 0 and
then determine if f (x) has a maximum or a minimum when x = 0.

Solution: The derivative of f (z) = 422 + cos (3x) is
f(z)= 4 [42 + cos (3z)] = 8z — sin (3x) in = 8x — 3sin (3x)
dx dx

and if we let x = 0, then
f(0)=8(0) —3sin (0) =0

thus verifying that f (z) has a stationary point at = 0. Moreover,
the second derivative is

1" () =8 —9cos (3z)
and at x = 0 we have
f"(0)=8—-9cos(0)=8—-9=-1<0

Thus, the second derivative test confirms that f (x) = 422 + cos (3z)
has a maximum at © = 0.

Even zooming does not guarantee that all the features of a graph will be revealed.

For example, the function

f(z) =2%40.01cos (v)

does not appear to have any extrema, and zooming does not reveal any new

information about the function.

0.0108
0.0106
05 0.0104
0.0102

N
o
S

05 1

-0.5

OQS 0.1

5-13: Zooming does not reveal any extrema

But there is more here than meets the eye!

EXAMPLE 9 Show that x = 0 is a stationary point of f (z) = 23 +
0.01 cos (x) and then determine if f (x) has a maximum or a minimum
at z = 0.
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Solution: The first derivative is
f'(z) = 322 — 0.0 1sin (z)
and clearly, f’ (0) = 0. Since f” (x) = 6z — 0.01 cos (x) , we have
#(0) = —0.01

Thus, by the second derivative test, there is a maximum at x = 0, even
though zooming may never reveal its presence.

Exercises:

Find the intervals of concavity and the inflection points of the following functions.
(Note: You found intervals of monotonicity of these functions in the previous sec-
tion.)

1. f(x)=22-22 2. f(x)=a>—4dx+2
3. f(x)=2a3—322 4. f(z)=a*—222

5. f(x)=a*—42% +4 6. f(x)=>5x" —T7a°
7. f(x)=32%—52® 8. f(x)=22°— bx?
9. f(z)=x(x—23)° 10.  f(z) =% (z —5)?

11. f(@)=2>-3z+1 12. f

(
13, f(@)==(x—4)° 4. f (ac) =22 (x— 4)3
15. f(z) =xe™® 16. f(z)=a%e"
17. f(z)=z+1In(z) 18. f(z)=zIn(z)
19.  f(t) =sin (?) 20.  f(t) = cos (V1)
21, f(t) =sin? (¢) 22.  f(t) =cos?(t)
23. f(t)=t+2cos(t) 24. f(t)=1t+cos(t)

25. f(z)=e"sin(z) 26. f(xz)=e"cos(x)

For each of the following, show that f'(0) = 0. Then compute f"”(0) to determine
if the function has a mazimum or a minimum when x = 0. Graph f (z) on [-1,1].
Does the graph reveal the extremum at x =07

27.  f(x) = 1222 + cos(bx) 28.  f(z) = 2422 + cos(Tz)

29. f(x)=¢€"—x+cos(1.0lx) 30. f(x)=e" —x+cos(0.992)
31, f(x)= xsm( ) +2.001cos(z) 32. f(x)=xsin(z)+ 1.999 cos(x)
33.  f(x)=sin(2®) +0.01cos(z)  34. f(x)=4sin(z?) + cos(3x)

Find the period, frequency, and amplitude of the oscillation. Locate the extrema
and use them to sketch the graph of the oscillation. Check your work by comparing
to a plot produced by a grapher.

35. gy (t) =sin(3t) 36. y(t) =cos(3t)

37. y(t) = b5cos(nt) 38 y(t) = sin (72t)

39. y(t) =+v2cos (\/_ t) 40.  y(t) = 12sin (/7 t)

41.  y(t) = cos(t) —sin (¢) 42.  y(t) = cos(t) + sin (t)

43.  y(t) = cos (3t) + sin (3t) 44. y(t) = /8cos(t) — v/8sin (1)
45.  y(t) = V/3cos (2rt) — sin (27t) 46.  y(t) = 2cos (5t) — /12sin (5t)
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47.

48.

49.

50

51.

The price p per pound of ground beef at time ¢ in years since 1980 (and up
to 1998) is approximately the same as the function

2
p(t) =1.85 + 0.15sin <§t)

What is the period of the oscillation? When does the price of hamburger
first reach its peak? What is the maximum price of ground beef during this
time??

Elmo’s ice cream shop notes that if ¢y denotes the number of customers per
week at ¢ weeks since the beginning of the year, then

y (t) = 200 + 20 cos (%t) — 20v/3sin <%t>

How fast is the number of customers per week increasing after 13 weeks?
When does Elmo have the most customers? What is the maximum number
of customers he can expect?

The average monthly temperatures y in Denver, Colorado at ¢ months after
the beginning of the year can be closely approximated by the function

y = 51.6 — 10.95v/3 cos <%t> —10.95sin (%t)

Which month is the coldest month of the year? Which is the hottest month?

. The current through a certain LC' circuit is given by

I(t) =2cos (1890t) + 2sin (1890t) amps

Determine the period, amplitude, frequency, and extrema of the oscillation.
Sketch the graph of I (t).

Grapher: If y denotes the time the sun rises in Johnson City, TN, on the
day which is t days after the beginning of 1999, then

27 . 27
y (t) = 6.4403 + 1.3903 cos (% t> — 0.1803 sin (% t)

(a) Graph y (¢) on the interval [0, 365]. Use the graph to estimate the
relative maximum and relative minimum of y (¢) .

(b) What does the model predict will be the earliest sunrise of the
year in eastern standard time, and on which day will it occur?
What does the model predict will be the latest sunrise of the year,
and which day will it occur?

(¢) Graph ¢/ (t) on [0,365]. Where does it cross the t-axis? How is
that related to (a) and (b)?

52. Grapher: If y () denotes the number of hours of daylight in Johnson City,

TN, on the day which is ¢ days after the beginning of 1999, then y (¢) is
closely approximated by

27 . 27
y (t) = 12.2 — 2. 2855 cos (% t> + 0.4036 sin (% t>

3Based on Bureau of Labor Statistics data and on examples from Stefan Wagner and Steven
R. Costenoble of Hofstra University.
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(a) Graph y (¢) on the interval [0,365]. Use the graph to estimate the
relative maximum and relative minimum of y (¢) .

(b) What does the model predict will be the longest day of the year
and how long will it be? What does the model predict will be the
shortest day of the year and how short will it be?

(¢) Graph ¢/ (t) on [0,365]. Where does it cross the t-axis? How is
that related to (a) and (b)?

53. Under what condition does
f(z) = 2% + £ cos(wz)
have a maximum at the origin?

54. Write to Learn: In a short essay, explain why the second derivative yields
no information about the extrema of f(t) = sin? (tz) when ¢t = 0. Then
explain why sin? (tz) must have a minimum at ¢t = 0.

55. The graph of f(z) = e=%"/2 ig the familiar “bell curve” of statistics.

0.6
0.4

0.2

3 -2 -1 00 1 2 3
5-14

The standard deviation of f (x) is the distance from the origin to an inflection
point of f (x). What is the standard deviation of f (z) = e=2/27

56. If 0 > 0 is a constant, then what is the standard deviation (see exercise 55)
of
f ([L’) _ 6712/(202)

3.6 Optimization

Optimization with Constraints

Optimization problems are applications in which the desired answer is a maxi-
mum or minimum of a function. For example, a businessman might ask “What
price maximizes revenue?” or an ecologist might ask “How do we minimize the
impact on the environment?” In this section, we explore optimization problems
to illustrate how calculus is used to answer questions like those above.

The typical optimization begins with a single output variable subject to one or
more constraints, where a constraint is an equation involving two or more input
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variables. The constraints are used to reduce the output variable to a function
of only one input variable, and then the absolute extrema of that function are
determined, although in some applications relative extrema are sufficient.

EXAMPLE 1 Find the two nonnegative numbers x and y whose sum
is 10 and whose product is a maximum.

Solution: The constraint is x +y = 10. If we let P denote the product
of x and y, then our optimization problem is

Mazimize P = xy subject to x+y =10

We must first write P as a function of a single input variable. Solving
for y in the constraint yields

y=10—=z
Substituting for y results in
P(z)=xz(10 —x)

Since = and y are nonnegative, z is in [0, 10]. Thus, we must find the
absolute maximum of P (z) over [0,10]. To do so, we first identify any
critical points in [0, 10]. Setting P’ () = 10 — 2z equal to 0 yields

100—-2z = 0
r = 5

The graph of P (x) over [0, 10] implies an absolute maximum at = 5.

25
20
15

10

0o 2 4 X 6 8 10

6-1: Maximum occurs at x = 5

Finally, since y = 10 — z, the value of y corresponding to x = 5 is

y=10-5=5

Check your Reading | What is the mazimum value of P in example 1?

Optimization Word Problems

Output variables are often called dependent variables, and the input variables are
often called independent variables. When the optimization problem is presented
as a word problem, the dependent variable is the quantity to be either maximized
or minimized. The remaining variables are typically independent variables that
are used to form constraints.
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EXAMPLE 2 John wants to start a kennel by building 5 identical
adjacent rectangular runs out of 400 feet of fencing (see figure 6-2),

6-2

Find the dimensions of a rectangular run which yield a maximum area
for each run.

Solution: We first notice that the area of each run is to be maximized,
so that our dependent variable is

A = area of a run in square feet
The independent variables are the dimensions of the individual runs:

[ = length of each run in feet (see figure above)

w = width of each run in feet (see figure above)

Each run is a rectangle, so that A is the product of the length and the
width:
A=lw (3.23)

Since 400 feet of fence will be used for 10 sections of length w and
for 6 sections of length [ (see the figure), the constraint is

10w + 61 = 400 (3.24)
Solving for w in (3.24) yields
w =40 — 0.6]
after which substitution into (3.23) yields
A(l) =1(40 — 0.61) = 401 — 0.61*
Since I, w, and A must be nonnegative, [ must be restricted to the
interval [O, %] .

To find the critical point(s) of A (1), we set A’ (1) = 40—1.2] equal
to zero:

40-121 = 0
l = 33% feet

The graph of A (I) = 40l — 0.6/? reveals a maximum at [ = 33 feet, 4
inches.

700
600
500
400
300
200
100

0p 10 20 30 40 50 60 70
-1007
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6-3

The corresponding width which maximizes the area must be
1
w=40—-0.6 <33§> = 20 feet

Thus, a length of 33 feet, 4 inches and a width of 20 feet maximizes
the area of each run.

Some of the most important optimization problems are those in which the de-
pendent variable is minimized—minimizing costs, minimizing error, minimizing
energy, minimizing distance traveled, minimal surfaces, etcetera.

EXAMPLE 3 A certain cylindrical can is to have a volume of 0.25
cubic feet (approximately 2 gallons). Find the height h and radius r
of the can that will minimize surface area of the can. What is the
relationship between the resulting r and h?

6-4

Solution: Figure 6-4 shows us that the surface area S is the sum
of the areas of 2 circles of radius r and a rectangle with height A and
width 27r. Thus,

S = 27r? + 27rh

Moreover, the volume of 0.25 ft3 is a constraint that is equal to the
product of the area 7r2 of the base and the height h, which we then

solve for h:
0.25

7r?h = 0.25, h=—
mr
Substitution for h reduces the surface area to a function of 1 variable:
0.25
S (r) = 2mr? + 27 (—2) = 2172 + 0.5r 1
r

Since S’ () = 47r — 0.5r72, the critical points are solutions to

drr —05r72 = 0
47y 0.5r 2
1/2
3 — —_
o= 4
T = 3 i = 1
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The graph of S (r) reveals that a minimum occurs.

00 02 04 06 (08 1 12 14

6-5: Graph of S (r)

It can also be shown that S’ (r) < 0 for all 0 < r < # and that
S"(r) > 0 for all r > 55=, so that the minimum must be an absolute
minimum for r in (0, 00). Thus, the can has the least surface area when

r= 2%/; and
b 0.25 1
=—— _{‘/_E
" (z4)

Moreover, notice that h = 2r, which implies that the can with the least
surface area is the one in which the height is the same as the diameter
of the base—that is, the one whose cross-section is a square.

