PHYS-4617: Quantum Physics Problem Set 2 (Due: 17 March 2005)

1. (30 pts) Starting with the expectation value of momentum (see Eq. II-47 in your notes),

$$
\langle p\rangle=-i \hbar \int_{-\infty}^{+\infty}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}\right) d x
$$

prove Ehrenfest's theorem,

$$
\frac{d\langle p\rangle}{d t}=\left\langle-\frac{\partial V}{\partial x}\right\rangle,
$$

using integral calculus with quantum mechanics.
2. (25 pts) Calculate $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle,\left\langle p^{2}\right\rangle, \sigma_{x}$, and σ_{p}, for the nth state of the infinite square well. Check that the uncertainty principle is satisfied. Which state come closest to the uncertainty limit?
3. (25 pts) A particle in the harmonic oscillator potential has the initial wave function

$$
\Psi(x, 0)=A\left[\psi_{0}(x)+\psi_{1}(x)\right]
$$

for some constant A.
(a) Normalize $\Psi(x, 0)$.
(b) Find $\Psi(x, t)$, and $|\Psi(x, t)|^{2}$.
(c) Find the expectation value of x as a function of time. Notice that it oscillates sinusoidally. What is the amplitude of the oscillation? What is the (angular) frequency?
(d) Use your result in (c) to deteremine $\langle p\rangle$.

