

1905 – 2005

Kurtosis is a property of distributions related to the heaviness of the tails and the peakedness of the distribution. 
Ethimology: The word kurtosis comes from the Greek ‘‘kurtos’ (curvature) and had been previously used to indicate curvature in Medicine and Mathematics.
Timeline of Kurtosis 
	1905


	Pearson defines Kurtosis, 
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, as a measure of departure from normality in a paper published in Biometrika.  
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=3 for the normal distribution and the terms ‘leptokurtic’ (
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>3), mesokurtic (
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=3), platikurtic (
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>3) are introduced.



	1906-1910


	Articles appear in Biometrika comparing frequency distributions of generally very large data sets (anthropometric measurements, indicators of severity of smallpox, size of paramecium Chilomona, pig fertility) to the normal distribution using 
[image: image7.wmf]2
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 and symmetry

	1920’s..

	the kurtosis statistic is mentioned in all statistics textbooks, even introductory ones, together with location, spread and symmetry



	1943a
	Articles start to appear pointing to some misconceptions about kurtosis in introductory textbooks. Some times people tended to think that if f(0) was higher for one density function than for another, necessarily that distribution had higher kurtosis.


	1943 b
	The ‘density crossing’ sufficient condition for one distribution to have a higher value of 
[image: image8.wmf]2
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 than another one appears (Dyson, 1943, Finucan 1963)). If two density functions(with common variance) cross twice at each side of 0, one has higher 
[image: image9.wmf]2
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 than the other. 
The graph at the right shows that the

Laplace and Normal distributions with equal variances cross twice,.the Laplace distribution has higher kurtosis than the Normal. 
On the other hand, from the comparison of the density functions we could not assure that the Triangular has higher
[image: image10.wmf]2

b

 than the Normal because they cross 3 times.
	[image: image11.png]"






	1964


	Van Zwet defines kurtosis as an ordering of symmetric distributions and says that we should not be representing it by a single measure. F has less kurtosis than G iff 
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 is convex when x>mF ( mF is the common point of symmetry). Not all symmetric distributions are ordered (see graph that shows that the Normal and Laplace are comparable but Laplace and t(6) are not). Van Zwet proved that the following distributions are ordered

U-shaped 
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 Uniform 
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 Normal 
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 Logístic 
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 Laplace   

Later more distributions were proved to be ordered.

The graphs below show that:

 the Laplace distribution has more kurtosis than the Normal distribution 
the Laplace and the t(6) distributions are not really kurtosis comparable 
[image: image17.wmf]x
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	The graph below compares the normal and triangular distribution, 
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 is not convex for low values of x, therefore the distributions are not kurtosis comparable according to Van Zwet’s criteria. 
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	From 1964 on, two lines of work develop in Kurtosis. One works with ordering of distributions without using measures.  The other one defines kurtosis measures and studies the properties of their sample estimators. However when a new measure is defined, to be considered as a valid measure of kurtosis it has to respect Van Zwet’s ordering.



	1970
	The discussion if kurtosis measures should detect bimodality opens (currently the general understanding is that they do not have to). Here the graph shows the classic example of the double gamma and the normal distribution (Hildebrandt). We have added the plot of 
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 that shows that from the point of view of Van Zwet’s criteria, the two distributions are not comparable in terms of Kurtosis (the line is part convex part concave)
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	1982
	A robust kurtosis statistic is defined (Stavig) as 
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	1987
	Using the influence function Ruppert addresses the on going discussion  if kurtosis is related to peak or to tails  (it is related to both)



	1988
	Moors defines a measure of kurtosis based on the ‘octiles’
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	1988
	Balanda y MacGillivray give a more flexible definition of kurtosis as the movement of mass, adjusted for mean and dispersion, from the shoulders of the distribution to th center and the tail, being possible of quantify it of many different ways.

	1990
	Balanda & MacGillivray extend Van Zwet’s criteria to non-symmetric distributions by defining the spread function  
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, 0<u<1/2 and the spread-spread plots 
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is convex for s>0. See display of spread function and spread-spread plot for the Uniform and 
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	1990
	 L-kurtosis is defined (Hosking) as 
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. L-kurtosis becomes popular in water resources research

	1998
	Groeneveld defines quantile kurtosis for symmetric distributions with mean 0
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	2002
	Sample g-kurtosis is defined as 
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It is called g-kurtosis because it is based on Geary’s test of normality (1936) for symmetric distributions 
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[image: image38.wmf](Bonett & Seier).  

	2003
	Two families of kurtosis measures are defined (Seier & Bonett) as E(g(z)) where g is a function of the standardized variable z, 
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These measures give more importance to the central peak than to the tails, opposite to what Pearson’s kurtosis does.

The plots of g(z) appear in the second row of the graph for the endpoints of the interval of possible values of the shape parameter b. The graphs in the first row correspond to the g(z) involved in  Pearson’s kurtosis and Stavig’s kurtosis if they were expressed in the way E(g(z)).[image: image64.wmf] 
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	2003
2005
	Blest (2003) decomposed 
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in two parts, one associated to the fourth moment (
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) and another one that contains only lower order terms and incluyes the efect of skewness (
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.
Kurtosis, as a statistical term, becomes 100  years old.