Check your Reading | Why do we only consider r in (0,00) in example 37

A computer is
useful only if we
understand the
results it pro-
duces.

Computer Algebra Systems

In the fifties and sixties, slide rules made multiplication and division easier to
perform, but they did not eliminate the need to learn arithmetic. In the seventies
and eighties, scientific calculators became commonplace in evaluating scientific
functions, but they did not eliminate the need to learn trigonometry. In the
nineties, graphing calculators became the tool of choice for graphing functions,
but they did not eliminate the need to learn calculus. In each of these cases,
technology enhanced mathematics, but it did not replace the mathematics itself.

Likewise, computer algebra systems can be used to differentiate functions and
estimate critical points, but they are of little value in identifying constraints or
determining which quantity is to be optimized. However, they are a useful tool
when calculation by hand is either tedious or prohibitively time-consuming.

EXAMPLE 4 Fred wants to build a house that is 50 feet long, 30

242 APPLICATIONS OF THE DERIVATIVE



feet wide, and 25 feet tall at its tallest, as shown in figure 6-6 below:

/
h
h
50
30
30

6-6: Height at center of side is 25 feet

If siding costs $3 per square foot and roofing costs $10 per square foot,
what dimensions h and [ minimize the cost of the exterior of the house?

Solution: The area of the roof is 2 - 50 - [, so the cost of the roof is
10-100! = 1000I. The area of the front and back is 2-50-h, so that price
of the front and back is 3 - 100h = 300h. Each end is a rectangle with
area 30h subtended by an isosceles triangle with area % (25 — h) 30, so
the total area of the 2 ends is 2 (30h + 15 (25 — h)) and the cost of the
two ends is 3 - 2 - (16h + 375) = 90h + 2250. Thus, the total cost C' is

C = 10007 4+ 300~ + 90h + 2250

The constraint relating [ to h follows from the Pythagorean theorem,
which says that

(25— h)2+ (152 =1> or 1=+/(25—h)>+225

Substituting [ into the cost then implies that

C (h) = 10004/ (25 — h)2 +225 + 390h + 2250
The derivative follows from the chain rule and is given by
1000 (h — 25)

C'(h) =
(25 — h)? + 225

-+ 390

We then use a computer algebra system to estimate the zeroes of C’ (h)
in [0,18] .

1000 (h — 25)
(25 — h)* + 225

+390=0 = h=18.644ft

We also use the computer algebra system to compute C (h) at the
endpoints and the critical point:

C(0) = 1000252+ 225 + 2250 = $31,404.76

C(18.644) = 1000\/ (25 — 18.644)% + 225 + 390 - 18.644 + 2250 = $25, 812.22
C(18) = 10001/02 + 225 + 390 - 25 + 2250 = $27, 000

Thus, the cost of the exterior of the house is minimized when h =
18.644 feet.
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Check your Reading|A standard roof has a pitch of 30°. For the house in example 4, this would

result in a height of h = 16.34 feet. What is the total cost in example 4 when
h =16.34 feet?

Distance from a Point to a Curve

A common optimization problem is that of finding the shortest distance from a
curve to a given point. Often, the resulting minimum distance is called the distance
from the point to the curve.

EXAMPLE 5 Find the point on the curve y = 23 +1 which is closest
to the origin.

1

6-7: D is the distance from (z,y) to (0,0)

Solution: The dependent variable is the distance D from the origin
to a point (z,y) on the line, which by the distance formula is

SN e I

Moreover, inspection of the graph reveals that the minimum distance
must occur when x is in [—1,0] . Since the constraint is the curve itself
y = 2% + 1, substituting for y yields

D (z) = \/22 + (23 + 1)

Now let us use a computer algebra system to calculate and simplify
D' (z):

5 2
Loy @y SLAIT AT
X

22 + (23 +1)°

The critical points occur when D’ (z) = 0, which is when
325 + 322 +2=0

Although one solution clearly is = 0, we must use a computer algebra
system to numerically estimate other solutions:

32° + 322 +2=0 solver x = —0.846, —0.348, 0
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The graph of D (x) over [—1,0] is of the form

1.02

0.98

0.96

0.94

-1 -0.8 06 . -04 -0.2 0

6-8
and D (z) is minimized when z = —0.846. If x = —0.846, then

y = (—0.846)° + 1 = 0.395

Thus, the point (—0.846,0.395) is the point on the curve y = 2% + 1
that is closest to the origin..

Exercises:

—

Maximize A = zy subject to the constraint 3x + y = 30.
Maximize A = 22y subject to the constraint  + y = 30.
Maximize A = 22y subject to the constraint x + y = 30.
Minimize A = xy subject to the constraint =2 + y = 30.

Minimize E = 22 4+ 52 subject to the constraint y = z — 1.

® &k ® b

Minimize E = 22 + 32 subject to the constraint y> =1 — x.

7. Maximize the product of two positive numbers whose sum is 36.
8. Minimize the sum of two positive numbers whose product is 36.

9. A farmer has 400 feet of fence with which to enclose a rectangular field bor-
dering a river. What dimensions of the field maximize the area if the field
is to be fenced on only three sides (see picture below)?

River

Fence

6-9

10. A farmer has 400 feet of fence with which to fence in a rectangular field
adjoining two existing fences which meet at a right angle. What dimensions
maximize the area of the field?
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11.

12.

13.

14.

15.

16.

17.

Existing Fence
m
=}
4
g
X aQ
g3
[¢]
=3
(]
(¢
y
6-10

A farmer wants to enclose a 4,000 ft2 field by using as little fence as possible.
If the field adjoins a river so that only three sides will be fenced, then what
dimensions of the field minimize the amount of fencing required?

River

Fence

6-11

Redo example 4 when the cost of siding is $5 per square foot and the price
of roofing is $8 per square foot.

Suppose the two enclosures shown below are to be fenced using 3000 feet of

fence
21 [

6-12
What values of w and [ maximize the total area of the two enclosures. What
is the total area enclosed with respect to these values?

Suppose the two enclosures in exercise 13 are to enclose a total area of 41,000
square feet. What dimensions w and [ lead to the shortest possible fence?
What is the total length of fence needed?

Acme fast food sells 500 megawhoppers a day when the price of a megawhop-
per is $2, and they sell 750 megawhoppers a day when the price of a megawhop-
per is $1. If the number sold each day is a linear function of the price, what
should the price of a megawhopper be in order to maximize the daily revenue
from megawhoppers?

Acme sporting goods sells 10 tennis rackets each week when the price of each
racket is $60, and it sells 15 tennis rackets each week when the price is $55.
Assuming the relationship between price and the number of rackets sold is
linear, what price will maximize weekly revenue?

In each of (a) and (b) below, a box with an open top is made by cutting
squares from the corners of a sheet of paper and then folding the result into
a box.

246 APPLICATIONS OF THE DERIVATIVE



N

6-13

In each case, x is the length of the side of the square cut from the corner
and the goal is to maximize the volume.

(a) Suppose the squares of length z are cut from the corners of an
8 inch by 8 inch sheet of paper (see figure below left). What value
of £ maximizes the volume of the box?

(b) Suppose the squares of length x are cut from the corners of an 8%

inch by 11 inch sheet of paper (see figure below right). What value
of * maximizes the volume of the box?

8-2x X 11-2x
| P | L
- #
R b
. T

Exercise (a)

Exercise (b)

18. What dimensions of a 80 ft? balcony minimize the length of the rail around

it?
1
Page to
Al > Text 1 | be bound
Region in a book

1

Exercise 18 Exercise 19
19. Suppose a bookbinder must leave margins of 2 inches on the left and 1 inch
on the top, right and bottom of a page. If the text region is to have an area

of 12 square inches, what dimensions of a page make the area of the page a
minimum?

20. A box with a square base and an open top is to have a fixed volume of 60
in3. What dimensions minimize the surface area of the box?

21. You wish to have a gas line run to your house. The gas line, shown in blue

below, will begin at a gas main stub that is on the opposite side of your
driveway, as shown below:
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F——150 feet— 1
Gas Main Stub

15 ft

point of entry

* 150 - x to house

6-14

The contractor charges $3.50 per foot to install the line under earth only
and $5.50 per foot to install the line under your driveway since it will have
to be patched. What value of z minimizes the cost of the gas line? What is
the minimum cost?

22. Suppose that f (x) is continuous, differentiable and concave down on [a, b].

—fx)

a c b
6-15

Show that the area of the shaded region in figure 6-15 is a maximum when
¢ is the number in [a, b] which satisfies the Mean Value Theorem,

f(bzii(a) :fI(C)

23. The Norman Window Problem. The window below is called a Norman
window.

h

6-16

(a) Find a formula for the area of the Norman window in terms of r
and h.

(b) If the perimeter of the Norman window is to remain a constant, P,
find the area of the window as a function of r.

(c¢) Find the radius which maximizes the area given the fixed perimeter
P.

24. A long sheet of metal which is 12 inches wide is to be made into a rain gutter
by turning up two sides at right angles to the sheet. How many inches should
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25.

26.

be turned up in order to give the gutter its greatest capacity?
AL

&2

oY

—>

6-17

A house with width w and length [ is be 18 feet tall at its tallest and 10 feet
tall at each corner.

6-18

What dimensions for a 2000 square foot house (i.e., wl = 2000) minimize
the area of the roof and sides of the house?

What dimensions would minimize the cost of the exterior of the house in
exercise 25 if siding is $3 per square foot and roofing is $10 per square foot?

In exercises 27-33, find the point on the curve closest to the given point. You may
want to use a Computer Algebra system to assist in the calculation.

27.
28.
29.
30.
31.
32.
33.
34.

35.

The point on y = 2z + 3 closest to (0,0)

The point on y = 1 + x closest to (3,5)

The point on y = 2® — 22 — 3 closest to (0,0)

The point on y = 2* — 222 + 1 closest to the origin.
The point on 2% + y2 = (1 — 2y)? closest to the origin.
The point on 222 + y? = 5 closest to (1,1)

The point on 22 4 4% = 4 closest to the point (2,1).

The point on 2%y = 1 closest to the origin

Computer Algebra System. The moon’s orbit about the earth is well-
approximated by the curve

2 + 1% = (238,957 — 0.0549y)°

where distance is in miles. How close is the moon to the earth at its closest
point? What is the greatest distance between the moon and the earth?
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36.

37.

38.

39.

40.

41.

250

Show that if (p,q) is the point on the line y = max + b closest to the origin,
then the line from the origin through (p, q) is perpendicular to y = max + b.

AN

6-19

Computer Algebra System. For a > 0, consider L and K as shown in
figure 6-20. Where on the horizontal should the point P be in order for L+ K
to be a minimum?

~

2a K

<« P>
6-20

Suppose that a certain cylindrical can is to have a volume of 0.25 cubic feet
(approximately 2 gallons) but that the top and bottom of the can are both
punched out of squares with sides of length 2r (see figure 6-21 below). Find
the height h and radius r of the can that will minimize surface area of the
can. What is the relationship between the resulting » and h?

i
Y

-
=L -

b

6-21

Computer Algebra System. Suppose in exercise 38 that the cost of
producing the side of the container is $0.20 per square foot and the cost
of producing the lids is $0.30 per square foot. The cylindrical container
produced will have a volume of 0.25 cubic feet (approximately 2 gallons).

(a) Find the cost function, C(r), for producing this container in terms
of the radius of the cylinder, r.

(b) Find the value of  which minimizes the cost function C(r).

(¢) What is the cost of producing such a container?

Write to Learn: Write a short essay showing that of all the cylindrical
cans with a fixed volume V, the one with the least surface area is the one in
which the cross-section of the can is a square.

To make a right circular cone from a flat circular disk with a 1 foot radius, a
pie shaped wedge is cut from the disk and the two radial edges are connected
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to form an open cone.

“a

6-22

Let a denote the angle of the pie shaped wedge cut from the circular disk:

N Circumference = 2n — o
6-23

(a) Explain why the circumference of the base of the cone is 27 — a.
What is the height h and the radius of the base r of the cone?

(b) Show that the volume of the cone as a function of « is

V=3 (1 a) |1 (1= )

(Recall: Volume formula for cone is V = 17r2h ).

