CSCI 1900 Discrete Structures

Trees

Reading: Kolman, Section 7.1

CSCI 1900 - Discrete Structures

rees – Page

Brain Teaser

Assume you are driving with your child, and he/she is screaming for the milk out of his happy meal. You haven't cleaned out the car in a while, so there are 9 milk bottles rolling around on the floorboards under your feet, one full, 8 half full and a bit foul.

Assuming you can pick up more than one bottle at a time in each hand, using your hands as balance scales, how many "balances" will it take for you to find the full bottle.

CSCI 1900 - Discrete Structures

Trees – Page 2

Trees – Their Definition

Let A be a set and let T be a relation on A. We say that T is a **tree** if there is a vertex v_0 with the property that there exists a unique path in T from v_0 to every other vertex in A, but no path from v_0 to v_0 .

-Kolman, Busby, and Ross, p. 254

CSCI 1900 - Discrete Structures

Trees – Page 3

Trees – Our Definition

We need a way to describe a tree, specifically a "rooted" tree.

- First, a rooted tree has a single root, v_0 , which is a vertex with absolutely no edges coming into it. (indegree of $v_0 = 0$)
- Every other vertex, v, in the tree has exactly one path to it from v_0 . (in-degree of v = 1)
- There may be any number of paths coming out from any vertex.
- Denoted (T, v_0)

CSCI 1900 - Discrete Structures

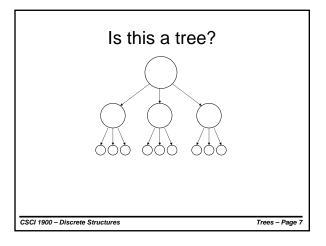
Trees - Page 4

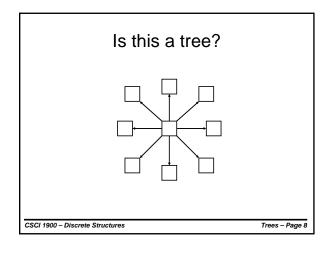
Trees - Characteristics

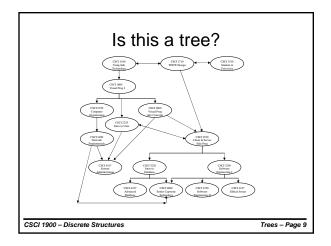
If *T* is a relation that is also a tree, then *T* must have the following characteristics:

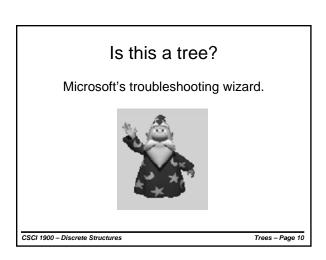
- There are no cycles in T
- $-V_0$ is the only root of T

CSCI 1900 - Discrete Structures


Trees – Page 5


Examples of Trees


Using the definitions given above, determine which of the following examples are trees and which are not.


CSCI 1900 - Discrete Structures

Trees - Page 6

Is this a tree? for i = 0 to 256 for j = 0 to 16 array[i,j] = 1000*i + j next j next i CSCI 1900 - Discrete Structures Trees - Page 11

```
Is this a tree?

for i = 0 to 256
    for j = 0 to 16
        array[i,j] = i*j
    next j
next i

CSCI 1900 - Discrete Structures

Trees - Page 12
```

Definitions

Levels – all of the vertices located nedges from v_0 are said to be at level n.

CSCI 1900 - Discrete Structures

Trees - Page

More Definitions

- A vertex, v, is considered the parent of all of the vertices connected to it by edges leaving v.
- A vertex, v, is considered the offspring of the vertex connected to the single edge entering v.
- A vertex, v, is considered the sibling of all vertices at the same level with the same parent.

CSCI 1900 - Discrete Structures

Trees - Page 14

More Definitions

- A vertex v₂ is considered a descendant of a vertex v₁ if there is a path from v₁ to v₂.
- The **height** of a tree is the number of the largest level.
- The vertices of a tree that have no offspring are considered **leaves**.
- If the vertices of a level of a tree can be ordered from left to right, then the tree is an ordered tree.

CSCI 1900 - Discrete Structures

Trees – Page 15

More Definitions

- If every vertex of a tree has at most n offspring, then the tree is considered an n-tree.
- If every vertex of a tree with offspring has exactly n offspring, then the tree is considered a complete n-tree.
- When n=2, this is called a **binary tree**.

CSCI 1900 - Discrete Structures

Trees – Page 16

Examples

- If the set A = {a, b, c, d, e} represents all of the vertices for a tree T, what is the maximum height of T? What is the minimum height of T?
- 2. If the set A = {a, b, c, d, e} represents all of the vertices for a tree T and T is a complete binary tree, what is the maximum height of T?

CSCI 1900 - Discrete Structures

Trees – Page 17

More Examples

- 3. If every path from the root of a complete 4-tree has 3 levels, how many leaves does this tree have?
- 4. What is *n* for the following *n*-tree?

```
for i = 0 to 256
    for j = 0 to 16
        array[i,j] = 1000*i + j
    next j
next i
```

CSCI 1900 - Discrete Structures

Trees – Page 18

One More Example

- 5. Let T be a complete n-tree with 125 leaves.
 - a.) What are the possible values of n
 - b.) What are the possible values for the height of T.

CSCI 1900 – Discrete Structures

Trees – Page 19