See following pages for the values of kurtosis measures for common distributions
SYMMETRIC DISTRIBUTIONS
	
	Values of different kurtosis measures for some symmetric distributions

     Distribution           
[image: image54.wmf]2
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[image: image55.wmf]2

g

(0.05)     L     K1      K2
                                               E[5.7344e-|z|]  E(14.843(1-|z|)

    N(0,1)*          3.00    0.355       0.123  3.000  3.000

    SU(0,3)**        3.53    0.395       0.143  3.058  3.230
         t(10)            4.00    0.413       0.154  3.089  3.364

    Logistic*       4.20    0.440       0.167  3.126  3.498
    SU(0,2)**        4.51    0.439       0.168  3.134  3.540

    ScCon(0.05,3)    7.65    0.403       0.176  3.179  3.833

    t(4)                -    0.503       0.217  3.320  4.348

    Laplace*         6.00    0.564       0.236  3.360  4.347

    ScCon(0.1,3)     8.33    0.463       0.212  3.284  4.250

    ScCon(0.05,5)   20.00    0.437       0.249  3.483  5.261

    ScCon(0.2,3)     7.54    0.574       0.249  3.382  4.560

    SU(0,1)**       36.20    0.611       0.293  3.587  5.491

    ScCon(0.05,7)   31.40    0.459       0.313  3.768  6.493

    SU(0,0.9)**     82.10    0.649       0.329  3.738  6.128

    t(2)                -    0.648       0.375      -      -

    ScCon(0.1,5)    16.50    0.597       0.315  3.665  5.851

    ScCon(0.1,7)    21.50    0.708       0.394  3.957  6.975

    ScCon(0.2,5)    11.20    0.735       0.363  3.765  5.991

    Tukey(10)        5.38    0.857       0.396  3.954  6.100

    ScCon(0.2,7)    12.80    0.808       0.437  4.014  6.840

    t(1)                -    0.854           -      -     -

distributions that are ordered according to Van Zwet’s criterion are marked with * or ** (there are two groups of ordered distributions)
Correlation between the different measures for those symmetric distributions.
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[image: image57.wmf]2

g

     L-kurtosis   K1

[image: image58.wmf]2
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            0.244

L-kurtosis      0.389       0.917

K1              0.438       0.879       0.992
K2              0.515       0.797       0.966       0.985
. 



NON-SYMMETRIC DISTRIBUTIONS
	
	Values of different kurtosis measures for some skewed distributions

Distribución          
[image: image59.wmf]2
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[image: image60.wmf]*
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     L-curtosis  K1= E[5.7344e-|z|]

    Beta(2,1)         2.40   2.1847       0.048  2.8299

    TrunN(-2,1)       2.27   2.2019       0.061  2.8369

    Beta(3,2)         2.36   2.3040       0.070  2.8742

    TrunN(-3,1)       2.78   2.5794       0.084  2.9172

    TrunN(-3,2)       2.65   2.6284       0.102  3.0709

    Weibull(4)        2.75   2.7446       0.110  2.9662

    Weibull(3.6)      2.72   2.7200       0.108  2.9609

    SB(0.53333,.5)    2.13   1.8505       0.003  2.7296

    SB(1,1)           2.91   2.5581       0.083  2.9110

    SB(1,2)           2.77   2.7178       0.104  2.9557

    Weibull(2.2)      3.04   2.8674       0.104  2.9595

    Weibull(2)        3.25   2.9873       0.105  2.9661

    HalfN(0,1)        3.78   3.1630       0.097  2.9607

    LoConN(.2,3)      3.09   2.7843       0.134  3.4031

    LoConN(.2,5)      3.16   2.4117       0.151  3.5804

    LoConN(.2,7)      3.20   2.1855       0.162  3.6341

    LoConN(.1,3)      4.02   3.5982       0.174  3.4456

    LoConN(.1,5)      5.45   3.9286       0.245  3.7841

    LoConN(.1,7)      6.60   4.1841       0.296  3.9826

    LoConN(.05,3)     4.35   4.0443       0.169  3.3411

    LoConN(.05,5)     7.44   5.7022       0.241  3.7075

    LoConN(.05,7)    10.40   6.8039       0.299  3.9843

    SU(1,1)          93.40  78.3371       0.293  3.5998

    SU(1,2)           5.59   5.0921       0.168  3.1379

    TrianII(1)        2.40   2.1847       0.048  2.8299

    Gumbel(0,1)       5.40   4.5527       0.150  3.0931

    Chi(4)            6.00   4.7175       0.142  3.0809

    Exp               9.00   6.4895       0.167  3.1644

    Chi(1)           15.00  10.1909       0.227  3.3300

    Lognor          113.90  94.7584       0.293  3.6303

    Weibull(.5)      87.70  66.2057       0.398  3.8425
Correlation among the different measures for those skewed distributions 
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        L          K1

L              0.659

K1             0.430       0.903
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           0.999       0.634       0.409
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