Part 1: 3 Dimensional Vector-Valued Functions

Most of the concepts for oriented curves in 2 dimensions carries over to higher dimensions. Indeed, in R3, vector-valued functions are of the form

r( t) =   á f( t) ,g( t),h( t) ñ ,    t  in [ a,b]
Moreover, the set of position vectors r( t) =   á f( t) ,g( t) ,h( t) ñt in [ a,b] , forms an oriented curve and r( t) is called a parametrization of C.    

EXAMPLE 1    Sketch the curve parametrized by r(t) = á cos( t) ,sin( t),t ñ for t in [ 0,4p] .       

Solution: The computer algebra system Maple yields the following curve

However, it does little good to eliminate t when working with curves in R3. Instead, we must develop the calculus of vector-valued functions in R3 as a means of studying these functions directly.

To begin with, we define the limit of a vector-valued function r( t) =   á f( t) ,g( t) ,h(t) ñ to be

lim
t® p 
r( t) = 
lim
t® p 
f( t) ,
lim
t® p 
g( t),
lim
t® p 
h( t)
(1)
when each of these limits exist. As a result, we define the derivative of r( t) =   á f( t) ,g( t),h( t) ñ to be
dr
dt
=
lim
Dt® 0 
r(t+Dt) -r( t)
Dt
 
which via the definition of the limit (1) yields
 dr
dt

lim
Dt® 0 
 f( t+Dt) -f( t)
Dt
,
lim
Dt® 0 
g(t+Dt) -g( t)
Dt
,
lim
Dt® 0 
h( t+Dt) -h(t)
Dt
Moreover, we often denote dr/dt by v and call it the velocity of r( t) . Likewise, the derivative of v( t) is often called the acceleration of r( t) . The computation above shows us that we have the following:   

Theorem 6.1: The velocity v( t) of the function r( t) =   á f( t),g( t) ,h( t) ñ  is
v( t) = 
dr
dt

= á f ¢( t) ,g¢( t) ,h¢( t) ñ
Likewise, the acceleration of r( t) is given by
a( t) = 
dv
dt
 
= á f ¢¢( t) ,g¢¢( t) ,h¢¢( t) ñ

       

In addition, we define antiderivatives of r(t) =   á f( t) ,g( t) ,h(t) ñ to be
r( t) dt =
f( t) dt, g( t) dt, h( t) dt
+ áC1,C2,C3 ñ
where C1,C2,C3 are arbitrary constants.

       

EXAMPLE 2    Compute the velocity and acceleration of
r( t) = á t2,e2t,t3 ñ
Solution: To begin with, the velocity of r(t) is
v( t) = 
d
dt
t2
d
dt
e2t
d
dt
t3 
 = á 2t,2e2t,3t2 ñ
As a result, the acceleration of r(t) is
a( t) = 
d
dt
2t
d
dt
2e2t
d
dt
3t2 
  = á2,4e2t,6t  ñ

               

Check your Reading: What is v( t) if r( t) = á t2,t2,t2 ñ ?