Part 2: Using Identities to Eliminate the Parameter

In many instances, trigonometric identities are used to find the equation in x and y corresponding to the graph of a given vector-valued function. In particular, the following identities occur frequently in this context:
cos2( t) +sin2( t) = 1
1+tan2( t) = sec2( t)
1-2sin2(t) = cos( 2t)
cosh2( t) -sinh2( t) = 1
1+cot2( t) = csc2( t)
2cos2(t) -1 = cos( 2t)
In addition, we may also on occasion use identities such as 2sin(t) cos( t) = sin( 2t) and ete-t = 1.      

EXAMPLE 2    Sketch the curve parameterized by r(t) = á cos( t) ,sin( t) ñ for t in [ 0,2p] .       

Solution: Since x = cos( t) and y = sin(t) , we begin with
cos2( t) +sin2( t) = 1
Substituting x = cos( t) and y = sin( t) into the identity yields
x2+y2 = 1
which is the unit circle. Moreover, the initial and terminal points are
initial: ( t = 0)
x = cos( 0) = 1,
y = sin( 0) = 0
terminal: ( t = 2p)
x = cos( 2p) = 1,
y = sin( 2p) = 0
Since the initial and terminal points are both ( 1,0) , we must determine the orientation by choosing a value of t near an endpoint of [0,2p] :
t =
p
6
:    x = cos æ
è
p
6
ö
ø
=
3
2
,    y = sin æ
è
p
6
ö
ø
=
1
2
Thus, the orientation of the curve is counterclockwise:

   

The function r( t) =   á f(t) ,g( t) ñ , t in [ a,b] , parameterizes a closed curve if r(a) = r(b) , if  f(t) and g(t) are continuous, and if the curve has a well-defined orientation. The circle in example 2 is an example of a closed curve.       

EXAMPLE 3    Sketch the curve parameterized by r(t) = á 3cos( t) ,2sin( t) ñ for t in [ 0,2p] .       

Solution: Since x = 3cos( t) and y = 2sin(t) , we begin with
cos2( t) +sin2( t) = 1
Substituting cos( t) = x/3 and sin( t) = y/2 thus yields
æ
è
x
3
ö
ø
2

 
+ æ
è
y
2
ö
ø
2

 
= 1
If t = 0 or t = 2p, then x = 3 and y = 0. Thus, the initial and terminal points are the same and correspondingly the graph of r(t) = á 3cos( t) ,2sin( t) ñ for t in [ 0,2p] is the entire ellipse with counterclockwise orientation.
x2
9
+
y2
4
= 1    

       

Unfortunately, a parameterization may not define an orientation for a curve, in that the parameterization may trace the curve from the initial point to a point on the curve and then may retrace the curve back to where it started, as we will see in the next example.       

EXAMPLE 4    Find the Cartesian equation and sketch the curve r( t) = á cos( 2t) ,cos(t) ñ for t in [ 0,2p] .       

Solution: Since x = cos( 2t) and y = cos(t) , we use a double angle identity:
cos( 2t)  =  2cos2( t) -1
x  =  2y2-1
Moreover, r( 0) = á cos( 0), cos( 0) ñ = á 1,1 ñ , r( p/2) = á cos( p) ,cos( p/2) ñ = á -1,0 ñ , and r(p) = á cos( 2p) , cos( p) ñ = á1,-1ñ. Also, r( 3p/2) = ácos(3p),cos(3p/2)ñ = á -1,0 ñ and r(2p) = á cos( 4p) , cos(2 p) ñ = á1,1ñ.  Thus, the curve starts at ( 1,1) , progresses to ( -1,1) , and then retraces the curve in returning to ( 1,1) . Consequently, the orientation is not well-defined.
       

EXAMPLE 5    Find the Cartesian equation of the curve
r( q) = á 2sin(q) cos(q) ,2sin2( q) ñ,  q  in  [ 0,p]

Solution: Since 2sin( q) cos( q) = sin( 2q) and 2sin2( q) = 1-cos( 2q) , we can rewrite r as
r( q) = á sin( 2q),1-cos( 2q) ñ
which implies that x = sin( 2q) and y = 1-cos(2q) . Since
sin2( 2q) +cos2( 2q) = 1
and since cos( 2q) = 1-y, we must have
x2+( y-1)2 = 1
Thus, r( q) = á 2sin( q) cos( q), 2sin2( q) ñ is a circle with radius 1 centered at ( 0,1) .

       

Check your Reading: What is the orientation of the curve in example 5?