(¢) What angle o maximizes the volume of the cone?

42. Graph Theory: A collection of points called wvertices with a set of connec-
tions called edges is called a graph if each pair of vertices has at most one
edge between them and no vertex is connected to itself.

A Graph NOT a Graph

6-24: Graphs have at most one edge between any two vertices

Suppose that an even number n vertices are to be distributed between a
graph with x vertices and another graph with y vertices. Suppose also that
every vertex in the graph with x vertices is connected to every other vertex
in the graph with x vertices, and every vertex in the graph with y vertices
is connected to every other vertex in the graph with y vertices, but there
are no edges between the two graphs. (e.g., two separate networks of fully
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connected computers).

X vertices y vertices

6-25: Minimize the connectivity

What values for x and y minimize the total number of edges in the two
graphs?

3.7 Least Squares

Averages and Total Squared Error

Statistical measures are often based on the principle that the best measure of a
data set is the one with the least error. As a result, optimization is used to develop
some of the most important techniques in statistics.

For example, if © denotes an arbitrary approximation of the set of numbers

Aly...,0n
then for each j = 1,...,n, the individual error or residual in approximating a; by
x is defined to be the number

€j =T — Gy

However, ¢; can be either positive or negative, which means the smallest possible
error is when all the residuals approach —oo. In addition, adding up the individual
errors might lead to undesirable cancelation.

As a result, we work with the squares of the residuals, in that we define the
total squared error E (x) to be the sum of the squares of the individual errors:

E@ =+e+.. . +e2=@—-a)’+@—a)+...+(@—ay)’

In particular, F (z) small means that each of the €; must also be small in magni-
tude.

EXAMPLE 1 Suppose a certain student has test scores of 72, 82
and 79. What number x best represents those test scores in that it
minimizes the total squared error?

Solution: To begin with, the total squared error function for the set
{73,82,79} is
E(z)=(z—173)" + (x — 82)* + (z — 79)*

Our goal is to find the number x which minimizes the total squared
error. To do so, we compute the derivative of E (),

E'(z) =2(x—73)+2(x—82) +2(x — 79)
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and set it equal to O:

2@ —T3+x—82+42—-79) = 0
30— (73+82479) = 0
3z = T3+82+79
2
o= DBESED oo (595

3

The graph of E () reveals a minimum when x = 78,

100
80
60
40

20

070 72 74 76 X78 80 82 84

7-1: Minimum error when x = 78

In example 1, the best approximation is the average or mean of the numbers in
the data set, which we denote by Z. In general, the mean Z of a data set minimizes
total squared error and is thus considered the best approximation of the data set
in many applications.

Moreover, the standard deviation o of the data set is the root-mean-square
error, which is the square root of the average of the squared error in approximating
the data set with the mean z:

U\/(3‘6a1)2+(§ca2)2+...+(fan)2

n

In terms of the total squared error, the standard deviation is given by
E(z)
n

In example 1, the standard deviation is

ax:\/@ :\/% =3.741657

It gives us a sense of the average distance of each of the individual values from
the average value of 78. That is, a point in the set {73,82,79} is on average about
3.74 units away from the average value of 78.

Check your Reading | Explain why E (m) must always be a parabola which opens upward.
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The Least Squares Line.

A 2-dimensional data set is a collection of points of the form

(x17y1) b) (x27y2) y (xnvy’n)

We often desire to approximate a 2-dimensional data set with a straight line y =
L (x) that passes through the means (Z,7) of the data.

(X4.y4) vy=L)

(1.1 (x;ys)

A(xz ) (3.73)

7-2: The Least Squares Line
Sinc the line passes through (Z,§), then y = L (z) must be of the form
Lx)=y+m(x—2) (3.26)

where the slope is a variable. Our goal is to find the slope m for which y = L (x)
best approximates the data set.
The j" error, or residual, in approximating y; by L (z;) is

ej=L(zj)—yj=g+m(x; —2) — (3.27)
for j =1,2,...,n. Moreover, (3.27) simplifies to
Cy=mla; — )+ -y, (3.23)

Geometrically, |¢;| is the vertical distance from the line to the j* data point.

. E4e —E

@)
’ — €
8/1/‘////:82 A

7-3: Errors in approximating the data set with the line

If we define the total squared error to be E = &2 + ... +¢&2 , then it follows
that

E(m) = (m(xl _53)4‘?3—3/1)24‘--'4‘(7”(% _i')"i_g_yn)z
The line y = L (x) whose slope is the minimum of E (m) is called the least squares

line, because it is the line that minimizes the total squared error between itself
and the data set.

EXAMPLE 2 John scored a 60 on his first calculus test, a 78 on his
second test, an 84 on his third test and an 86 on his fourth test. Find
the least squares line for the test score data set.

Solution: If we pair the test number with the test score, we obtain
the data set
(1,60),(2,78),(3,84),(4,86) (3.29)
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The means of the xz-coordinate and y-coordinate are

1+2+3+4
— =

60 + 78484486
1 =

T = 2.5, g= 7
To find the residuals as functions of m, we complete the table below.

It follows that the total squared error is the sum of the last column:

2

T Y Tj—T Y—Yj gj €]

1 60 —15 17 —1.5m+ 17 2.25m% — 51.0m + 289
2 78 —0.5 -1 —0.5m —1 0.25m2 4+ 1.0m + 1

3 84 0.5 -7 0.5m —17 0.25m2 — 7.0m + 49

4 86 1.5 -9 1.5m—9 2.25m? — 27.0m + 81

E(m) = 5m? — 84m + 420

Since E (m) = 5m? — 84+ 420, its derivative is E’ (m) = 10m — 84.
Setting E’' (m) = 0 yields

10m—84=0, m=284

The graph of E (m) reveals that it must have a minimum at m = 8.4:

400
350
300
250
200

150

100

7-4

As a result, the least squares line for (3.29) is the line which passes
through (z,y) = (2.5,77) with a slope of m = 8.4, which is

L(z)=T7+84(z —2.5)

and which simplifies to L (z) = 56 + 8.4x.

e g
~
90
T
°
-
80 . -
//
- / /
//
60t — ©
/
0 1 2 3 4 5

7-5: The least squares line for the test score data set

That is, John’s score’s increased by about 8.4 points per test.
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The process of obtaining a least squares linear approximation to a data set is called
linear regression, and it is often calculated mechanically. For example, if the data
set (3.29) is entered into a graphing calculator, then the calculator will return the
least squares line

L(x) =56+ 8.4z

Moreover, such devices also commonly provide the correlation coefficient r of the
fit, which in terms of the least squares line slope M is given by

r= &M
Oy
where 0, and o, are the standard deviation of the z-coordinates and y-coordinates,
respectively. It can be shown that —1 < r <1, and typically (though not always)
the closer |r| is to 1, the better the data can be approximated by a straight line.

Check your Reading|]n example 2, what might the y-intercept of 56 suggest about John’s level of

preparation coming into the class?

Least Squares Fits of Transformed Data Sets

Often data sets are transformed to fit linear models, thus allowing us to use the
least squares line to fit data sets to a wider collection of curves. In particular,
defining new independent and dependent variables often leads to a linear model.

EXAMPLE 3 1If an object is released from rest, then its height r in
feet at time ¢ in seconds is

r=a+bt? (3.30)

Moreover, observations of a falling object lead to the following (¢,r)
data set:
(1,484), (2,437), (3,357), (4,244)

Use this data set to estimate a and b.

Solution: The formula 7' = ¢? transforms (3.30) into the straight line
model
r=a+ bl

Thus, letting T = t? results in a new data set that can be fit to a
straight line:

t 7 T=t> r

1 484 1 484
2 437 is transformed into 4 437
3 357 9 357
4 244 16 244

If we now apply the least squares method to the (T, r) data, then we
obtain the least squares line

7 =500.6163 — 16.0155T

Thus, the original data is best approximated (in some sense) by the
curve

r = 500.6163 — 16.0155 t2 (3.31)
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EXAMPLE 4 Determine k and C' for which the ellipse
y? = O + ka? (3.32)

best fits the data set listed in the table and graphed below.

xr oy ! ° R
0 7.14 6 o
1 7 5
2 6.56 4 °
3 5.7 3
4 436 )
) 1 .
0 1 2 3 4 5

7-6

Solution: We let X = 22 and Y = y2, so that (3.32) is transformed
into
Y=C+kX

The old data set is transformed into the new data set shown below.

X )% 501° o
0 50.98 40 °
1 49 " .
4 43.03
9 3295 20 °
16 19.01 0
25 1
0 5 10 15 20 25

X

-7
The least squares line for the new (X,Y") data set is
Y =50.99 — 2X
As a result, the ellipse which best fits the original data set is
y? = 50.99 — 222

In figure 7-8, the ellipse is shown along with the data.

o
,/ - 6 = ~
/ 4 \
2
c‘/ hi
- 2 0p 2 4+
\ 2
N 4 /
~__ o -
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This last example also illustrates the origins of the least squares method itself.
The asteroid Ceres was first discovered on January 1, 1800, only to be lost again
a few weeks later when astronomers failed to relocate it in the night sky. It
remained lost until 1807, when the mathematician Carl Gauss developed the least
squares method and applied it to the observational data from seven years earlier.
As a result, he was able to determine Ceres’ elliptical orbit and predict where in
the night sky the “planet” would re-appear. Ceres was rediscovered in 1807 in
agreement with Gauss’ prediction.

Check your Reading | What is the acceleration of the object whose height at time t is given by (3.81)¢

Curve Fitting and Optimization

It may not always be possible or advantageous to transform a curve-fitting problem
into a linear regression. An alternative approach is to approximate a data set

(xhyl) ) ($2792) yeeey (xnvyn)

with a class of functions f,, (z) parametrized by m. The total squared error for
this alternative is given by

E(m) = (fm(x1) — yl)2 +ooo+ (o (20) — yn)2

If m* denotes the value of m which minimizes E (m), then the curve

Y= fmr (1')
is called the least squares fit of the data.

EXAMPLE 5 An object launched into the air with an initial velocity
of m has a height r in feet at time ¢ in seconds of

r=mt — 16t> (3.33)

neglecting air resistance. Heights are measured at various times to
produce the following data set:

time:t=|1 2 3 4
height: r = [ 85 135 155 145

Use a least squares fit of the the data to estimate the initial velocity.

Solution: Since the parameter in (3.33) is m, we have
r (1) =m—16, r(2) = 2m—64, r(3) = 3m—144, and r (3) = 4m—256
As a result, the total squared error is
E(m) = (m—16—85)"+ (2m —64—135)> 4+ (3m — 144 — 155)* + (4m — 256 — 145)°
= (m—101)" + (2m — 199)* + (3m — 299)* + (4m — 401)*
To find E’ (m), we use the chain rule:
E' (m)=2(m —101) + 4 (2m — 199) + 6 (3m — 299) + 8 (4m — 401)

This simplifies to E’ (m) = 60m — 6000, and clearly, E’ (m) = 0 when
m = 100. Moreover, E” = 60 > 0, so E’'(m) has a minimum at
m = 100. Thus, the least squares estimate of the initial velocity is
m = 100 feet/sec.
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In example 5, the curve » = 100t — 162 is the least squares fit of the data, as is
shown below.

140
120
100
80
60
40
20

00 1 2 3 4

7-9: A least squares quadratic fit

Moreover, E (100) = (100 — 101)>+(200 — 199)*+(300 — 299)+(400 — 401)* = 4,
so that the rms error is

ag =

Thus, the initial velocity is 100 feet per second, give or take about 1 foot per
second.

Exercises:
Find the number x that best approximates the given set of numbers by minimizing
the total squared error. Then find the standard deviation for that approzimation..

1. 1,3,5,2 2. 1,9,-2,5
3. 2,2,4,6,6 4. 1,2,3,4,5
5. 4.1,2.8,5.7,9.2 6. 5,555

Numerical: For each given data set, use a table of the form below to compute
E(m).

xj|l/j| rj—x l7*$/j| gj=(x;—T)m+y—y, €

fs.

E(m)= total
Then minimize E (m) and determine the least squares line.

