Online Lab: Coulomb's Law

Name: \square Date: \square

Instructor: \square Section: \square

Objective:

This lab you will determine the factors which affect the electrostatic force, F_{E}, between two charges, q_{1} and q_{2} as well as determine the relationship between F_{E}, q_{1}, q_{2}, and r. Then graphically determine the value of Coulomb's Constant, k.

Theory:

Electrostatic force between two charges is (a) directly proportional to the magnitude of the product the two charges and (b) inversely proportional to the square of the distance between their centers.

If q_{1} and q_{2} are the magnitude of the two point charges, and r is the distance between their centers, electrostatic force between them is expressed by the equation below.

$$
\begin{equation*}
F_{E}=k \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \tag{1}
\end{equation*}
$$

where k is a constant of proportionality, called Coulomb's constant, $\mathrm{k}=8.99 \times 10^{9} \mathrm{~N} \cdot m^{2} / C^{2}$.
Coulomb's law of Electrostatic Force states that a charged particle attracts or repels other charged particles with a force which is directly proportional to the product of their charges and inversely proportional to the square of the distance between their centers.

Online Experiment Setup Instructions:

1. Go to the following website:
https://phet.colorado.edu/sims/html/coulombs-law/latest/coulombs-law en.html
2. Click Macro Scale on the PHeT simulation.

3. The simulation should look like the image below.

4. You can control the value of the charges, q_{1} and q_{2} with the sliders on the bottom.
5. The distance between the charges, r, can be changed by dragging either charge left or right. Always measure from the CENTER of the left charge, q_{1}, to the CENTER of the right charge, q_{2}.
6. The force value is represented by white vectors as well as a magnitude in Newtons, N.

Fixed Distance, Changing Charge

1. Place q_{1} and $q_{2} 4 \mathrm{~cm}$ apart.
2. SET the values of q_{1} to $-7 \mu C$ and q_{2} to $\underline{10 \mu C}$.
3. Record the force on q_{1} by q_{2}, F_{21} and the force on q_{2} by q_{1}, F_{12} in Table 2.
4. Record if the force arrows are pointing (Toward or Away) from each other in Table 3.
5. Repeat Steps 2-4 for each q_{2} value in Column 2 .

Table 1: Data Results: Fixed Distance, Changing Charge

q_{1} (μC)	q_{2} (μC)	r $(\mathrm{~cm})$	F_{21} (\mathbf{N})		F_{12} (\mathbf{N})		Away - A Toward - T
$-7 \mu C$	$10 \mu C$	4 cm					
$-7 \mu C$	$8 \mu C$	4 cm					
$-7 \mu C$	$6 \mu C$	4 cm					
$-7 \mu C$	$4 \mu C$	4 cm					
$-7 \mu C$	$2 \mu C$	4 cm					
$-7 \mu C$	$0 \mu C$	4 cm					
$-7 \mu C$	$-2 \mu C$	4 cm					
$-7 \mu C$	$-4 \mu C$	4 cm					
$-7 \mu C$	$-6 \mu C$	4 cm					
$-7 \mu C$	$-8 \mu C$	4 cm					
$-7 \mu C$	$-10 \mu C$	4 cm					

Observation and Analysis:

1. What happens to F_{21} when you doubled q_{2} while leaving the q_{1} constant?

Select from: Stays the same, Doubles, Halves, Quadruples
\square
2. If q_{2} is held constant and q_{1} is reduced by a factor of 3 , what happens to F_{21} ? Select from: Stays the same, Triples, Reduced to $1 / 3$ of original value, or Reduced to $1 / 9$ of original value
\square

Fixed Charge, Changing Distance

1. SET the values of q_{1} and q_{2} to $10 \mu C$.
2. $\underline{\text { DRAG }} q_{1}$ all the way to the left at the 0 cm mark.
3. DRAG q_{2} all the way to the right at the 10 cm mark.
4. Record the force on q_{1} due to q_{2}, F_{12} in Table 2, Column 6 .
5. Repeat Steps 3 - 4 for distance of $9,8,7,6,5,4,3$, and 2 cm .
6. Convert the distance (r) from $\mathbf{c m}$ to \mathbf{m}. Record these values in Table 2, Column 4.
7. Calculate $1 / r^{2}$ in meters (m) for each distance. Record these values in Table 2, Column 5.

Table 2: Data Results: Fixed Charge, Changing Distance

q_{1} (μC)	q_{1} (μC)	r $(\mathbf{c m})$	r (\mathbf{m})		$1 / r^{2}$ (\mathbf{m})		F_{12} (\mathbf{N})	
$10 \mu C$	$10 \mu C$	10 cm						
$10 \mu C$	$10 \mu C$	9 cm						
$10 \mu C$	$10 \mu C$	8 cm						
$10 \mu C$	$10 \mu C$	7 cm						
$10 \mu C$	$10 \mu C$	6 cm						
$10 \mu C$	$10 \mu C$	5 cm						
$10 \mu C$	$10 \mu C$	4 cm						
$10 \mu C$	$10 \mu C$	3 cm						
$10 \mu C$	$10 \mu C$	2 cm						

Observation and Analysis:

1. Based on your data above, describe the relationship between Electrostatic Force, F_{E}, and distance between the charges, r. Check the box next to your choice below.
A. \square

Inverse, $F_{E} \propto 1 / \mathbf{r}$ (e.g. If r triples, F_{E} is reduced by a factor of $1 / 3$)
B. \square Inverse Square, $F_{E} \propto 1 / r^{2}$ (e.g. If r triples, F_{E} is reduced by a factor of $1 / 3^{2}$)
C. \square Direct, $F_{E} \propto \mathbf{r}$ (e.g. If r triples, F_{E} increases by 3)
D. \square Quadratic or Square, $F_{E} \propto r^{2}$ (e.g. If \mathbf{r} triples, F_{E} increases by 3^{2})

Conclusions

1. Using your data in Table 2, Columns 4 and 6 , create a graph of F_{12} on the Y-axis versus r on the X-axis. Label the x-y axes including units and Title your graph "Coulomb Force vs Charge Separation". Upload it with this Lab Report in D2L. Comment on the graph.

2. Using your data in Table 2, Columns 5 and 6 , create a graph of F_{12} on the Y-axis versus $\frac{1}{r^{2}}$ on the X-axis. Label the $\mathrm{x}-\mathrm{y}$ axes including units and Title your graph "Coulombs Law". Upload it with this Lab Report in D2L. Measure and record the slope of the line using any method you are comfortable with. What is the physical meaning of the slope?
NOTE: When you get the slope you should get something like 0.8987 which is in $\left(\mathbf{N}^{*} m^{2}\right)$. Then you divide that by q^{2} or $\left(10 \times 10^{-6}\right)^{2}$ with units of C^{2}.

3. Discuss how well does your measured k value compare to $\left(k_{\text {known }}=8.9 \times 10^{9} \mathrm{~N} \cdot m^{2} / C^{2}\right)$. Compare the experimental value of Coulomb's constant, $k_{\text {measured }}$ with the accepted value $k_{\text {known }}$ using the equation below.

$$
\begin{equation*}
\%_{\text {Error }}=\left(\frac{k_{\text {measured }}-k_{\text {known }}}{k_{\text {known }}}\right) \times 100 \tag{2}
\end{equation*}
$$

4. Electric force is a force of attraction or repulsion between objects based on their charges and their distance apart. When is the electric force attractive?
\square
5. When is the electric force repulsive?
\square
6. Does the electric force increase or decrease as objects move closer together?
\square
7. What evidence do you see that Newton's third law applies to electrostatic forces?
\square