7. (L,1),(2,2),(3,3) 8. (1,72), (2 97),( )
9. (0,3.1), (1,5), (2,6.9) 10. (0,4.1), (1,3.9), (2,4.1)
1. (L75), (2,79), (3,85), (4,81) 12 (L75), (2,79), (3,81), (4,85)

Numerical: Fit the following curves to the given data sets using the supplied
transformations:

t |y t |y
y=C+Fkt> 0] 160 y=C+ kt? 0]o
13. , 1| 144 14. 1)1
T =12 2| 96 T =12 2|4
31|16 319
bty t |y
y=C + kt? 0] 134 y=+C +kt 135 | 0
15. , 1107 16. , 105 |1
T = t? 2 | 65 Y =92 72| 2
31|10 30 |3
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17.

19.

21.

22,

23.

260

t t Y
y? =ka?+C 2 [ 9.798 y? =ka?+C 0] 10
, 49165 18. , 6] 8
Y =12 T=1¢2 6 | 7.941 Y =92 T=1¢2 8| 6
8 | 6.012 10| 0
t |y
1 0.0 | 1.000 t
Y=orre 0.5 | 0.800 y=1+Vkt2+C 0
, 1.0 | 0.500 20. .1
T— y_1 150308 Y=(@y-17°> T=t 2
y 2.0 | 0.200 3
2.5 | 0.138

Numerical: Dropping a rock from a height of 150 feet generates the data
set

t = Time (sec) r = Height (feet)
0 150
1 135
2 85
3 7

Dropping the rock implies an initial velocity of 0, which means that the
height r is related to time ¢ via a parabola of the form

r=C + kt?

Transform the data so that a least squares line can be used to estimate C'
and k. Why is k close to 16 and C close to 1507

Numerical: Dropping a rock from a height of 150 feet above the surface of
Mars generates the data set

t = Time (sec) r = Height (feet)
0 150
1 144
2 125
3 95

Using the fact that an initial velocity of 0 leads to
r=C+ kt?

transform the data so that linear regression can be used to estimate C' and
k. What is the acceleration of the rock?

Numerical: If a projectile with an initial height of 0 is launched from the
surface of the earth, the projectile’s position r (¢) is of the form

r(t) = Ot + kt*
If we let y = %, then y = C + kt. Find the values of C' and k which best

describe the data

t = time in seconds | 1 2 3 4
r = height in feet | 983 1937 2856 3744

by transforming the data using y = ¢

is the initial velocity of the projectile?

and applying linear regression. What

APPLICATIONS OF THE DERIVATIVE

3.236
3.646
4.606
5.796



24.

Numerical: If a projectile with an initial height of 0 is launched from the
surface of Mars, the projectile’s position 7 (¢) is of the form

r(t) = Ot + kt?
If we let y = %, then y = C + kt. Find the values of C' and k which best

describe

t = time in seconds | 1 2 3 4
r = height in feet | 994 1976 2945 3902

by transforming the data using y = 4 and applying linear regression. What

is the initial velocity of the projectile?

25. Numerical: The points in the data set

(0,5),(3,4),(4,3),(5,0)
are points on an ellipse of the form
y? =C + ka?

Transform the data set and use a least squares line to estimate C' and k.

26. Numerical: The points in the data set

27.

28.

29.

(1,7),(2,6.8),(3,6.4),(5,5)
are points on an ellipse of the form
y? =C + ka?

Transform the data set and use a least squares line to estimate C' and k.

Numerical: Find the value of m for which y = m® best fits the three
points (0,1), (1,2), and (2,4) by directly minimizing the least squared error
function.

Computer Algebra System: Find the value of m for which y = m® best
fits the three points (0,1), (1,2), and (2,4) by directly minimizing the least
squared error function.

x| 01 02 03
y | 111 125 1.39

(Hint: Estimate the zero of E’ (m) graphically).

Numerical: A object dropped from a height of 50 feet above the surface of
the moon has a height of

1
r=50-3 gt? (3.34)

where ¢ is the acceleration due to gravity on the moon’s surface. If the
following heights are measured at the given times,

t = time in seconds | 1 2 3 4
r = height in ft | 474 394 262 7.6

(3.35)

then what value of g yields the least total squared error in fitting the curve
(3.34) to the data (3.35)?
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30.

31.

32.

Numerical: Repeat exercise 29 for the function r (t) = 200 — 1gt? (i.e.,
dropped from 150 feet) and the data set

t = time in seconds | 2 4 6 8
r = height in ft | 189.4 1576 104.6 304

Numerical: Suppose that Acme sporting goods collected the following set
of data relating price charged for a racket, x, to the number of rackets per
week sold at that price.

x = price | $50 $55 $60 $65
y = weekly sales | 18 15 10 6

(a) Use linear regression to determine the least squares line of y as a
function of x.
(b) Explain why the weekly revenue R from the sale of tennis rackets
is a function of the form
R=uxy

Using the line of best fit in (a) as a constraint, write R as a function
of the variable x.

(c) Graph R (z) with a graphing calculator and determine the price x
which maximizes weekly revenue.

Numerical: Acme fast food changes the price of its megawhopper sand-
wich once each week for 4 weeks, and correspondingly, it collects weekly
megawhopper sales data for those weeks. The result is the data set below:

p = price per megawhopper | $2 $1  $1.50 $1.25 $1.75
x = weekly sales | 3500 6000 4500 5000 4000

If the number sold each day is a linear function of the price, what should
the price of a megawhopper be in order to maximize the daily revenue from
megawhoppers? (Hint: See instructions for exercise 31.)

33. Write to Learn: If course grades were to reflect both the average test score

34.

and the average change in the test scores, then the final grade might be
based on the formula

Final Score = Average Score + Average Change in Score (3.36)

In example 2, John’s final numerical grade would be 77 4+ 8.4 = 85.4, thus
giving him a “B” for the course.? What would the final numerical grade
be for a student with test scores of 93, 63, 63 and 58, respectively. Write a
short essay describing how you as an instructor might explain this grading
scale to John and how you came up with his scores under this scale.

Numerical: The author has found that most of his students do not have
significant trends upward or downward. Use (3.36) to determine the final nu-
merical grade of a student with test scores of 87, 82, 78 and 84, respectively,
under the author’s grading system described above.

4 Author’s Note: For most students, a simple average is a sufficient measure of performance.
Moreover, when the average does have a large error, it is usually due to an overall decline in
performance. However, there have been students like John who have received grades higher than
their average because of their marked improvement throughout a course.

262
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35. Since E (m) is a quadratic function, it must be in the form
E(m) =am?+bm+c
In this exercise, we determine the values of a, b, and c. (see the “Check your
reading” question on page 253 ).
(a) Use the fact that

E(m):(m(xl—f)+37—y1)2+---+(m(l‘n—i’)+?§—yn)2

to explain why E (0) = no’. What is the value of ¢?

(b) Let M denote the slope of the least squares line. Use the fact that
E' (M) =0 to show that

—b_
2a
(c) Differentiate E (m) twice with respect to m to show that
E'(m)=2(x1 —2)° +...+2(x, — 7)°
Use the result to show that a = no? and then use this and the

result in (b) to find the value of b.

36. In exercise 35 we show that the total squared error for the least squares
method is of the form

E(m)=o02m?— 20,04 M + UZZJ
where r = g—;M is the correlation coefficient of the data set and M is the

least squares slope.

(a) Use the fact that M = Z*r to show that
E(M) =0, (1-17)
(b) Use the result in (a) to explain why r = £1 implies that £ (M) = 0.
What does this say about the least squares line approximation?

(c¢) Use the result in (a) and the fact that F(m) > 0 to show that
-1<r<i1.

37. Find r for the least squares linear approximation of
(1,60), (2,78), (3,84), (4,86)

using the formula r = %M . Compare the result to the result produced by
a calculator or computer.

38. Find r for the least squares linear approximation of
(1,96),(2,63),(3,63),(4,58)
using the formula r = %M . Compare the result to the result produced by

a calculator or computer.

39. Write to Learn: Even when r is very close to 1, it does not guarantee that

the least squares line is a good approximation of the data set. For example,
the set of data

(1,1), (2,4), (3,9), (4,16)
was generated from the function f (r) = 22. Find the least squares line and

the correlation coefficient for this data set. Does the value of r justify the
use of a straight line to approximate the data? Why or why not?
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40. How would we interpret the case that » = 0?7 What does it say about the least
squares line?

41. Show that if n is an integer, then “—'2@ minimizes the function
E (x) — (l‘ _ a)2n + (x _ b)27l

42. The harmonic mean R of a set of positive numbers {R1,Rs,...,R,} is defined
by

Show that the harmonic mean minimizes the total relative error function

E(x):(1—%)24-(1—%)24-...4-(1—%“)2

43. Suppose that {z1,za,...,z,} is a set of possible random outcomes for a given
event and suppose that p; is the probability that x; is chosen at random from
the set. If the set is approximated by a number x, then there is a probability

2 _

of p; of the squared error term ej = (x — xj)z occurring. Thus, the total

squared error in this case is defined
E(x) = (xfx1)2p1+ (xfx2)2p2+...+ (xfxn)zpn

The value of x which minimizes the total squared error is called the expected
value of the event. Find a formula for expected value, and then show that
it reduces to the mean when each of the z; are equally likely.

44. The possible outcomes for the sum of two rolled dice are {2, 3,4,5,6,7,8,9,10, 11,12},
where there is

a probability of 3—16 of rolling a 2 or a 12
a probability of 1—18 of rolling a 3 or an 11
a probability of Lz of rolling a 4 or a 10
a probability of 3 of rolling a 5 or a 9

a probability of z% of rolling a 6 or an 8
a probability of 5 of rolling a 7

What is the expected value of the sum of two rolled dice? (see exercise 43)
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Self Test

A variety of questions are asked in a variety of ways in the problems below. Answer
as many of the questions below as possible before looking at the answers in the back
of the book.

1. Answer each statement as true or false. If false, determine the reason.

(a) If f'(z) = ¢’ (z) for all z in (a,b), then there is a constant C' such that
f(x)=g(x)+C for all z in (a,b).

(b) Limits of the form 3

(¢) If x = p is a critical point of f(x), then f (z) has a relative extremum
at z =p.

(d) If f (x) has a relative extremum at x = p, then x = p is a critical point
of f(z).

(e) A function cannot be both concave down and increasing on an interval.

cannot exist.

(f) The exponential function, e®, is increasing and concave down on the
real line.

(g) If f'(p) =0and f”(p) > 0, then f (z) has a minimum at z = p.

2. Evaluate lim M
r—0 x3
-1 1
0 = o) © ¢ (@ o
3. Evaluate }Lml o
1 1
@0 O © 5 @1
Tz 1\2
4. Evaluate lim M
r—o0 e — g
(@ 0 (b) 1 (c) 3 d) 9
5. Evaluate ‘11151 [sin (z) In (z)]
(a) -1 (b) 0 (¢) 1 (d) does not exist

6. The first and second derivative of a function f (z) are graphed below: (The
thicker curve is the graph of f/ (x) ).

4 -
2 7

1 0 1 2 3
2

- -4

Which of the following is not true?
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a has a maximum at x =0

(

(b
(c
(d

x

) has a minimum at x = 1

) has a minimum at x = 2

) [f(x)
) f(x)
) f(x)
) f(x) has an inflection point at z =1

7. Consider the function f (t) = t3 —3t?, =3 <t < co. On what interval is this
function concave up?

(a) (0,00) (b) (1,00) (¢) (0,2) (d) f(¢) is always concave down

8. What does the graph of f (z) = 3z — msin (2?) have at 2 = 07

(a) local maximum (b) local minimum
(¢) inflection point (d) cusp

9. If y = acos (wt) + bsin (wt) + M has maxima of (0,3),(2,3), (4,3) and so
on, and minima of (1,1), (3,1), (5,1), and so on, then what is 3’ (0.5)?
@@ -1 (b 0 () 1 () s (¢ -—=
f) -2 (g8 2 (h) does not exist

10. In an optimization problem the constraints are used to

a) define variables.

(c) make the problem difficult.

(a)
(b) find the optimal values.
)
(d) reduce the number of variables in the equation to be optimized.

11. The slope of the least-squares line minimizes the

a) sum of the errors.

(
(

)

b) sum of the squares of the errors.

(¢) square of the sum of the errors.
)

(d) total error.

12. What are the absolute extrema of f (z) = a* — 822 over [—1,1]?

13. Produce a sketch of f (x) = 223 — 922 + 122 which details the critical points,
monotonicity, extrema, and inflection points.

14. Use the graph of f(x) below to answer (a)-(e)

(a) What is the largest interval over which f’(x) is positive?
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15.

16.

17.
18.

19.

20.

21.

(b) At what two points on the graph is f/(z) = 07

(c) If £”(10) = 0, then what is the largest interval on the domain shown
where f"(z) < 07

(d) If f(x) represents the velocity of an object, then at which time(s) x is
the object at rest?

(e) If f(x) represents the velocity of an object starting at time x = 0, does
the object ever get back to its starting position during the trip from
time x = 0 to x = 307

Can a function have both a minimum and an inflection point at the same
input? Explain why or why not.

Find the period, frequency, amplitude, and extrema of the oscillation given
by y(t) = 3 cos(3t) — 4sin(3t).

Maximize z = y® — 2 subject toy = 2 — 1.

A box has a square base with the constraint that the girth plus the height
cannot exceed 36”. What dimensions yield the maximum volume?

The production P at an Acme widget factory is modeled by a Cobb-Douglass
function
P =5002"4y"®

where x is the number of units of labor and y is the number of units of
capital expenditure. If labor costs $60 per unit and capital expenditure is
$35 per unit, then what is the least costly combination of capital and labor
that will produce 10,000 widgets?

Find the hyperbola of the form y?2 = C + kx? which best fits the data by
transforming the data below and then computing the least squares line of
the transformed data.

x|2
1

3 4 5
y| 2 2.

2 7 35

Write to Learn: A certain stock is offered initially at $20 a share at 10:00
a.m. one morning, and then the price increases exponentially throughout
the day, thus producing the following data set:

time | 10am. 1lam. 12pm. 1pm. 2pm. 3pm. 4pm.
price | 20 21 24 26 29 32 35

In a few short sentences, explain how we might use a least squares approxi-
mation to find the value of the parameter k for which y = 20e** best fits the
data.
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The Next Step... Seasonality

In section 3-6, we studied oscillations of the form
y (t) = M + acos (wt) + bsin (wt)

But can a set of data be used to determine a and b in the oscillation? Certainly!
Let’s take the next step and examine how least squares can be used to study
oscillations.

In particular, let’s suppose we have a set of data which fits a seasonal process—
i.e., a process which repeats itself once each year. If time ¢ is measured in months,
then the seasonal process can be modeled by

27 . [ 2m
y=M+acos (ﬁ t> + bsin <ﬁt) (3.37)

where M is the average value of the oscillation. If time is measured in days, then
the model is

2T ) 2m
y=M + acos (% t> + bsin (%t) (3.38)
In both cases, the average value M and the angular velocity w are known a priori.
For time in days, we subtract M from y and divide by cos (%t) , resulting in
-M in (2X ¢
oM snlEE)
cos (2= t) cos (3= 1)
This in turn reduces to
2m 2m
-M —t] = bt —t 3.39
(y )sec<365 > a+ an<365 ) (3.39)
If we now let
2 2
Y =(y— M)sec (3—(?5 t> and T = tan (3—67T5 t> (3.40)

then (3.39) is transformed into the linear model
Y =a+bT (3.41)

Thus, a and b can be estimated by applying least squares to the transformed data.

For example, the following table lists several sunrise times for the city of John-
son City, TN in the year 1999. The variable ¢ represents the number of days since
January 1, and the variable y denotes the decimal time of the sunrise (for example,
7:30 a.m. becomes 7.5 ) in Eastern Standard time.

Date t = # of days y = Sunrise time
Jan. 15 15 7.6667
Feb. 15 46 7.3000
March 1 60 7.0000
March 15 74 6.6833
April 15 105 5.9333

The average sunrise for Johnson City in 1999 is M = 6.4403 (i.e., about 6:26
a.m.).?

5 M = 6.4403 was obtained from the average of the sunrise times of the first and fifteenth of
each month.
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To fit the data with the curve (3.38), we thus use the transformation

2m 2m
T = tan (% t> and Y = (y — 6.4403) sec <% t>

For example, the data for January 15 is transformed into

T = tan (2—” . 15> —0.26411

365
27
Y = (7.6667 — 6.4403) sec (% . 15) =1.2685
The remaining data is likewise transformed, resulting in

T Y

0.26411 1.2685

1.0130 1.2237

1.6761 1.0924

3.2681 0.8305

—4.1456 2.1621

Application of the least squares method to (7',Y") data yields
Y =1.3903 — 0.1803 T’

Comparing to (3.41) reveals that a = 1.3903 and b = —0.1803. Thus, the seasonal
model for sunrise times in Johnson City is

27 . 2m
y = 6.4403 + 1.3903 cos (% t> — 0.1803 sin (% t) (3.42)

The original data is graphed along with the curve (3.42) in the figure below:

N
751 \
6.57 \
. \
0 50 100 150 200

~

@

5

250 300 350
NS-1: Predicted sine wave and actual data

It appears that the model is a good fit of the data. Moreover, on May 1, 1999,
which is ¢ = 121 days since the beginning of the year, the sun rose in Johnson City
at 5:37 a.m. Eastern standard time. Substituting ¢ = 121 into (3.42) results in

2w . 2
y = 6.4403 + 1.3903 cos <% . 121> —0.1803 sin <% . 121) =5.6019

That is, the model predicts that the sun rose about 5:36 a.m.

Write to Learn The following data set lists the 30 year average normal temper-
atures by month for Juneau, Alaska, where ¢ is in months and y is in °F.
(we assume the average corresponds to the middle of each month).

Month | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
t 05 15 25 35 45 55 65 75 85 9.5 105 115
Yy 22 28 31 39 46 53 56 55 49 42 33 27
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The average yearly temperature is M = 40.1°F. Transform the data using
(3.40), and then estimate a and b by applying least squares to the trans-
formed data. Graph the data and the seasonal curve (3.37) which best fits
the data. Include the graph in a short paper which describes your methods
and conclusions.

Write to Learn Here are several sunset times in Eastern Standard time for John-
son City, TN in the year 1999.

Date t = # of days y = Sunset time
Jan. 15 15 5.6333
Feb. 15 46 6.1667
March 1 60 6.4000
March 15 74 6.6167
April 15 105 7.0500

The average sunset time is M = 6.5417 (i.e., about 6:32 p.m. ). Transform
the data using (3.40), and then estimate a and b by applying least squares
to the transformed data. On June 15, which is ¢ = 166 days after the
beginning of the year, the sun set at 7:49 eastern standard time. Use the
model to predict the sunset on June 15. Write a short paper describing your
results and how they were obtained.

Write to Learn Go to the library or search the internet to find more on fitting
data to oscillatory models. Then write a report presenting your research.

Group Learning Try it out! Record both sunrise or sunset data from your local
paper for an extended period of time, and then determine the number of
hours of daylight in each of those days. Assume the average number of hours
of daylight is M = 12.2 hours, and then transform the data using (3.40).
Estimate a and b by applying least squares to the transformed data, and use
the resulting model to estimate the lengths of the longest and shortest days
of the year where you live. Then have the first member of the group present
the data, the second present the model, the third present the fit to the data,
and the fourth present the conclusions.

Advanced Contexts:
Much of our work in this chapter depends on the fact that

v '=—-y, y(0)=p, ¢ (0)=gq (3.43)

has only one solution for each choice of p and ¢g. In the following exercises, we
develop a proof of this fact along with some other interesting ideas about the
differential equation (3.43). However, our proof is only for the case that p # 0.

1. Before we begin, we need to prove the following: If v and v are non-zero
differentiable functions satisfying
u(r) v (z)

u(z)  v(z) (3.44)

then there is a constant R such that
u(z) = Ru (x)

(a) Let h(x) = % and show that

B (x) =

w(z) u(z) v (x)
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(b) Use (3.44) to show that A’ (x) = 0, and thus that h(z) = R for
some constant R. Why does this imply that u (z) = Rv (z)?

2. Now let’s suppose that u (z) and v (z) are both solutions to (3.43)—that is,

that
v’ = —u, u (0) = p, u' (0) =q (3.45)

and that
v'=—v,  w(0)=p, W (0)=g¢q (3.46)

Our goal is to show that u(x) = v (z) for all z, which we do using the
Wronskian of w and v given by

W(x) =u(z)v (z) —u (z)v(x)

(a) Show that W’ (x) = 0, which implies that W (z) is constant.
(b) Let x = 0 and compute W (0). Why does this imply that

and explain why this implies that u () = Rv () for some constant
R.
(d) Let z =0 and show that R = 1.

3. Repeat the steps in the previous exercise to show that

y'+wly=0, y(0)=p, ¥ (0)=gq

2

has only one solution. Here w* is a positive constant.
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4. INTEGRATION

Gottfried Leibniz of Germany independently developed the calculus about the
same time that Newton did. Indeed, it is Leibniz who introduced much of the
notation used in calculus, including the symbols used for differentials and for
antiderivatives (we say that F'(z) is an antiderivative of f (z) if F’' (z) = f (z)).
However, Leibniz’s development of calculus was not motivated by a desire to study
velocities and accelerations.

Instead, Leibniz was motivated in his development of calculus by the problem
of finding the area of the region under a curve.

y=Ax)

Area = ?7?

a‘ b

Indeed, the desire to approximate and calculate areas leads us to a new tool
and a new concept in calculus—that of the definite integral.

Like Leibniz, our goal in this chapter is to develop the definite integral into a
tool which can be used to explore the geometry of a region or a solid. We will
begin by exploring a method for approximating a function over an interval [a, b] .
We will then develop this method of approximation into the tool known as the
definite integral. Most importantly, we will see that there is a connection between
antiderivatives and definite integrals, a connection we now call the Fundamental
Theorem of Calculus.

Finally, we will see that the concept of the definite integral is fundamental
to many scientific and mathematical pursuits, including differential equations,
probability, geometry, and mechanics. Indeed, much of twentieth century science
is based on the concept of the definite integral, and much of twentieth century
mathematics has been devoted to expanding the definition of the definite integral.
And nearly all of twentieth century mathematics and science has utilized and
benefited from the fundamental theorem of calculus.

4.1 Simple Function Approximation

Bar Graphs and Simple Functions

Derivatives and linearization approximate a function only near a given point. In
many applications, it is necessary to approximate a function f () over an entire
interval [a, b] .

The main tool for constructing such approximations is the bar graph. Given
a function y = f(z) over [a,b], a bar graph is a collection of non-overlapping
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rectangular bars covering [a, b] whose tops intersect the graph.

yéjkﬂ /

/

a b
1-1: Bar graph approximation of y = f (z) over [a, b]

Mathematically, a bar graph is known as a simple function approximation of a
given function f () over an interval [a, D] .

To construct a simple function approximation (i.e., a bar graph) of a function
f(z) over an interval [a,b], we first divide the interval into n sections called
subintervals, where n is the number of rectangles to be used in the bar graph. If
all the subintervals have the same width, then the approximation is said to be
reqular.

Three types of simple function approximations are particularly important in
calculus. If the height of each bar corresponds to the value of f at the left of the
subinterval, then the approximation is a left endpoint approximation. If the height
corresponds to the right, it is a right endpoint approximation.

y=f(x) 1 y=flx)

height
height

a b a b
regular left endpoint approx regular right endpoint approx

1-2: Left and right endpoint approximations

Similarly, if the height of each bar corresponds to the value of f over the midpoint
of the subinterval, then the approximation is called a midpoint approximation.

/ y=fix)

» height —

a b
regular midpoint approx
1-3: A midpoint approximation

EXAMPLE 1 Draw left endpoint, right endpoint, and midpoint ap-
proximations to y = 22 + 1 over [—1, 2] using 6 bars.

Solution: In order to have 6 bars over [—1,2] which is 3 units long,
each bar will have a width of % unit. The left endpoint approximation
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has heights that correspond to the left endpoints. For example, on the
first interval [—1, —1/2] , the bar will have a height of y = (—1)*+1 = 2.

5 5
4 4
3 3
5 2
T .
2 I 1.25
i 1
-1 05 0 05 1 15

1 -05 0 05 1 1.5 2
1-4: Left and right endpoint approximations

Conversely, the right endpoint approximation has heights correspond-
ing to right endpoints. For example, on the first interval [—1,—1/2],
the bar will have a height of y = (—1/2)% + 1 = 1.25.

In the midpoint approximation, the height corresponds to the midpoint
of the interval. For example, on the first interval [—1,—1/2], the bar
will have a height of y = (—=3/4)* + 1 = 1.5625.

5
4
3
2
T~
1.5625 R
it

-1 05 0 05 1 1.5 2

1-5: A midpoint approximation

Check your Reading | What is the height of the last rectangle in the right endpoint approximation in

example 19

Tagged Partitions and Simple Functions

Let’s develop some terminology for constructing a simple function approximation
of a function f(x) over an interval [a,b]. First, we divide [a,b] into a collection
of n smaller intervals [z;_1,2;], j=1,...,n. This is known as partitioning the
interval. We then choose a single number ¢; from each subinterval [z;_1, x;]. This
is known as tagging the partition.

Definition 1.1: A set of numbers {z;,¢;}]_, is called a tagged parti-
tion of [a,b] if
a=ro<a1<...<xp =0 (4.1)

and if ¢t; is in [z;_q1,2;] for all j =1,...,n..
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The intervals [xg, z1], [x1,%2], - . ., [Tn_1, %] are called the subintervals of the par-
tition, and the numbers t¢1,ts,...,t, are called the tags of the subintervals. The
quantities Ax; = x; — x;_1 are the widths of the subintervals, respectively.

| - .
T T | » X-axis
X1 X,=b

L2 :%Axﬁ' t

a=xg Xp Xp --- x/._l X]'

1-6: A tagged partition of [a, b].

The values of f at the tags are then used to generate the heights of the “bars” of
the simple function approximation.

Definition 1.2: The simple function approximation of f (x) generated
by a tagged partition {x;,t; }?:1 is defined

f(tl) Zf To < x <21
f(tz) Zf 1 <z <To

s(x) = (4.2)

f (tn) Zf Tpn—1 S x S T

If the tags are the midpoints of the subintervals of the partition, then s (z) is called
a midpoint approzimation of f (x). Likewise, if the tags are the left endpoints, then
s (x) is called a left endpoint approximation, and if the tags are the right endpoints,
then s () is a right endpoint approximation.

Left Endpoint Midpoint Right Endpoint
y=s(x)
:wéf=s(x) ; [Wkly;g(x)
| L | | 11 | | L
[ 1 [ I 7T I 1 [ 1 [
a=x, X1 Xp X3 Xg X5=b a=x, XIT szx3‘ Xq X5=b a=xg X1 Xp X3 X4 X5=b
51 th 131y ts 3] b 3 Iy ts 1 3 Uy ts

1-7: Three types of Simple Function Approximations

Notice that the vertical lines in figure 1-7 are not part of the graph of s(z).
They are simply included for emphasis and to illustrate the connection of a simple
function approximation to a bar graph.

EXAMPLE 2 Construct the midpoint approximation of f (z) = 2%+
1 over the interval [—1, 2] given the partition

Tog = —1, Tl = —0.5, Ty = 0, T3 = 0.5, Ty = 1, Ty = 1.5, T = 2
(4.3)

Solution: Since (4.3) forms a partition of [0,1], a midpoint approxi-
mation dictates that the tags are the midpoints

t1 = —0.75, to = —0.25, t3 = 0.25, ty = 0.75, t5 = 1.25, tg = 1.75
(4.4)

Moreover, f (t1) = (=0.75)% + 1 = 1.5625. Thus, s (z) = 1.5625 when
z is in [—1,—0.5). Likewise, f (t2) = (—=0.25)% + 1 = 1.0625, so s (z) =
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1.0625 when z is in [—0.5,0). The midpoint approximation of f (z) =
x? for the partition (4.3) with tags (4.4) is

1.5625 if —1<az<—05
10625 if —05<z<0
~J 10625 if 0<xz<05
S(T)=9 15625 if 05<z<1 (4.5)
25625 if 1<z<15

40625 if 15<x<2

The graph of s (x) versus f (z) = 22+1 over [—1, 2] is shown in the same
as figure 1-5 above. However, we repeat the graph here for emphasis..

5
4
3
2
T~
1.5625 R
it

-1 05 0 05 1 1.5 2

1-5: A midpoint approximation

Check your Reading |Sketch the graph of the simple function

1 if 0<x<2

) 3 if 2<xz<4
s(1)=9 9 it 4<2<6
5 if 6<x<8

Tabular Construction of Simple Functions

We often use tables to organize our construction of simple function approxima-
tions. For example, let us construct the midpoint approximation of f (z) = xe™™
over the interval [0, 1.5] with the partition

0=0, 71 =0.1, 29=0.3, 13=0.6, 24 =10, z5 = 1.5 (4.6)

To do so, we place the data in (4.6) into a table, and then define the column of
tags to be the average of the columns labeled z;_; and z;,

Tj1 T ¢ f(t))
00 0.1 0.05
01 03 0.2
0.3 0.6 0.345
0.6 1.0 0.8
1.0 15 1.25

T W N .

We complete the last column by evaluating f (z) on the tags (to 3 decimal places
of accuracy):

J Tj—1 T t; f(t))

1 00 0.1 0.05 0.05¢79-05 = 0.048
2 0.1 0.3 0.2 0.2¢792 = 0.164
3 0.3 0.6 0.45 0.45¢70-45 = (0. 287
4 06 1.0 0.8 0.8¢7 9% = 0.359
5 1.0 1.5 1.25 1.25e~ 125 = 0. 358
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0.048
0.164
0.287
0.359
0.358

s(x)

As a result, the midpoint approximation is

if 00<z<0.1
if 01<z<03
if 03<z<06
if 06<z<1.0
if 1.0<z<15

which is shown below along with the function f (x) = ze™:

035 \
03 |
025
02
015
0.1
0.05

0o 0.2 0.4

0.6

><0.8 1 12 14

x

1-9: Midpoint approximation of f (z) = ze™* over [0, 1.5]

EXAMPLE 2 Approximate f(z) =

using the partition

™ ™

z9 =0, TL=gr 2=

s s
Ty = —

27

sin (z) over the interval [0, 7]

Ty =T (47)

Solution: For a left endpoint approximation, the column of tags is
the same as the column labeled z;_;:

As a result, the left endpoint approximation is

0 if 0<z<g
L if f<a<i
s(x) = V2 of T<r<%
Joif f<u<3
1 if %Sxﬁﬂ'

j xj_l [L’j tj Cj = f (tj)
1 0 z 0 sin (0) =0

2 5 4 G sin (§) = 3
3§ 3§ sm(f)=¥¢
I O A
5 5 T 3 sin(5)=1

Check your Reading | Which two columns are the same in a right endpoint approximation?

Regular Partitions

A regular partition of an interval [a, ] is a partition of [a, b] in which each subin-

terval has the same width, Az.

FAX +AX FAX A
| | | | | | | |

| | | | | | | |
a=xo  xp x| X1 %

1-10: A regular partition of [a, b]

278
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A regular partition with subintervals of width Az is also known as a Ax-partition

of la,b].

If zg,x1,..., %, is a regular partition of [a,b] with n subintervals, then

Ar =

and z; =a+ jAz forall j =0,1,...,n.

b—a
n

EXAMPLE 3 Construct the right endpoint approximation of In (z)
over a regular partition of [1, 2] with Az = 0.2 (i.e., over a 0.2-partition

of [1,2].

Solution: It follows that the partition is

Tog = 1, T = 12, To = 14, T3 = 16, Ty = 18, Ty = 2.0

We thus complete the following table (to 5 decimal places of accuracy),

which leads to the following right endpoint approximation:

s(x) =

0.18232
0.33647
0.47000
0.58779
0.69315

Jjlxia xy tj [ ()

1] 1.0 1.2 1.2 In (1.2) = 0.18232
21 1.2 14 1.4 In (1.4) = 0.33647
3| 14 16 1.6 In (1.6) = 0.47000
41 16 1.8 1.8 In (1.8) = 0.58779
5| 1.8 2.0 2.0 In (2.0) = 0.69315

if 1<x<12
if 12<z<14
if 14<z<16
if 16<z<18
if 18<z<20

The graph of s (z) is shown versus In () below:

0.7

0.6

0.5

0.4

0.3

0.2

0.1

01

12

1.4

16 18 2

(4.9)

1-11: Right endpoint approximation of f (z) = In (z) over [1, 2]

EXAMPLE 4 Construct the midpoint approximation of z2? over a
regular partition of [0,2] with Az = 0.5.

Solution: It follows that the partition is

1’0:0, $1:0.5, 1’2:1, $3:1.5, 1’4:2
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Exercises:

We thus complete the following table

which leads to the following right endpoint approximation:

jlaj oz (t;)

1| 0 05 025 (0.25)* = 0.0625
21 05 10 0.7 (0.75)* = 0.5625
31 1.0 15 1.25 (1.25)% = 1.5625
41 15 20 1.75 (1.75)% = 3.0625

s(x) =

0.0625
0.5625
1.5625
3.0625

if 00<z<05
if 05<xz<10
if 1.0<z<1l5
if 15<z<20

The graph of s (z) is shown versus f (z) = 22 below:

0o 0.

5

15 2

(4.10)

1-12: Midpoint approximation of f (z) = 22 over [0, 2]

Sketch left endpoint, right endpoint, and midpoint approximations to the given
curves over the intervals implied by the graph. Use n rectangles, where n is given.

1.

3.
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y=2>-322+1,n=4

20:
18:
16
14
12
10:
8
6:
4
2

00

y=z-27" n=4

0.5

0.4

0.3

0.2

0.1

0.5

2. y=sin(rz),n=5

1

0.8

0.6

0.4

0.2

0.6 0.8 1
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Graph the following simple functions.

3
1
2

1.5
1.2
1.8

if 0<zxz<l1 =2 af 0<z<?2
if 1<x<3 6. s(x)= 1 if 2<z<3
if 3<xr<4 -1 if 3<z<A4
if 0<x<2 1.5 if 0<z<2
if 2<x<3 8. s(x)= —04 if 2<x<4
if 3<x<4 1.8 if 4<x<6

Construct the midpoint approximation to each function below over the given par-
tition, and then graph the function and its midpoint approximation.

9. f(z)=-3z+4
10.  f(x)=2z+1
11. f(x)=2%-1
12. r(z)=2"7
13, f(x) =e /2
14. f(zx)=e*—e*
15.  f(z) = cos (z)
16. f(x)=In(x+1)

ro=-1,21=0,20=1, 23 =2

g =0,21 =0.5, 20 = 1.0, 23 = 1.5
zo=121 =12 290=14,23=1.6, x4 = 1.8
zg=0,21 =0.3, 22 =06, 23 =09, 4 = 1.2
regular partition of [0, 2] with Az = 0.4

1,3] with Az =04

0, 7] with Az = &

0,e] with Az = £

[0,
regular partition of |
regular partition of |

[

regular partition of

Construct the left endpoint approximations on the given partition, and then graph
the function and the resulting approximations.

17. f(z)=—-3iz+4
18. f(z)=2z+1
19. f(r)=2%2-1
20. f(x) =22

21, f(zx)=e /2
22.  f(x)=cos(x)

ro=—-1,21=0,20=1, 23 =2

ro=1,21 =12 20=14, 23=16, 24 =18
regular partition of [0,1.5] with Az = 0.5
regular partition of [0,v/32] with Az = /2
regular partition of [0,2] with Az = 0.4
regular partition of [0, 7] with Az = &

Construct the simple function approximation of the given function by completing
the table listing the partition data. Then graph the function and its simple function

approximation.
23. fx) = 28 24. fx) = In(x)
Jl o owia w tj f(t5) Jl wia =y tj f(5)
1 1 3 2 1 1 €2 e
2 3 4 3 2 e? et e3
3 4 5 5 3 et el e’
4 5 7 6 4 eS €8 e’

25. Define a simple function which models the following process. For the first
fifteen minutes of a certain hour, John drove his car at 60 m.p.h., but for
the next twenty minutes, he drove at only 40 m.p.h. For ten minutes after
that, he drove only 30 m.p.h., and then for the last fifteen minutes, he drove
at 65 m.p.h.

26. Define a simple function which models the following process. A certain stock
begins the day at $35, but after an hour the price climbs to $40. Thirty
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27.

minutes later, the price has risen to $45, where it stays for an hour. It then
drops back to $42, remaining there for an hour and a half. It then rallies
and sells for $50 for the next hour, after which it drops to $48 for an hour.
The price then drops to $40 for another hour, and then finishes the last hour
of the day at $45.

Define a simple function which models the following process. The unemploy-
ment rate for the first month of the year is 5%, but it rises to 6.5% for the
next two months. The fourth month sees a slight decline to 5.8%. For the
next month and a half, the unemployment rate is 5.5%, after which it drops
to 4.9% for the final half of the sixth month.

28. A flight of steps represents a simple function. Draw the simple function that

29.

30.

31.

32.

33.

282

corresponds to 13 steps each with a width of 12 inches and a rise of 6 inches.

Prove the following: If a simple function is multiplied by a constant, then
the result is also a simple function.

Prove the following: The sum of two simple functions is a simple function.

Prove the following: The difference of two simple functions is a simple func-
tion.

Is the product of simple functions also a simple function? Try it out. Define

0.048 if 00<az<0.1 2 if 00<2<0.1
0.164 if 01<z<03 32 if 01<x<02
sp(z)={ 0287 if 03<z<06 sy(z)={ 4352 if 02<z<0.3
0.359 if 0.6<z<0.9 4916 if 03<x<04
0.358 if 09<z<10 4999 if 04<x<1.0

and then graph their product over [0,1]. Is it a simple function?

Here we explore the simple function

1 if 0<z<2

) 3 if 2<a<4
s(¥)=9 9 it 4<z<6
5 if 6<x<8

(a) Explain why s’ (z) = 0 as long as z is not an even integer in [0, 10].

(b) Clearly, s(z) is not constant, and yet its derivative is 0 except at
four points. Why does this not contradict theorem 1.2 in section 1
of chapter 37

(c) Graph the two piecewise-defined functions shown below:

c+1 if 0<x<2 x+4 if 0<z<?2

_ 3r+2 if 2<z<4 _ 3r+2 if 2<zx<4
S1() =9 9p43 if d4<a<6 W=\ 2013 if 4<z<6
br+4 if 6<x<8 5c+5 if 6<x<8

Explain why 57 (x)

does this not contradict what we proved earlier in the text?

= 8% (z) = s(x) except when x is an even
integer in [0,10]. Do S; (x) and S (x) differ by a constant? Why
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34. Let S (z) denote the piecewise defined function

ar+b if o<z <ax

cor+by if <z <my
S(x) = ) ) .
e +by if xp_1<z<ux,

What is S’ (2)? Why does S’ (z) not depend on the values of by, b, ..., b,7

The floor and ceiling functions are defined by

floor (x) = |x| = largest integer <z
ceil (x) = [z] = smallest integer > z

For example, [2.3] = 2 and [2.3] = 3. If f(x) is continuous on [a,b] and if
h > 0, then the functions

Ln(z)=h V(x)J and Uy, (z)=h {%W

are simple functions called lower and upper approximations, respectively. In exer-
cises 35-42, we explore some of the properties of upper and lower approzimations

35. Grapher: Graph the upper and lower approximations of f (x) =3z + 1 on
[0,2] using h = 0.25. That is, graph f over [0, 2] along with the functions

0.25

3z +1

1
and Uop.25 (1’) =0.25 ’73% + —‘

36. Grapher: Graph the upper and lower approximations of f () = 2 on [0, 1]
using h = 0.1. That is, graph f over [0, 1] along with the functions

€T T

Lo (z) =0.1 {OjJ and Uy (x) = 0.1 {oﬂ

37. Write to Learn: Let [c,d] be an interval on the y-axis that contains the
range of a bounded function f (x) over [a,b], and suppose we partition [c, d
into a regular partition in which each subinterval has a width of h. Show that
Ly, () is the largest simple function with outputs defined by the partition
of [¢,d] that lies below f (x) over [a,].

Similarly, show that Uy, (x) is the smallest simple function above f (z) over
[a, b] whose range corresponds to the h-regular partition of [c,d] .

38. Construct Lg; (x) and Uy (z) for f(z) = /z on [0,4], h = 0.25 using a
0.25-partition of the range of v/x over [0,4] and the discussion in exercise
37.
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39. * Write to Learn: Show that if f is continuous on [a,b] and z is in [a, b],
then

Jim Ly, (2) = f (z)

(Hint: Explain why if % has a decimal expansion of dy.d1ds ... where dj

is an integer and dy,ds, ... are digits from 0 up to 9, then
x x
1) |10 gy

Then multiply by || and use the squeeze theorem.)

40. * Write to Learn: Show that if f is continuous on [a,b] and z is in [a, b],
then

lim U (z) = f (x)

(Hint: Similar to exercise 39).
41. Show that L_p (z) = Uy (z). What is U_j, (z)?
42. Write to Learn: Consider the function

f2) = 0 if xisarational number
1 1 if xisanirrational number

For each h, what are Lj () and Uj () when z is rational? When z is
irrational? Are Ly, (x) and U, (x) simple functions? Explain.

4.2  Riemann Sum Approximations

Area Under a Curve

Let’s consider some applications of simple function approximation. We begin with
the use of simple functions to approximate the area of the region under y = f (x)
and over [a, D] .

y=fix)

a b
2-1: The region under y = f (x) and over [a, b] .

To do so, we approximate f (z) with a simple function and notice that the
graph of a simple function is a collection of n rectangles with heights f (¢;) and
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widths Az ;, where t; is the tag and Ax; is the width of the subinterval [z;_1, ;).

y=f(x)
y=s(x)
A1)
a=x FAX; x,=b

2-2: Area of j*" rectangle is f (t;) Az;

That is, the first rectangle has area f (¢1) Az, the second rectangle has area

f (t2) Azs, and so on

Moy 19 )
] 1
FAY Ay —— Axs——Ax, —+ -+ A,

2-3: Approximation with rectangles

The area of the region is thus approximated by the sum of the areas of the rec-

tangles:

Area =~ f (t1) Azy + f (t2) Axa + ... + f (tn) Az, (4.11)

Often we use the notation X, which is pronounced “Sigma,” to denote the operation

of summation, so that we can write the sum in (4.11) in compact form as

Zf(tj)Aij = f(t)Azy + [ (t2) Aza + ...+ f (tn) Az,
=1

Definition 2.1: If {xj,tj}?zl is a tagged partition of [a,b] and f (z)
is defined on [a, b], then

Z f (tj) Al‘j
j=1

is called a Riemann sum approximation of f () over [a,b)].

Thus, if f (z) > 0 on [a,b], then the area of the region under y = f (x) over [a, b]

is approximated by a Riemann sum.

EXAMPLE 1 Find the Riemann sum approximation of the area of
the region under y = 22 over [0, 1] using the right endpoint approxi-
mation over the partition

o = 0, T = 03, To = 05, T3 = 07, Ty = 09, Ty = 1.0 (412)
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Solution: To compute a Riemann sum approximation, we add a col-
umn of areas f (¢;) Az; to the tabular calculations of simple function
approximations in the last section.

JlTi t f(t;) Az [ (t;) Az,
11 00 0.3 0.3
21 03 0.5 0.5
31 05 0.7 0.7
41 07 09 0.9
51 09 1.0 1.0
5
Z j) Az;
Since f (t;) = t?, the result is as follows:
j Tj—1 € tj t? Al’j tzAl’j
1] 00 03 03 009 03 (0.09) (0.3) = 0.027
2/ 03 05 05 025 02 (0.25) (0.2) = 0.050
3/ 05 07 07 049 02 (0.49) (0.2) = 0.098
41 07 09 09 081 02 (0.81) (0.2) = 0.162
5/ 09 10 10 1.0 01 (1.0) (0.1) = 0.1

5
3 t2Ax; = sum
7 J
k=1

Summing over the last column then yields our approximation

5
Area 3" #2Ax; = 0.027 +0.050 + 0.098 + 0.162 + 0.1 = 0.437
k=1

1 y :x2

0.8

0.6

0.4

0.2

0o 0.2 04 " 0.6 0.8 1

2-4: A Riemann Sum Approximation of y = 2

A calculator or computer can be used to approximate areas by using similar meth-

ods to approximate a definite integral f; f (z) dz. For example, using Maple(© to
. 1 o . .

estimate [, x2dx to seven decimal places results in

1
/ z2dx = 0.3333333
0

This is the actual area of the region under y = 2 over [0,1] to 7 decimal places.

Check your Reading | How close can your calculator come to the exact value for example 1 of

1
Area = =7
rea =g
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Midpoint Approximations of Area

If f(z) is linear, then the overshoot on one side of the midpoint is exactly the
same as the undershoot on the other side of the midpoint.

y=mx+b

Overshoot
cancels
undershoot

a b
2-5: Midpoint Approximation of a Linear Function

Thus, the midpoint approximation is exact when y = f () is a straight line.

EXAMPLE 2 Calculate the area of the region under y = 2 — x and
over [0, 2] first by using simple geometry and then by using a midpoint
approximation.

Solution: Since the region under y = 2 — x on the interval [0,2] is a
right triangle with base 2 and height 2, we have

Area:%'2~2:2

o 05 T 15 2
x

Let’s apply the midpoint approximation using the irregular partition
To = 0, Tr1 = 02, To = 1.0, T3 = 1.4, T4 = 16, Is = 2.0

To do so, we construct the table below:

j Tj—1 X tj 2—tj Al‘j (Q—tj) Al’j
1 00 02 0.1 1.9 0.2 0.38
21 02 10 0.6 1.4 0.8 1.12
31 1.0 14 1.2 0.8 0.4 0.32
41 14 16 1.5 0.5 0.2 0.10
5| 1.6 20 1.8 0.2 0.4 0.08
5
Zl (2 - tj) Al’j
i=

The midpoint approximation thus yields
5
Area~ ) " (2—t;) Az; = 0.38 + 112+ 0.32 + 0.10 4 0.08 = 2
j=1

As expected, the midpoint approximation yields the exact value of the
integral.
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Moreover, if f (x) is differentiable and the subintervals of the partition are suffi-
ciently short, the graph of f (z) is practically a straight line over each subinterval,
in which case the midpoint approximation is the best of the three methods we’ve

seen thus far.

Overshoots tend to

cancel undershoots

/\

|

2-6: Undershoots tend to cancel overshoots

EXAMPLE 3 Find the Riemann sum approximation of the area of
the region under y = 22 over [0, 1] using the left endpoint approxima-
tion over the partition

o = 0, T = 02, To = 04, T3 = 06, T4 = 08, Is = 1.0

Solution: The calculation is similar to those in examples 1 and 2:

j J}j_l J}j tj t? Al’j t?Al‘j

1] 00 02 0.1 (0.1 =001 02 0.01-0.2 = 0.002
21 02 04 0.3 (0.3)>=0.09 0.2 0.09-0.2 = 0.018
3| 04 06 0.5 (05)>=025 0.2 0.25- 0.2 = 0.050
41 06 08 0.7 (0.7)° =049 0.2 0.49-0.2 = 0.098
5/ 08 1.0 0.9 (0.9 =081 0.2 0.81-0.2 =0.162

n
Z t?AI'j
j=1

Summing over the last column then yields our approximation

n
Area Y #2Ax; = 0.002 + 0.018 + 0.05 + 0.098 + 0.162 = 0.33

J

=1

Notice that this is much closer to the actual value of Area = % than is the right
endpoint approximation in example 1.

Check your Reading | Use figure 2-7 to explain why the midpoint approximation in example 3 is better
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1

than the left endpoint approximation.

Using Left Endpoints

—

0

0.2

04 06 08

1

Using Midpoints

=

0

02 04 06 08 1
2-7: Which one is better?
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Displacement and Velocity

If an object moving in a straight line has a velocity of v (¢) at time ¢, then it moves
from a position 7 (a) to a position r (b) over the time interval [a, ] . The difference
r(b) —r (a) is called the displacement of the object and can be either positive or
negative.

ra)  time t=a

(b) - r(a)

L» r(b) & time t=b

2-8: Displacement of a falling object

We can use Riemann sums to estimate the displacement.

To do so, let us partition the time interval [a, b] into a tagged partition {¢;,p;}
where the tags are denoted p;. If the subintervals are small enough, then the
velocity will be nearly constant across each subinterval.

r(a) T Arp = v(p)At,
Ar2 = V(pz)Alz

(D) - r(a)

\—» r(b)

2-9: Partition so that v (¢) is nearly constant over each subinterval

‘Ar = v(p,)At,

For a constant velocity over [tg,?1], the displacement Ary is the product of the
velocity v (p1) and the duration Aty = t; — tg. Thus, the new position 7 (¢1) is
approximately the sum of the old position 7 (¢p) and the change in position Ary:

7 (t1) =7 (to) + Ary =7 (to) + v (p1) Aty

During the next time interval [t1,to], the object will move approximately Ary =
v (p2) Ate, so that r (t2) is approximately

r(t2) &1 (th) + Arg =1 (to) + v (p1) Aty + v (p2) Aty
Similarly for [t2,t3] and so on, until once we reach [t,—1,], we obtain
r(tn) =7 (tho1) + Ary, =7 (tg) +v(p1) Aty + ... + v (pn) Aty
However, since ty = a and t,, = b, this yields
r(b) =r(a)+v(p1) Aty + ...+ v (py) Aty

so that the displacement r (b) — r (a) is approximated by
r() —r(a) =Y v(pn) Aty (4.13)
j=1

Moreover, the displacement may be negative (such as if the object is falling).
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EXAMPLE 4 An projectile falls from a height of 64 feet to the ground
over the time interval [0, 2] with velocity v (t) = —32¢.

64 5 time t=0
48 < time t=1
32
16

time t=2
2-10: Ball drops from 64 feet to the ground

Use a midpoint approximation to estimate the displacement of the
projectile over [1.5,2] over the regular partition

1.5,1.6,1.7,1.8,1.9, 2.0

Solution: Because v (t) is linear, the midpoint approximation will be

exact.
J | tiz1 t; P v (pj) Atj v (pj) Atj
1] 1.5 1.6 1.55 —49.6 0.1 —4.96
21 16 1.7 1.65 —52.8 0.1 —5.28
31 1.7 18 1.75 —56.0 0.1 —5.60
41 1.8 19 1.85 —59.2 0.1 —5.92
51 1.9 20 1.95 —62.4 0.1 —6.24

5
Zl v(pj) At; = —28
J:

Thus, we estimate that the projectile will fall approximately

5
r(2) =7 (L5)~ Y v(p;) At; = —28 feet
j=1

during its last half second of flight.

Check your Reading | The position function for example 4 is v (t) = 64 — 16t2. How does the displace-

ment r(2) —r (1.5) compare with the estimate in example 4%

The Trapezoidal Rule

We can also approximate areas by averaging the left and right endpoint meth-
ods. Indeed, over a regular partition whose subintervals have a width Az, a left
endpoint Riemann sum is of the form

Area =~ f(xo)Az+ f(z1)Azx+...+ f(xh_1) Az
Az (f (xo) + f(z1)+ ...+ [ (zn=1)] (4.14)

Q

Likewise, the right endpoint Riemann sum approximation is of the form

Area =~ f(x1)Az+ f(z2) Az + ...+ f(z,) Az
~ Az[f(x)+. 4 f (@n-1) + f (20)] (4.15)
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Since (4.14) and (4.15) have f (z1) + ...+ f (z,—1) in common, the average is

Area = % [f (o) +2f (x1)+ ...+ 2f (xp—1) + [ (zn)] (4.16)

The result (4.16) is called the trapezoidal rule and tends to be as accurate as
the midpoint approximation since averaging also causes undershoots to cancel
overshoots. In fact, the trapezoidal rule is exact when f (z) is linear.

EXAMPLE 5 Approximate the area of the region under y = 2x + 3
over [1, 5] using the trapezoidal rule and the partition

1’0:1, $2:2, 1’3:3, $4:4, 1’5:5
Solution: Clearly, Az =1 and since f (z) = 2z + 3, we have

f)=5, f(2)=7 f(3)=9, f4) =11, f(5)=13
Moreover, f (x) = 2x + 3 is linear, so that (4.16) is exact.

Area = %[f(l)+zf<2>+2f<3>+2f<4)+f<5>]

1
= SB+27+2:942 11413
= 36

In many applications, however, we are given only measurements and do not have a
coordinate system. In such instances, the trapezoidal rule can be used to produce
estimates of area. For example, suppose that “John” wants to paint the side of a
shed which has a hip roof. He measures heights of the side every 2 feet, so that
he obtains a partition of the shed’s side.

24242242421,

2-11: Side of Shed with Hip Roof

Doubling the interior measurements, adding the left and right end measurements
and multiplying by % yields the trapezoidal rule estimate of the area:

2
9+2-11+2-134+2-14+2-14+2-13+2-11+9] = 170 ft*

Area =~ -
rea 2[

Exercises:

Numerical: Compute the Riemann sum approzimation for the area of the region
under the given curve and over the given interval using midpoints as tags. Con-
struct a table similar to those used in the examples. Compare your answer with
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the result of a numerical integration.'

1. y==z over [0,1] 2. y=4-— 1z over [-1,2]
0,0.25,0.5,0.75, 1 ~1,0,1,2

3. y=2x2—1over [0,1] 4. y=—a%+3x over [0,4]
1,2,3.4 0,1,2,3,4

5. y=a? over [0,1] 6. y=a over [0,1]
0,0.4,0.6,0.8,0.9, 1 0,0.5,0.8,0.9, 1

7. y=+1—2a2over [-1,1] 8. y=+1+2a2over [-1,1]
1,-0.5,0,0.5,1 —1,-0.5,0,0.5,1

9. y=2sin(x) cos(x) over [0, %] 10. y =sin (2z) over [0, %]
08132 0513, 2

11. y= oV [0,1] 12. y= T+ 22/16 over [0,1]
0,0.2,0.4,0.6,0.8,1.0 0,1,2,3,4

y = sin (7z) over [0,1]
0,0.2,0.4,0.6,0.8, 1.0

13.  y = cos (mx) over [0, 1] 14.

0,0.1,0.2,0.3,0.4, 0.5

Numerical: The following functions are velocities of objects moving in a straight
line. Use the given partition and midpoints as tags to construct a Riemann sum
estimate of the displacement of the object over the given interval.

15. wv(t)=5 -S% over [0, 1.2] 16. v (t)=0 -S% over [0, 1.2]
0,0.4, 0.8, 1.2 0,0.4, 0.8, 1.2
17. v (t) = =2 LX over [0, 1] 18. w(t) = —3 Lk over [0, 1]

19.

0, 0.25, 0.5, 0.75, 1.0

v (t) =2t L& over [0, 1] 20.

sec

0, 0.2, 0.4, 0.6, 0.8, 1.0

0, 0.25, 0.5, 0.75, 1.0
v (t) =5t +1 L& over [0,1]

sec

0, 0.2, 0.4, 0.6, 0.8, 1.0

21. v (t) =sin(t) -S% over [m,2n]  22.

™

v(t)=et Lk over [0,1]

dn 5T 9m 0,0.1,0.2, 0.4, 0.7, 1.0

’ 39 3

Numerical: Approzimate the area of the region below y = f (x) and above [a,b]
for each of the following using the trapezoidal rule. Check your work using a
numerical integration algorithm on a calculator or a computer.

23. y=uzover [0,1] 24. y=4— 1z over [-1,2]
0,0.25,0.5,0.75, 1 ~1,0,1,2

25.  y=2x%—1 over [1,4] 26. y= —x2+ 3z over [0,4]
1,2,3.4 0,1,2,3,4

Numerical: In each graph below, a partition of the graph’s domain is implied by
the labeled points on the x-axis. Sketch the midpoint approximation and use it to

!n exercise 7, the partition is denoted by the list of numbers
0, 0.25, 0.5, 0.75, 1
That is, zp = 0, 1 = 0.25, z2 = 0.5, ©3 = 0.75, x4 = 1. Likewise, for simplicity, the partitions

in exercises 8-24 are written in the same form.
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estimate the area under y = f (x) over the graph’s domain.

27.

y=a%-322+1 28.  y =sin(7x)
20 1
18
16 0.8
14
12 0.6
10
8 0.4
6
& 0.2
2
00 1 2 3 4 0o 0.2 04 06 0.8
. 1
y=x-2 30. y=
1—=z
5
0.5
0.4 4
0.3
3
0.2
2
0.1
00 05 ¥ 15 2 5 02 04 056

31. Numerical: A river bounds a field, as shown below left. A surveyor measures

32.

distances at right angles to the opposite boundary of the field, as shown
below right.

ﬂ ]
Field g

E g 3 B 5 @ F 3 3
140' 20" 20" 20" 20" 20" 20" 20

2-12: Measurements of a field

Use the trapezoidal rule to estimate the area of the field. What is the size
of the field in acres? (Note: 1 acre = 43,560 feet?).

Numerical: Fred’s flooring is installing parquet tiles in a master bedroom
in which one side is irregularly shaped. Fred measures across the room at
three foot intervals to produce the diagram below right.

Bay Windoy

15—
Master Bedroom

Master J

Bath
| walzk-m Closet

2-13: Measurements of a Room

Use the trapezoidal rule to estimate the square footage of the room.
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33. Numerical: John’s commercial painting is hired to paint the side of a build-
ing. John measures altitudes at ten foot intervals to produce the diagram
below:

'\ |
120: 11()': 100" .
|

(=}

F10'4+10'+10'+10'+10' +10'+10' +10'
2-14: Measurements of the side of a building

Use the trapezoidal rule to find the area in square feet of the side of the
building. Why is the result exact?

34. Write to Learn: Use a ruler to measure the lengths of the vertical lines in
the figure shown below. Measure and label the distance between each pair
of vertical lines.

//\

2-15: What is the approximate area of this region in square inches?

Write a short essay in which you report these measurements and use the
trapezoidal rule to estimate the area of the region.

35. Suppose that s(z) is the simple function

1 if 0<x<2

)3 if 2<a<4
s(¥)=9 9 if 4<2<6
5 if 6<x<8

(a) What is the definition of the simple function 3s (z)?

(b) What is the area under y = s (z) over [1,8]?

(¢) What is the area under y = 3s (z) over [1,8]? How is related to the
result in (b)?

36. Suppose that s (z) and p (z) are the simple functions.

1 if 0<zx<?2 2 if 0<z<1

B 3 if 2<z<4 B 1 if 1<zx<3
(@) =902 if 4<z<6 P@)=9 5 i 3<z<7
5 if 6<z<8 3 if T<z<8

(a) What is the definition of the simple function s (z) + p (z)?
(b) What is the area under y = s (z) over [1,8]?
(¢) What is the area under y = p (z) over [1,8]?

)

(d) What is the area under y = s (x)+p (x) over [1, 8]? How is it related
to (b) and (c)?

294 INTEGRATION



37. Write to Learn: Compute the area of the trapezoid below left by summing
the area of the right triangle with the area of the rectangle.

w £

S | h

Ax Ax Ax
2 2

2-16: Area of a Trapezoid

Then apply the midpoint method to the trapezoid on the right. In a short
essay, explain why all three computations produce the same result.

38. Write to Learn: Use a circle to determine the exact area under y =
V4 — a2 over the interval [0, 2], and then use a midpoint approximation to
approximate the area over the partition

0,0.2,0.4,0.6,0.8,1.0,1.2,1.4, 1.6, 1.8, 2.0

In a short essay, explain why the approximation of the integral is an approx-
imation of 7.

4.3 The Definite Integral

Definition of the Integral

In the previous section, we saw that Riemann sums ) f (¢;) Az; can be used to
approximate areas and displacements. In this section, we use a limit to obtain
exact values from Riemann Sum approximations, thus resulting in the important
new concept of a def